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ABSTRACT. - In this second paper on partial Op*-algebras, we present
a systematic analysis of commutants and bicommutants, both from
the algebraic and the topological point of views, along the lines of the
usual theory of W*- and Op*-algebras. In particular we obtain condi-
tions for the validity of the following statements : given a family 91 of
unbounded operators, its commutant is a partial Op*-algebra, and/or R
is dense in its bicommutant for an appropriate topology. We introduce
the class of symmetric partial Op*-algebras, which verify those conditions.
Finally we compare the commutants of a partial Op*-algebra with those
of its canonical extensions to larger domains.

RESUME. - Ce second article sur les Op*-algèbres partielles est consa-
cre a une analyse systematique, tant algebrique que topologique, des
commutants et bicommutants, dans la ligne de la theorie usuelle des W*-
et des Op*-algèbres. On obtient notamment des conditions garantissant
la validite des enonces suivants : etant donne une famille R d’operateurs
non bornes, son commutant est une Op*-algèbre partielle, et/ou 9t est
dense dans son bicommutant pour une topologie appropriee. On intro-
"duit la classe des Op*-algebres partielles symetriques, qui verifient lesdites
conditions. Enfin, on compare les commutants d’une Op*-algèbre partielle
avec ceux de ses extensions canoniques a des domaines plus grands.
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326 J.-P. ANTOINE, F. MATHOT AND C. TRAPANI

1. INTRODUCTION

In the familiar theory of bounded operator algebras, i. e. W* or C*-alge-
bras [1 ], the notion of commutant plays an essential role. It enters in the
very definition of factors and irreducible algebras or representations, it
is the basic tool in the decomposition (desintegration) of a given algebra
into simpler constituents, factors or irreducible algebras. More ambitiously,
it is a cornerstone of the Tomita-Takesaki theory for von Neumann algebras.

Quite naturally then the notion of commutant was extended to unbounded
operator algebras, notably Op*-algebras. First Borchers and Yngva-
son [2] ] considered bounded commutants, of two different types, called
respectively strong and weak (the latter goes back to Ruelle’s work in axio-
matic Quantum Field Theory [3 ], see also [4D. Next unbounded commu-
tants, again strong and weak, were introduced and analyzed by several
authors : Gudder and Scruggs [ 5 ], Inoue [6 ], Epifanio and Trapani [7 ],
Mathot [8 ].

In Part II of this paper we want to extend that analysis to partial Op*-
algebras, as discussed in detail in Part I [9 ]. Now, besides the weak and
the strong unbounded commutants, two new types appear naturally, i. e.

the commutants corresponding to the two kinds of partial multiplications,
. and D. We will call these objects natural commutants. In addition, one
may restrict one’s attention to bounded operators and thus one gets four
different types of bounded commutants, including the two defined origi-
nally by Borchers and Yngvason. Following the standard scenario, the
next step is to define bicommutants : clearly we get many different types.
Our aim is to make a systematic analysis of all these types of commutants

and bicommutants both at the algebraic and at the topological level.
The first few steps have been made by Karwowski and one of us ] but
those results require some qualifications (see [l0, Add.]). More recently
the beginning of a representation theory has been set up for partial Op*-
algebras, in collaboration with Lassner (see [77]). There it turns out that,
as far as the characterization of irreducibility is concerned, the appro-
priate object seems to be the bounded natural weak commutant, but the
analysis is still preliminary.
The paper is organized as follows. In Section 2 we define the various

types of commutants, bounded and unbounded, and derive a few elementary
algebraic properties. A natural question is whether the commutant of a
set of operators is itself a partial *-algebra. We examine this problem in
Section 3, in the case of the weak unbounded commutant [7 ]. Section 4 is
devoted to topological properties. For a *-invariant family S of unbounded
operators, the basic theorem of von Neumann asserts that the (usual)
bicommutant B" coincides with the closure of B in various topologies,
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327PARTIAL *-ALGEBRAS OF CLOSED OPERATORS AND THEIR COMMUTANTS. - II

such as the strong or the weak one. What is the corresponding
situation for Op* - algebras ? For answering that question, we follow
closely the strategy of [8 ] : first consider a set of bounded operators,
then a set, or a partial algebra, of unbounded operators that contains
a sufficiently large (dense) supply of bounded operators. In Section 5,
we extend to partial Op*-algebras the familiar concept of symmetric *-alge-
br as. Of course here again several definitions are possible, we compare
them and study the properties of commutants and bicommutants of
such sets. Finally, Section 6 is a systematic comparison between the various
commutants of a given partial Op*-algebra 9M and those of its canonical
extensions 9J! and to larger domains, as defined in I. Some additional
remarks are summarized in two Appendices.

At this stage, we should mention some related works on unbounded
commutants. Araki and Jurzak [72] have introduced a special type, which
proves useful under some countability assumptions. The object so defined
is, in fact, more in the spirit of the theory of operators on partial inner
product spaces [13 ]. An analysis of commutants in the latter context
has been initiated by Shabani [14 ], but the problem is far from exhausted.
In the same vein, Voronin et al. [7J] and Schmudgen [7d] have exploited
systematically the notion of intertwining operators. Finally a recent paper
by Inoue et al. [77] pursues the parallel between Op*-algebras and von Neu-
mann algebras, initiated in [7] and [8 ]. All those works are closely related
to the present one, but do not overlap with it.

Obviously one of the main applications of a commutant theory is the
study of abelian partial algebras. Work on this topic is in progress with
W. Karwowski and will reported elsewhere. We thank this author as well
as J. Shabani and G. Epifanio, for fruitful discussions.

Part of this work was made during a stay of F. Mathot at the University
of Palermo; she gratefully acknowkedges the hospitality of the Istituto
di Fisica, as well as financial support from the FNRS (Belgium) and the
CNR (Italy).

2. DEFINITIONS AND ALGEBRAIC PROPERTIES

Let 9t be a =t= -invariant subset of 0152:(~). We may consider four different
types of unbounded commutants of 9t. First we have the weak unbounded
commutant 9t~, originally introduced in [7] [8] in the framework of ~(~, ~f)
(strictly speaking the object defined here is the quotient of the latter by the
familiar equivalence relation: A2 iff Ai ~ = A2 f ~ as discussed
in I, Sec. 3) :

V ol. 46, n° 3-1987.



328 J.-P. ANTOINE, F. MATHOT AND C. TRAPANI

Next we have " the two commutants corresponding j to the two multiplica-
tions, 0 and .,defined on E(D):the weak natural commutant R’[], or commu-
tant in 

and ’ the strong 1 natural commutant R’., in 

Both were essentially introduced in [10] : the latter was called 91’, whereas 910is the pull-back to (t(fØ) of the *-commutant 91~ c 0152:*(fØ). Finally, there
is the strong unbounded commutant :

The first three of these commutants are ~ -invariant subsets of (t(!Ø),
whereas 91~ is an Op*-algebra.
The relations among the four commutants result from the following

easy proposition.

PROPOSITION 2.1. - Let 91 = 91* c 6:(~). Then one has :

COROLLARY 2 . 2. - Given 91 = 91* c 0152:(!Ø), the following inclusions
hold :

If R is fully closed, i.e. d = D(R), one gets R’c = 9K.
If 9t c ~( ~), then 91ó = ~~ .
If 9t c ~(~), the relation (2.7) becomes

Finally, if 91 c n L~), one gets

The proof of all these assertions follows immediately from the definitions
and will be omitted.

If ~ = ~ =1= c ~(~), the natural commutants are easily described.
The weak one, B~ coincides with 9~ by (2.9). For the strong one, B’,
we obtain another characterization, in the familiar language of von Neu-
mann algebras. Let us consider the following set of operators :

Annales de !’ Institut Henri Poincaré - Physique - theorique -



329PARTIAL *-ALGEBRAS OF CLOSED OPERATORS AND THEIR COMMUTANTS. - II

where ~’ is the usual bounded commutant in and means that X
is affiliated with the von Neumann algebra ~’ [7] ] [18 ]. Notice that the
set 3~ is *-invariant, but not ~-invariant in general. Its usefulness lies
in the following properties.

PROPOSITION 2.3. - Let B be a *-algebra of bounded operators.
Then :

and

Proof - Let X ~ B~. Then implies [7] ] that every A ~ B (even
A E ~") leaves D(X) invariant and AXf = XA f for any f E D(X). Therefore
X E L’B. Also implies X*l1~’, and thus every A* E ~ leaves D(X*)
invariant ; hence X E Finally, AXf = XAf, ‘d f E ~, i. e. A 0 X = X . A.

Conversely, let and X.A=AaX, Given

f E D(X), there exists a sequence { such that fn -~ f X~ -~ X f
HenceXAfn = AXf Since X is closed, A f E D(X) and XAf = AX/
Let now B E ~", i. e. B is the strong limit of a net { Bcx } E. By the same
argument, we get B f E D(X) and XBf = BXf Thus 

Finally the relation (2.14) is immediate. II

The realization (2.13) of B~ suggests a possible role for mixed commu-
tants, that is, commutants that mix strong and weak products. A syste-
matic study of these is given in Appendix A.

Let 9t be an Op*-algebra. If 9t is closed, hence fully closed, then, by
Eq. (2.10) it has only two distinct unbounded commutants : the strong
one, 9t~ = 9K, and the weak one, ~o = ~~. If 9t is self-adjoint, all the four
commutants coincide.

Since self-adjoint Op*-algebras behave notoriously better than other
ones, it is tempting to find a corresponding property for partial Op*-alge-
bras. Standardness has been proposed in [70] ] but it seems too strong,
and more a property of individual operators rather than a property of
the partial algebra as a whole. In the light of Proposition 2.1 and Corol-
lary 2.2, we suggest instead the following notion. We will say that 9t,
a ~ -invariant subset of (t(!Ø), is normal if 91~ = 9to. This relation means
roughly that, between 91 and its commutant, strong and weak products
play the same role. The analogy with standardness is obvious. But it is
easy to characterize classes of normal subsets. For instance, the following
result follows immediately from Corollary 2.2.

LEMMA 2 . 4. - Let D be a ~ -invariant subset of L+(D). If 0 is essen-
tially self-adjoint, then it is normal and, moreover, 0’ = C~ = ~~. II

We turn now to bounded commutants, denoting as usual the bounded
part of a subset 91 c E(D) by Rb == 9t n B(H).

In particular, == and 9~ = ~~b are the weak, resp. strong, bounded

Vol. 46, n° 3-1987.



330 J.-P. ANTOINE, F. MATHOT AND C. TRAPANI

commutant familiar in the theory of algebras of unbounded operators [2] ]
[4] ] [19 ]. Then we get immediately from Corollary 2 . 2 :

COROLLARY 2 . 5. - Given 91 = R~ c 0152(Çø), its bounded commutants
obey the following inclusions :

Here again the situation simplifies if R is an Op*-algebra, for then = 

if it is closed, we get, in addition, 9~ = 9~; if it is self-adjoint, all four
commutants coincide. It is also worth noticing that the weak natural
commutant mOb appears naturally in the definition of irreducible repre-
sentations of partial Op*-algebras [77].
Next we define bicommutants. From now on we will pay little attention

to strong commutants 9~: these are Op*-algebras and hence then have been
studied in detail in previous publications [6] ] [8 ]. Thus we are left with
the three other ones, c 910 c 91~ and correspondingly nine possible
bicommutants == (91Dj, with i, j =., 0 or o-. Since all three notions
of commutant reverse order, i. e. 9t c 9M implies M’i c R’i, the bicommu-
tants obey obvious inclusion relations. We will be interested mostly in
the three non-mixed ones : 9~’, 9~. In general they are not included
into each other, and all three contain 9L

In the case of bounded operators, a *-invariant subset B c 
is a von Neumann algebra iff it coincides with its (usual) bicommutant,
~ _ ~". The natural extension of this characterization to Op*-algebras
is given by the concepts of and [7]. Indeed
V*-algebras play the central role in the algebraic description of complete
sets of commuting observables in Quantum Mechanics [20 ].
Now we go one step further. Let 9K be a partial Op*-algebra on ~.

Then we say :

i ) 9K is a partial if KR = 9~;
ii) 9R is a partial if M = M’’w03C3.
More generally, a ~ -invariant subset 9! is called a (resp.

a SV*-set) if R = R"03C303C3 (resp. 9t = These objects have been introduced
in [21 ], in the context of integral decompositions of partial Op*-algebras.
The main question we want to adress in the next section is, under which

conditions a given commutant of a subset 91 is a partial Op*-algebra
or even a partial (S)V*-algebra.

3 . WHEN IS A PARTIAL Op*-ALGEBRA?

If is a *-invariant subset it usual commutant’ is a von Neu-
mann algebra. Already for an Op*-algebra 9t, one has to distinguish :

Annales de l’Institut Henri Poincaré - Physique theorique
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the strong unbounded commutant ~~ is a *-algebra, but not necessarily
the weak one ~~. In the present context, of course, the natural question is :
given a =F -invariant subset of C(~), which unbounded commutant 9~
is a partial Op*-algebra, weak or strong, and for what kind of subset 91?

Let 91i be the candidate. Given X, Y E ~t~, we have to find under which
conditions the product X G Y (E] stands for. or a), if it exists, belongs
to 91~ again. Since neither of the products is associative, the only statement
that seems reasonable to prove is X E] Y E 91~. On the other hand, one .

has to express the fact that X and Y commute with the elements of 9t,
and for this, the condition X, Y E 91~ seems too weak (see the last equality
in (3.1), (3 . 2) below). Thus we need also (at least) X, Y E and therefore

we assume at the outset 910 = 
Under this condition, we try the. multiplication first. So, let X,

Y E 910 = 91~, such that X E LS(Y). Then we compute, for any A 

f, gE:

and, on the other hand :

Now, for = 91~ to be stable under. means that (3.1) and (3.2) must
be equal for every A E ~t, f, g E EØ, and this means that we must have

X $ ~)*) and (A* = Thus we are led to

consider the following subset of ~f (actually a dense domain containing ~),
for a fixed 

Before stating a proposition, we repeat the argument for the 0 multipli-
cation. However, for deriving the relations equivalent to (3.1), (3.2),
we must impose the conditions E D(X~), A f E D(Y). Thus we assume
R’[] = R’03C3 and take X, 
Then for every A E 9t, f, g E ~, we get as above :

and we are led to the same conclusion. Thus we define :

Vol. 46, n° 3-1987.
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These subsets verify very simple inclusions.

On the other hand we have A = A* * c (A~X~)*, which gives thefirst inclusion. The central one is obvious. II
With the help of this lemma, we may now summarize the whole discus-

sion above as follows.

PROPOSITION 3 . 2. - Let 9t be a 4=-invariant subset of (t(!?ð), such
that R’[] = R’03C3. Then :

i ) 91~ is stable under the. multiplication iff Y f E fy(91) for every
Y E 9~.

ii) Assume, in addition, that R’[] = R’03C3 c L’9t; then R’03C3 is a weak par-
tial V*-algebra iff Y f E for every Y E 9~. II

To improve on Proposition 3.2, we must add some restriction on 
First we assume that it leaves ~ invariant. This guarantees that the two
conditions R’[] = R’03C3 and R’[] c L’9t are satisfied automatically. Putting
together all particular cases, we get the following results, either from Corol-
lary 2 . 2 or Lemma 2 . 4, or from Lemma 3 .1 and Proposition 3 . 2.

PROPOSITION 3 . 3. 2014 Given a =f: -invariant subset 0 c 2+(~), consider
the following conditions :

i) C c 

ii) Cis essentially self-adjoint, i. e. ~(D)=~(C);
iii) 0 is normal, i. e. 0’ = 
iv) 
v) ~~ is a weak partial V*-algebra and it is stable under the. multi-

plication.
Then the following implications hold :

COROLLARY 3.4.2014 is self-adjoint then, in
addition, C~ = ~ -= DfJ = ,~6 and = C~. II

(The last result follows from the fact that C~ c j~~(~)).
All these results apply in particular to Op*-algebras, for which many

explicit examples are known, such as polynomial algebras [22] ] [2~] ] or
Annales de l’Institut Henri Poincaré - Physique theorique
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tensor algebras [24-26 ]. We will get more information about bicommu-
tants in the next section.

If 91 does not leave ~ invariant, we need stronger conditions to guarantee
the stability of 91~ under. or a. As it turns out, the crucial condition
in Proposition 3 . 3 is iv). Indeed : 

-

PROPOSITION 3 . 5. - Let be a =f -invariant subset If one has
91~ = 910 = then this commutant is a weak partial V*-algebra and
it is stable under the. multiplication.

Proof. 2014 Y E 9f implies Y E L’9t and Y f E ~(9t). Thus Proposition 3 . 2
applies. II

4. TOPOLOGICAL PROPERTIES

We turn now to the topological properties of commutants and bicommu-
tants. First, we ask for which topology each of them is closed in 0152(!Ø)
or in a set of multipliers. For unbounded commutants the answer is sum-
marized in Proposition 4.1 below, where we refer to the various topologies
defined in I [9, Sec. 5 ]. For the convenience of the reader we recall here
the most important topologies on the commutants 91i of a given 4= -inva-
riant subset 91 of 0152(!Ø):

. the quasi-uniform topologies ’t *(91), on R’[], given by the semi-
norms :

where A E 91 and M c !Ø is a bounded subset in the case of 03C4*(R), a finite
subset in the case 

. the strong*-topology s* on 9t~ with seminorms :

It is worth remembering that the quasi-uniform topologies L*,(91) are
defined only on the space of weak multipliers = n 

not on the whole of 0152(!Ø) as it is the case for s* and all the weak topologies
defined in [9 ].
We collect now the closure properties of the various unbounded commu-

tants of a given subset 9t = 91 * of (t(Çø). The proof of those results
may be found in [8] or [10 ], or derived from the proof of [10, Proposi-
tion 5 . 7 ].

PROPOSITION 4 . 1. - Let 9t be a ~ -invariant subset of (t(!Ø). Then
its unbounded commutants have the following properties :

i ) The weak unbounded commutant R’03C3 is closed in the 

Vol. 46, n° 3-1987.
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logy and a fortiori in the quasi-weak* and the strong*-topology; for the
latter 91~ is complete ;

n) If 9t c ~~(~), then 91~ is weakly closed;
iii) The weak natural commutant R’[] is complete for the quasi-uniform

topologies T~j-(9t);
iv) The strong natural commutant 9T need not be complete for T~j-(9t):

one has only 9f c 9~. However 9f is closed in II

Notice also that the natural commutants 9f need not be s*-closed

in 0152(EØ). Indeed, if X = s*-lim Xa with Xa E 91~ or 9t’, we can conclude that X
belongs to 9t~ but X need not be a two-sided multiplier of 9t.
The closure properties of the bicommutants follow trivially from Pro-

position 4.1: -

PROPOSITION 4 . 2. - Let 9t == 91* c 0152:(~) and i =., 0 or oB

Then one has, for all i :

i) R"i03C3 is closed in E(D) for the R’i-weak*-topology, afortiori it is qw*-and
s*-closed;

ii) is complete for the topologies r~(9~);
iii) ~i’. is closed in for i*, f(~1). II

Of course the same results hold true for the corresponding commutants
of 91~ or of the bounded ones in addition, is weakly closed.

Proposition 4 . 2 yields in particular the following inclusions:

where Rs denotes the closure of R in M’(9f), for 03C4*,f(R’.).
The main question we want to address in the sequel is : under

which conditions are the inclusions in Eqs. (4.3)-(4.5) in fact equa-
lities ? To answer it, we will follow closely the strategy of [8 ], that is,
consider first a *-algebra ~ consisting of bounded operators, then partial
Op*-algebras containing sufficiently many bounded operators.
For the first step the results are summarized in the next proposition.

PROPOSITION 4. 3. - Let B be a *-algebra of bounded operators contai-
ning 1, ~ any dense domain in Jf. Then the unbounded bicommutants ofB
with respect to !Ø may be characterized as follows :

First we prove a technical lemma.

Annales de l’Institut Henri Poincaré - Physique thcorique
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LEMMA 4 . 4. - Let B be as in Proposition 4 . 3. Then :

i ) 
ii) For j = . and a, B is dense in n (B~)~ for 

Proof _2014 We treat all three cases simultaneously, using the argument

developed in [8, Prop. 5 ]. The seminorms defining the topologies in question
are all of the generic form (see Eqs. (4.1), (4 . 2)) :

the operator C runs over B’j for 03C4f(B’j), and C = 1 for S (with k =.
For fixed C and f E ~, we denote by P the orthogonal projection on the

( norm)-closed subspace BCf of Jf. Then [8 ], PB = BP for every 
and so P e B’ = S’t,, the usual bounded commutant. For C =1 and Ye(~ )~,
we have ( f, g E ~) :

since f = P f Similarly, for we get :

since C f = PC f. Thus, in both cases, and one may

repeat step by step the argument of [8, Prop. 9 ].
The only modification is that the mixed product between the extended

algebras ~ and ~ must be defined as follows ( 1 ) :

(both S~ and 9~ consist of diagonal matrices only ; this follows from the
inclusion B~ and the results of [8 ]).

Exactly as in [8 ], the conclusion is that every neighbourhood of Y, for

the topology defined by the operators {C}, contains an element of B.
For C = 1, we obtain :

since the 6-commutant is s*-closed. By Eq. (4 . 3), this proves i ).
For C E ~j (/ = . or a), we obtain the statement of ii), since

~ c n (?’)’. However, the latter is in general not closed in 

for the topology T~(B~). II

e) Here, and only here, the symbol ? denotes as in [8] the extended algebra B ~ B,

and has nothing to do with the fully closed extension of B discussed in I and 
in Sec. 5 below.

Vol. 46, n° 3-1987.
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Proof of Proposition 4 . 3. 2014 Since B ~ B(H), one 
" 

For proving i ), observe that Eq. (4 . 4) and the results of I, Sec. 5 yield the
following inclusions :

Then, comparing (4.6) and (4.8), we get the result.
As for ii), we observe that S" is contained in

thus ~ is dense in B" for the topology i f(~’.) by Lemma 4 . 4. Hence
B" c= B[T~(B’)~. By Eq. (4 . 5), this inclusion is in fact an equality.

Finally, B~ n ~oo c (?’)’ n M~B.~ so that ~ in

9~ by Lemma 4 . 4 . Hence :

Using ii) and Eq. (4 . 4), we obtain iii). II

REMARKS 4.5. - a) The argument of Lemma 4.4 works under more

general circumstances. For instance :

. left multipliers instead is dense in 

in the topology T}(S~).
. C E 9~ Y E n (~’)o, but since

we get nothing more. 
_____

. Ce9~, this yields the relation S~ c ~ [i f(~3~) ], but no
further conclusion may be drawn from that.

b) The proofs given above apply only for the topologies T~(B~). In fact
the analogous statements do not hold for the full quasi-uniform topolo-
gies T~). For instance, when ~ = ~(~) _ ~‘(~), B’ = B’ and B" = ~",
so that B".. cannot be the closure of B in 03C4*(B’), since the latter is the ope-
rator norm topology !

Before going on, we would like to argue that the set B" n ~DD is in
fact the natural bicommutant of ~. Indeed, an operator Y belongs to
it iff Y commutes strongly with every A E ?’, Y . A = A . Y, and still com-
mutes, but weakly, with every B in the larger set B~.
Our next task is to extend the analysis to sets 91 which are no longer

contained in The outcome, patterned after Proposition 4. 3, follows
closely the results of [8 ] : If a set 9t contains a *-algebra B of bounded ope-
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rators, suitably dense, then the bicommutants of R have the properties
described in Proposition 4. 3.

PROPOSITION 4 . 6. - Let 9t be a ~ -invariant subset of E(D) containing
a of bounded operators, with 1 E ~. Then :

Proof. 2014 The proof of all the assertions is almost immediate.

Ad i ) : in general, the following inclusions hold :

Let S be s*-dense in 9t; this means 91 c  [s* ] = 91 [s* ], i. e. ~ c 91 c 9~.
This implies ~~ = 9t~. All the other implications are shown in the same way.

Ad ii) : All three implications follow from the chain of inclusions :

Ad iii) : Same reasoning, treating B" and ~oo separately (for the latter,
all closures may be taken in R’’[][] which is complete). II

REMARKS 4. 7. - a) If ~~ = ~ is dense in 9t for i f(~J~t’.), but the
converse need not hold. The same situation holds in case iii).

b) For i ), the equality ~~ _ 91~ may also be shown directly, using the
density of B in 91, in the standard form : every element of R is the s*-limit
of a net { E. Similar reasonings can be made for ii) or iii), and also
using the continuity properties of the two partial multiplications (see I,
§ 4 . A).

In general, the three density conditions imply each other : iii) =&#x3E; ii) =&#x3E; i ).
For the case of an Op*-algebra ~, we may take S = ~b in Proposition 4. 6.
Then we 

and

So, if we impose ii), 9T = (~)’, which implies i ), ~ = (9t~, we obtain iii).
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Thus for an Op*-algebra ii) =&#x3E; iii), and in that case, all six commutants
coincide.
The next point is to characterize classes of partial Op*-algebras for

which one or another of the conditions of Proposition 4.6 are satisfied.
We shall do this in Sec. 5, which will bring into focus the notion of symmetric
partial Op *-algebra.

5. SYMMETRIC PARTIAL Op*-ALGEBRAS

As it is well-known, an Op*-algebra U is called symmetric if, for every
A e 91, (1 + A*A)-1 belongs to ~b. These Op*-algebras enjoy many
interesting properties relevant for our discussion, for instance they verify
the relation 9~ == (~b )~ [8] ] [77]. We want to generalize this concept to
partial Op*-algebras. As usual several possibilities occur.

Let R be a =f= -invariant subset of E(D). For every A E Jt the usual pro-
duct A*A is a positive self-adjoint operator, so that ( 1 + A*A) -1 1 is a
bounded self-adjoint operator. However it need not belong to 9t~ and A*A
is not necessarily ~-minimal. This motivates our first definition.
A + -invariant subset 91 of (t(fØ) is called *-symmetric if, for every A E 9~,

(1 + A*A)-1 belongs to ~b. The prime examples of such sets are strong
natural commutants.

LEMMA 5.1. - Let B be a *-algebra of bounded operators. Then
its strong natural commutant B’ is *-symmetric.

Proof 2014 By Proposition 2 . 3, {Xe6;(~)!X,X~~}, where ~’
is the usual bounded commutant of S, hence a von Neumann algebra.
Notice that S’ = B~. Let X E Bf. Then X17~’, hence X*17~’ and [I8],
which is equivalent to c B’. Thus Sf is *-symmetric
(notice that X* and X*X do not necessarily belong to &#x26;(~)). II

In the sequel we will discuss partial Op*-algebras that are *-symmetric
as defined above (for Op*-algebras, this reduces to the usual notion of
symmetry). More restrictive concepts will be discussed later on.

If an Op*-algebra U is symmetric, it is well-known that U’03C3 = (Ub)’03C3,
i. e. ~b is s*-dense in 91. This result extends to partial Op*-algebras as well:

PROPOSITION 5 . 2. - Let 9M be a *-symmetric partial Op*-algebra
Then M’03C3 = (Mb)’03C3 and Mb is s* -dense in 

Proof. 2014 For every (1 + belongs to Mb and so does
A(l + A*A) -1: the product is an everywhere defined, bounded operator,
hence it belongs to 9K and thus to since 9K is a partial Op*-algebra.
Similarly, for every n = 1, 2, ..., A(l + n- lA*A)-1 E Mb and, for n ~ oo,
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(1 + n-1A*A)-1 tends strongly to 1, since ~Tn~  1, and the

sequence {f, Tnf~} is non-decreasing for every f ~ Jf (see [27, Theor. 4. 28]).
We have to show that c 9M~. Let so that, for 
we have :

Inserting in the 1. h. s. the decomposition A = U(A * A)1/2, where U is a
partial isometry, this may be rewritten :

Taking the (strong or weak) limit ~ -~ oo, we get :

that is, Therefore we have proven = ~6, which is equiva-
lent to the s*-density of Mb in 9K, by Proposition 4.6f). tt
For the natural commutants, the corresponding result holds for the

bounded parts, but apparently not for the commutants themselves.

PROPOSITION 5.3. - Let 9K be a *-symmetric partial Op*-algebra.
Then the three unbounded commutants have the same
bounded part, which is a von Neumann algebra equal to the usual commu-
tant 

Proof - A priori we have for the bounded parts :

Let Thus C o -commutes with (1 + and A(l + 
for every A E 9M, hence we have, for f E ~ :

which means :

In fact, all relations may be extended to f E D(C), using the closedness
of C. As for that set we get :

but, in general, Jf need not contain ~, although it is of course dense in J’f.
Since C is bounded, Eq. (5.2) gives
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and therefore

i. e. C is bounded in the graph Thus (5.4) extends to all k E D(A),
in particular k E ~, which means that C E (9M~. Thus we have shown that

view of (5.1), this implies that all six bounded commu-
tants are equal, and equal to which is indeed a von Neumann algebra.

II

Remark. Although Jf need not contain ~, it is a core for A. Indeed,
let g E D(A) be orthogonal to every k = (1 + A*A)-1 f, f E ~, in the graph
inner product :

and this implies g = 0.
As an application of Proposition 5.2, we derive the link between partial

V*-algebras and von Neumann algebras.

PROPOSITION 5.4. - Let 9Jl be a partial V*-algebra; then its bounded
part is a von Neumann algebra.

Conversely, for any von Neumann algebra 9t, there exists a partial V*-
algebra 9Jl such that Mb = 9t.

Proof 2014 Let be a partial V*-algebra. It is s*-closed in E(D),
then so is in the 5’*-topology induced on which is weaker than
the s*-topology on Hence Mb is a s*-closed *-algebra of bounded
operators, i. e. a von Neumann algebra.

Conversely let 9t = 9T’ be any von Neumann algebra. Given an arbi-
trary dense domain !Øo in define the domain !Ø = = ~~o.
which contains ~o . Obviously 9t and 9t~ leave ~ invariant. Thus we get
from Proposition 3.3 and Lemma 5.1:

and both are *-symmetric partial V *-algebras, with bounded parts 9T
and 9T’ = ~ respectively. ,

Now take 9t~. Since 9t~ is *-symmetric, we have

so that Mb = U. II
Obviously there is a large non-uniqueness in the answer, coded into

the domain D. In fact, if U or 9T has a cyclic vector fo, then D(f0) = UU’ f0
may be used as well.
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We turn now to commutants and bicommutants of Op*-algebras. Let 9t
be an arbitrary Op*-algebra on  its bounded part.
Then their various commutants obey the following scheme :

and (9~ == { X E @(~)) X, is a *-symmetric partial V *-algebra
(Proposition 3.3 and Lemma 5.1).

If we assume that ~o is a s*-dense in 9t, then ~~ _ (9t~)~ and we conclude :

PROPOSITION 5.4. - Let 9t be an Op*-algebra on !Ø, with s*-dense
bounded part. Then 9t~ is a *-symmetric partial V*-algebra, given by :

If ~ is symmetric, it verifies 2(~ = (9t~ [8 ]. Hence :

COROLLARY 5.5. 2014 The conclusions of Proposition 5.4 hold, in par-
ticular, for every symmetric Op*-algebra. II

Clearly the best situation will be obtained when all eight commutants
coincide in Eq. (5.5). This condition leads indeed to a stronger result.

PROPOSITION 5.6. - Let ~ be an Op*-algebra that verifies one of the
following conditions :

a) 9t is closed and (9t~ = ~
b) 9t is self-adjoint with s*-dense bounded part.
Then :

i ) 9t~ is a symmetric SV*-algebra and

ii) U’’03C303C3 is a *-symmetric partial SV*-algebra and

Proof 2014 Since a closed Op*-algebra verifies 9t~ = 9t’, in both cases a)
and b), the eight commutants coincide in Eq. (5.5). Thus, from Propo-
sition 5.4, ~ = ~ is a symmetric V*-algebra given by Eq. (5.7). By
Corollary 5.5,9t~ is a *-symmetric partial V*-algebra, consisting, according
to Eq. (5.6), of operators affiliated with (~/=((~J=(9t~. It
remains to prove the SV* character of 9t~ and Let 9K = ~~~. Then
9M~ = ~~, which is symmetric, thus = 9~ = ~ = i. e. ~~~ is
a partial SV*-algebra. Similarly 9t~ being *-symmetric, 2l~~~ = 2l~
i. e. 9t~ is a SV*-algebra. II
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Remembering that a closed symmetric Op*-algebra is automatically
self-adjoint with s*-dense bounded part, we get :

COROLLARY 5.7. - The conclusions of Proposition 5.6 hold, in

particular, for every closed symmetric Op*-algebra. II
As mentioned earlier, the notion of *-symmetric partial Op*-algebra

is not the most natural one. For instance, if 9K is one, the bounded ope-
rator (1 + A*A)-1 belongs to ~b for every A E but A*A need not even
be defined on ~, and the products not necessarily
exist. This motivates more restrictive concepts.

Let 9M be a partial Op*-algebra. We will say that :
i ) Wl is weakly symmetric if, for every and (1 +- A * 0 A)-1

exists and belongs to 
ii) M is strongly symmetric if, for every and (1  A~. A)-1

exists and belongs to 
Clearly strongly symmetric implies weakly symmetric. As for *-symme-

try, we have the following result :

PROPOSITION 5 . 8. - Let 9K be a weakly symmetric partial Op*-algebra
on çø. Then, for every A E 9K, A*A = A * 0 A is D-minimal and M is *-sym-
metric.

Proof. 2014 For any A E 9M, the condition A $ E Lw(A) means that A~ c D(A*)
or equivalently D c D(A*A). Thus A* a A c A*A and 1 -+A * 0 A c 1 + A*A.
Hence 1+A~ o A is inver-
tible. Hence its inverse (1 +- A * 0 A)-l is a closed operator, with domain
Ran (1+A* 0 A). and therefore

so that ( 1 + 0 is bounded on (the closure of) its domain. Since
(1 + A =1= a by assumption, that domain contains ~, and therefore
the two operators in Eq. (5.9) coincide.

It follows that 1 + a A = 1 + A*A and a A = A*A, hence 9M
is *-symmetric. II

Remark. 2014 This does not imply that 9[R is standard, i. e. A =1= = A* [9 ],
as it is the case for Op*-algebras; the proof of Inoue [28 does not work
(see below).

Let now M be strongly symmetric. It is a fortiori weakly symmetric
and 0 A = A*A for each A E But there is more.

PROPOSITION 5.9. - A strongly symmetric partial Op*-algebra is
standard.

Proof - Let 9M be strongly symmetric. We have to show that every
symmetric element A = A =1= ~ M is self-adjoint, A = A*. As shown above,
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On the other hand, A c A* and thus A2 c A*A. Hence A2 = A*A is
a positive self-adjoint operator, i. e. A = A*. jj!)

This proof shows why the same result does not hold if we assume only
that 9K is weakly symmetric. In that case :

and this operator is not necessarily a restriction of A2. On the other hand,
if we assume from the outset that 9J1 is standard and weakly symmetric,
then 9J1 is also strongly symmetric. Indeed since A* = A * , we get A * ELS(A)
iff A * E Lw(A) and A * 0 A = A~ . A = A*A.
With the definitions given above, weakly or strongly partial Op*-algebras

are apparently not the realization, in 0152:S(~) or (T~), of the symmetric
partial *-algebras defined abstractly in I. Indeed we have used only usual
operator inverses, not inverses with respect to the appropriate product.
or a . But in fact, as shown in Appendix B, the two approaches are equi-
valent.
To conclude this section, let us come back to Proposition 4. 6. If 9t is a

general partial Op*-algebra, its bounded part 91b is a *-algebra, containing 1,
hence we may take B = 9tb is all the statements.

Let 9t be *-symmetric; by Proposition 5.2, it verifies R’03C3 = (Rb)’03C3, i. e.
the weakest density condition i ) of Proposition 4 . 6. So if we assume that 9t
is weakly or strongly symmetric, one could expect to prove that it verifies
a stronger density statement, ii) or iii) of Proposition 4 . 6. But this does
not seem to be the case, especially if one looks at the proof of Proposi-
tion 5.3 and the remark following it. Weak or strong symmetry implies
that ~ is a core for A*A, but still we don’t know if Jf =3 Notice that
for an Op*-algebra 9t, all three notions of symmetry coincide, and imply
~D = (~b)o = ~ = (9t~ but not necessarily 9T == (9t~. So the pro-
blem remains open.

6. EXTENSIONS OF PARTIAL Op*-ALGEBRAS
AND THEIR COMMUTANTS

Let 9J1 be a partial Op*-algebra on ~. As we saw in I [9, Sec. 4 ], 9J1 defines
two other partial Op*-algebras, M and with domains  and D(M)
respectively. The following inclusions hold :

but consist of the same closed operators. We will examine their
various commutants in turn.
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We begin with weak unbounded commutants. From the inclusions (6.1)
we get immediately

Indeed the definition (2.1) of the three commutants may be recast in a
unified form :

where we have introduced the following notation : (9[R~ ~(1») == (9Jl, fØ),
(9K~~ fØ(2») == (9Jl, ~),(9M~B ~~3’) _ (~~ ~(9[R)). Notice that ~(9K~)==~(9K)
for i = 1, 2, 3. Hence Proposition 2.1 gives the following representation
for the weak natural commutants -

so that, by Eq. (6 . 2) :

It is worth recalling that the involution =~ and the multiplication 0 are

the same whether defined on ~, fØ or ~(9Jl) [9, Prop. 4 . 2 ]. Thus there
is no ambiguity of notation in Eq. (6 . 4).
As for the strong natural commutants we have obviously

MR c c RsM and similarly for LS. On the other hand, the commu-
tation relation XAf = AXf (A E is the same for the three commu-

tants, except that f is taken in fØ(9Jl), ~ or ~, respectively. All together
we get :

The case of the strong unbounded commutants (9Jl(i))~ will be discussed
below.
We summarize these results in a proposition.

PROPOSITION 6.1. - Let be a partial Op*-algebra, 9K and 9K its
canonical extensions. Then for j = (7, a or., the following inclusions
hold among unbounded commutants :

REMARK 6.2. - We may combine the inclusions (6.6) with those
between the commutants themselves, Eq. (2. 7). Write 6 = 1, 0 = 2, . == 3.
Then the inclusion relations between the nine unbounded commutants
are the following :
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B Bounded commutants.

If we consider the bounded commutants (9M~%=(9M~n~(~f), for
j =., 0 or ~, the inclusions (6 . 6) actually reduce to equalities.

PROPOSITION 6.3. In the notation of Proposition 6.1, one has for
j =., 0 and 6, the relation,

Proof - i ) Consider first 7 = (1, i. e. the weak bounded commutants

(jb = w). By (6 . 2) it is enough to show that c Let A E 9M, X E 9~
and f, g E Then there exists a sequence { E!Ø such that g
and Ag (this sequence may depend on A), and also a sequence
{ A } E EØ such that ~ -~ f and A $ fk --~ A $ , f: Then, since X and X*
are bounded and belong to we get :

ii) We turn to the case of weak natural commutants, j = a . Let again
X E By (2. 5) X E n and X, map!Ø into ~(9M). We show
that X, X $ map into and thus For any A ~ M

and g E there exists a sequence {gn} ~ D such that gn ~ g and

Agn ~ Ag. Then Xg and the sequence {A~*Xgn} converges,
since A 0 X = X 0 A implies A =*= *Xgn = XAgn  XAg. Hence Xg E D(A $ *).
In the same way, for every and and the
assertion is proved.

iii) For the strong natural commutants, =., the argument is identi-
cal, replacing A~*, A* by A, A =1= respectively. II

C Special cases.

The argument in the proof of Proposition 6.3 rests on the existence
of the sequence { g~}, for which simultaneously gn  g, Agn  Ag and
Xgn  Xg, and similarly for fk -&#x3E; f Let now X be an unbounded ele-
ment or [tM] is contained in D(X), and thus is a core for X,
there exists sequences {gn} and {g’k} tending to g, such that Agn ~ Ag
and Xgk -&#x3E; Xg respectively, but not necessarily a common sequence for
both X and A. It is interesting to note the analogy with the situation described
in the Appendix of I. There too the lack of a common sequence for the
operators A2 and B2 was the origin of the difficulty leading to the breakdown
of associativity.
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ihis objection disappears, for the in certain particular
cases. Indeed :

PROPOSITION 6 . 4. - Let j = ., a or (7. Then :

Proof. 2014 By definition every ] is the tM-limit of a
convergent E ~, which means that Aga  Ag for all A E 9M
simultaneously.

If X E 9K, then too, when they are defined. Then
the argument of Proposition 6 . 3 works and yields i ).

Let ] be barrelled. Then, as shown in I, Lemma 3 . 2, every
X E 0152(fØ) maps ~ continuously into ~f, i. e. there exists Ao E 9M such

Given any ] and a net ga  g
as above, the net {Xg03B1} is Cauchy, hence converges to Xg. Therefore
the argument of Proposition 6.3 works again, replacing the sequences
1 an ,v ; .fk ,~ by nets f~ ~ . Hence we get ii). II

The statement i ) of this proposition may also be rephrased as follows :
the partial Op*-algebras 9M and KR have the same center, for all three
notions of commutants.

Finally we turn to strong commutants. For the unbounded ones, 
there is no simple inclusion similar to (6 . 3)-(6 . 5), because the corresponding
Op*-algebras ~ + (~ ~i~) are not included into each other. However we
do get some relations for particular cases.

PROPOSITION 6.5. - For the strong commutants the following rela-
tions hold :

i) For the bounded parts : c ~s. (6.10)
ii) For the centers (6.11)
iii) If ] is barrelled : c (6.12)
Proof 2014~f) The inclusion c is proved as in [25, Section 1. 3 ].

Given f E ~ there is a net { E !Ø such that fa ~ f and Af,
VA E 9M. For X E this implies X f and = XAfaXAf
Hence X f E D(A) for all A E 9K. Furthermore {Xf03B1} is Cauchy in each
norm ~.~A, i. is Cauchy in the topology hence X f 
As for the other inclusion, the proof is identical except that the net { fa ~
converging to may depend on A and is taken Then
the argument shows that, for is Cauchy in D(A); thus

and AXf = XA/, i. e. 

ii) This is proven as Proposition 6 . 4 i ).

de Henri Poincaré - Physique theorique



347PARTIAL *-ALGEBRAS OF CLOSED OPERATORS AND THEIR COMMUTANTS. - II

iii) is barrelled, c 2+(.@) by the closed
graph theorem; thus c 9M~. II

To conclude this Section, we notice that ~ is fully closed, and therefore
~ = and 9R~ = ~~. On the other hand, if 9t is an Op*-algebra,
9t c J~(~), and 9t~ = 9t~. Hence, in that case, there are
only three distinct bounded commutants :
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APPENDIX A

MIXED COMMUTANTS

As mentioned in Section 2, it might be useful to consider also mixed commutants, i. e.
commutants that mix strong and weak products or, better, commutants defined in terms
of the various mixed multipliers introduced in [9 ]. For a ~-invariant subset c 0152(~), four
different types arise naturally :

Obviously these sets are not =t=-in variant, but instead we get:

Thus we may define two =)=-invariant mixed commutants :

Consequently we get :

The following properties are straightforward:

iii) Thus if R c all commutants coincide in Eq. (A . 3), except 
in general.

iv) 91R are vector subspaces of 0152(’@), the others not necessarily (because
of the non-distributivity of 0152( 0’)).

v) Using the present notation, Proposition 2 . 3 may be stated as follows : for
S = B~ c ?~ = CL(91) n CL(9~); then Eq. (2.14) follows from the relation
S’ = Sun SL.

As for the topological properties of the mixed commutants, the proof of [10, Proposi-
tion 5.7] shows that :

i ) and are complete for the quasi-uniform topologies 
ii) R’L need not be complete; their completions are contained in 910
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but each of them is 03C4*,f-closed in the corresponding space of mixed multipliers : C(R)
in in 91L in n 

Corresponding to the mixed commutants, one may now define mixed bicommutants.
One ends up with four bicommutants containing 9t, but mutually not comparable: 9.’.,

Combining the results above with those of Section 4, we get :

i ) R’’LR is complete for 03C4*,f(R’L), hence closed in R’’L[];
ii) R’’RL need not be complete in R’’RL c but 91RL is closed in 

Finally, the analysis of Section 4 may be extended to mixed bicommutants. Let again ~
be a *-algebra of bounded operators containing 1, as in Proposition 4 . 3. First 
and ~oo = ~RO by (A.6). Next, we have:

Thus, using Lemma 4.4, we get

The final picture " is the following: ’

.. .~" _

If we assume, in addition, that ~ leaves ~ invariant, so that 93’ = ~D = 3~, then Pro-
position 4 . 3 and the relation (A. 6) give finally :

where 03C4f = = 

A similar discussion may be given for the general case R ~ B as in Section 4, but it is
straightforward and we shall omit it.
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APPENDIX B

INVERTIBILITY OF OPERATORS
AND SYMMETRIC PARTIAL Op*-ALGEBRAS

In Section 4 we have defined three different types of symmetric partial Op*-algebras:
*-symmetric, weakly symmetric and strongly symmetric. Yet none of these definitions
coincides a priori with the abstract one given in I [9, Section 2D ], because we have used
usual operator inverses, and not inverses within the given partial Op*-algebra. But, as
we shall see now, in fact the two approaches are equivalent.

Given A E 0152(!Ø), we say that:

i ) A is invertible (in the usual sense) iff there exists a closed operator B = A - 1 such that
BA = 1 D(A) and AB = 1 f D(B), where D(B) = Ran A. Notice that D(B) need not
contain ~.

ii) A is weakly invertible if there exists B E such that BaA=AaB==l.

A is strongly invertible if there exists A }’ such that B. A = A. B = 1.
What are the relations between these three notions? One is obvious: if A is strongly

invertible, it is also weakly invertible, and the two inverses coincide. We collect the other
results in a proposition.

PROPOSITION B. 1. - Let A E 0152(!Ø). Then :

i ) If A is strongly invertible, with strong inverse B, then A is invertible and A -1 = B.
ii) If A is invertible and weakly invertible, with weak inverse B, then A -1 c B~*.
iii) If A is invertible, and A -1 E 0152(9), then A is also weakly and strongly invertible,

and the three inverses coincide.
The same is true, in particular, if A is bounded.

Proof. -- i) We have ABf = BAf = f; E!Ø.

Let g E D(A). There exists a sequence such that and Ag.
Since BAgn = g" converges and B is closed, Ag E D(B) and BAg = g. Similarly ABh = h
for all h E D(B). Hence A is invertible and A - 1 = B.

ii) If A is only weakly invertible, we have A**B/ = B $ *Af = f, Vf E!Ø, and the pre-
ceding argument fails. If we assume in addition that A is invertible, then A-1 and B ’* *
coincide on Ran (A "7). We show this is a core for A-1.

E D(A 1), we have E D(A), and there exists a sequence t k" } ~ ~ such that
k" -~ A -lg, Akn  g, i. e. in the graph norm of A -1. Thus we get :

iii) Since A -1 E 6:(~), we have ~ c D(A) n D(A-1). Thus we get A -1 lAf = = f,
b’ f E ~, which implies

iv) Obvious, since ~( ~) c 6:(~), for any , ~.
Let us go back to symmetric partial Op*-algebras. If 9Jl is a weakly symmetric
one, we have seen in the proof of Proposition 5.8 that the condition A’*’ implies

1 -t A*A. So C is invertible, with bounded inverse C-1. By Propo-
sition B. it is also weakly and strongly invertible, and all three inverses coincide.
The same holds if strongly symmetric.
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In conclusion, in the definition of weakly and strongly symmetric algebras, we may as
well use weak, resp. strong, inverses, we get the same objects, which are indeed the sym-
metric partial Op*-algebras in the sense of the abstract definition of I, Section 2D.
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