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Infrared dimensional singularities
of the massless 03BB03C64 model

C. DE CALAN (*), A. FERRAZ DE CAMARGO F° (**),
A. P. C. MALBOUISSON (***), B.-M. PIMENTEL (**)

Ann. Inst. Henri Poincaré,

Vol. 45, n° 4, 1986, Physique ’ théorique ’

ABSTRACT. - For the massless model, defined perturbatively in
dimension D = 4 - E, we examine the analytic continuation of the Feyn-
man amplitudes to lower dimensions. It is shown for a class of graphs,
and conjectured for all graphs, that no singularity occurs at D = 1. We
discuss the relevance of this study, in connection with the understanding
of critical phenomena.

RESUME. - On examine, pour Ie modele ~.~4 sans masse défini de façon
perturbative en dimension D = 4 - E, Ie prolongement analytique des
amplitudes de Feynman aux dimensions plus basses. On montre pour une
classe de graphes, et on conjecture pour tous les graphes, 1’absence de
singularite a D = 1. On discute la pertinence de cette etude pour la compre-
hension des phénomènes critiques.

I INTRODUCTION

The study of the infrared divergences is of interest for many phenomena,
like the existence of an S-matrix in gauge theories (with the possible occur-
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rence of confinement or infrared slavery), or the critical phenomena (with
the possible occurrence of phase transitions). The Ising model for example
is related in the critical region to the massless model [1 ].

It is not clear wether a perturbative approach to the infrared problems
is sufficient to give a good insight on such phenomena, which can be spe-
cifically non perturbative and require a renormalization group analysis.
Nevertheless one may hope that a complete description of the pertur-
bative infrared singularities may give a clue for the non perturbative
behaviour, and may even provide a way of summing up the perturbation [2 ].

In this paper we study the infrared properties of the model by looking
at the analytic continuation in the space-time dimension D of the Fcyn-
man amplitudes [3 ]. The infrared and ultraviolet divergences manifest
themselves as poles located at real rational values of D. A general proof
of this statement for arbitrary Feynman graphs, with an arbitrary number
of vanishing masses, may be found in [4 ], using the CM-representation
of Feynman amplitudes [5 ].

In order to explain the meaning of our results, let us recall the expansion
of the Feynman amplitudes A in increasing powers of the mass [2 ] :

where the exponents yi(D) are linear in D.
The coefficients Ao(D), have (ultraviolet and infrared) poles for

some rational values of D. The infrared poles occur for values of D where
many yi(D) coincide, giving a cancellation of these poles and the appearance
of powers of In m, but no singularity of A(m, D) if m &#x3E; 0.

. 

For D &#x3E; DIR, the lower bound DIR being defined below, the exponents
yi(D) are positive and A(O, D) = Ao(D). Then we perform the analytic
continuation of Ao(D) to D = 1. We show that Ao(l) is finite for a class
of graphs, and we conjecture that it is finite for all graphs of the model,
though the limit m  0 of A(m, 1) does not exist (some being negative).

In section II we give our precise definition of the dimensionally regularized
amplitudes for the massless model. We fix the renormalization prescrip-
tions needed to ensure the vanishing of the physical mass, and we establish
the domain in the D complex plane where the Feynman integrals converge.

In Section III we study the analytic continuation of these amplitudes
to lower dimensions. The location of the singularities is completely solved
for the class of « computable » graphs, and we show in particular that for
such graphs there is no pole at D = 1. It is also found that the poles at D = 3
may come only from a restricted subset of graphs.

In section IV we discuss the extension of these preliminary results to
the whole theory, and their eventual meaning in relation with the critical
phenomena.
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II PERTURBATIVE DEFINITION OF THE MODEL

11.1. - The euclidean massless model is defined from the free

Lagrangian

and the interaction Lagrangian

where the mass counter-term a will be defined below as a power series in ~,.

The Schwinger functions are perturbatively defined by the series of the
amplitudes corresponding to the Feynman graphs G. The Feynman ampli-
tudes, for any complex dimension D, are given by the integrals in the
Schwinger parametric representation

where G is a Feynman graph with lG internal lines, nG four-legs vertices,
NG external lines, LG independent loops. U and V are the usual Symanzik
polynomials.

Let us define dG, and more generally ds for any subgraph S, as the naive
dimension (or superficial degree of divergence) of the corresponding integral

DEFINITION. - A subgraph S of a graph G is said to be essential if

there is one connected component of S which contains all the external

vertices of G (i. e. the vertices of G where external legs are linked). In other
words, an essential subgraph S is such that the reduced graph G/S has

_ 

vanishing external momenta.
With this definition we have the following theorem :

THEOREM. The integral AG is absolutely convergent if

a) Re dG  0 ;
b) Re ds  0 for any non trivial (~ ~ 1) subgraph S ;
c) Re dG - Re ds &#x3E; 0 for any essential sub graph S, G.

Proof. 2014 This theorem is given in [6 ]. But strictly speaking the proof
of [6 uses the momentum representation and applies only for real integer
dimensions. For completeness we recall in the following appendix a proof
which uses the parametric representation and applies to any complex
dimension. See also [7 ].

Vol. 45, n° 4-1986.
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II. 2. - Let us now apply this theorem to our model. First we consider
graphs G without any self-energy insertion (Ns ~ 4 VS ~ G). Using the
topological relation

where Cs is the number of connected components of S, and using the fact
that 4 lines are linked to each vertex

formula (4) may be written as

Since ns - Ns/2 + Cs = 0, and N ~ 4 for each connected subgraph,
we have Re ds ~ 0 if Re D  4. Moreoverds = OonlyifLs = OandNs=4cs,
that is if S is a trivial subgraph without internal line. Therefore the ultra-
violet convergence conditions a) and b) of the theorem are satisfied. On the
other hand

It is sufficient to consider the convergence conditions for one-line irreducible

graphs G. Then 1 and condition c) of the theorem is satisfied if

If S is essential, S is a union of disjoint connected subgraphs Sj and one
of them, say Si, contains all the external vertices of G. Therefore

and condition c) is satisfied if

11.3. - Next we consider primitive proper self-energies, that is one-
line irreducible graphs G with

Annales de # l’Institut Henri Poincare - Physique " theorique ’
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In that case the ultraviolet convergence condition a) becomes

and the infrared condition c) becomes

We may have Ns = 4cs and Ls = 0 only if there exists a trivial essential
subgraph S with ls = 0, that is if G is a generalized tadpole with only one
external vertex. In this case we perform a mass renormalization by putting

which is the usual prescription of the dimensional renormalization for
purely homogeneous integrals.

In the other cases, we may exclude essential subgraphs having disconnec-
ted isolated vertices and we have 1, or 6cs. Therefore DIR  Duv
and AG is defined for DIR  Re D  Duv. In this domain, we can perform
a homogeneity integration to find

where fG(D) is analytic for DIR  Re D  4.
The function r( - dG/2) = r((2 - D/2)nG - 1) has its first ultraviolet

2
pole at D = 4 - 2014. Our renormalization prescription is to take for the

nG
renormalized self-energy ARG the analytic continuation of formula ( 18)

in the domain 4 - 2  Re D  4
nG

It corresponds to a mass counter-term such that vanishes for vanishing
2

k and Re D &#x3E; 4 - 2014, ensuring the vanishing of the physical mass in this
nG

domain. The lowest ultraviolet pole of the unrenormalized self-energy,

at D = 4 - 2014, becomes the highest infrared pole of the renormalized
self-energy. nG

II . 4. - Finally for a general graph G, we perform the preceding renor-
malization following the Bogoliubov induction. Once the lower order

Vol. 45, n° 4-1986.
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self-energies have been renormalized, a self-energy insertion of order ni
on the line i replaces the bare propagator (k2) -1 by

and we can perform the same analysis as in the preceding cases, leading
to a new mass counter-term of higher order if G itself is a self-energy graph.
In such a way, the whole renormalized perturbation series, up to order n,

is defined for 4 - -  Re D  4.
n

III. THE CLASS OF COMPUTABLE GRAPHS

Any Feynman amplitude is meromorphic in the space-time dimension [4] :
the only singularities which appear in the complex plane are poles located
at real rational values of D. We are interested in the infrared singularities
which appear in the half-plane Re D  4, and we study in this section
the « computable » graphs depicted in figure 1. The definition of this class
is an inductive one : in figure 1, each bubble represents a lower order graph
in the same class.

For any such graph G, the renormalized amplitude Aä is given by for-
mula (20), with

We show now that any such graph has no pole at D = 1. To do so, we take
as our induction hypothesis

Annales de l’Institut Henri Poincare - Physique ’ theorique ’
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This is true at the starting point of the induction since for the graphs G2
and G3 given in figures 2 and 3

with

Moreover, for any chain of self-energies as given in figure 4, the same
hypothesis holds since there is at least one proper self-energy with an
odd number of vertices if the whole chain has an odd number of vertices.

We can then compute the graphs shown in figure 5, and we find

Vol. 45, n° 4-1986.
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It is easy to verify that

Therefore H 5 ( 1 ) is finite, and vanishes if n 5 is even.
Moreover, for any chain G6 of such graphs (see figure 6), the same

properties hold since there is at least one component with an even number
of vertices if the chain has an even number of vertices.

Finally we compute the graph G of figure 1 and we find

It is easy to verify on formula (33) that the induction hypothesis holds
at the following step, which proves the general assertions (23) and (24)
for any self-energy in the computable class.

Remark. 2014 The same kind of analysis may be performed at D = 3, with
weaker results since Fo(3) :I 0, F2(3) is infinite, F3(3) vanishes for n3 odd
only when ~3 ~ 5, and H5(3) vanishes for n5 even only when 4.
But we see that only a finite and small set of subgraphs is responsible for
the appearance of poles at D = 3, at least in the computable class.

IV . DISCUSSION

We cannot refrain to conjecture that the results of section III hold for
all the graphs of our model: we hope to prove in a later paper that no

Annales de l’Institut Henri Poincaré - Physique théorique
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pole occurs at D = 1 in the analytic continuation of the perturbative 
model. For example we have examined the graphs of figure 7, which do
not belong to the computable class, by the general methods of [5]. And
we have proved that they remain finite at D = 1. It would then be inte-
resting to prove (or disprove?) the general conjecture.

FiG.7.

We would also like to clarify the situation at D = 3, with the hope
that the residue of the pole may be simply expressed, this pole being gene-
rated by a limited number of subgraphs.

If these conjectures can be worked out, one is left with the meaning of
such results. Looking at the assumed regularity at D = 1, the dense accu-
mulation of poles at D = 2, the seldomness of poles at D = 3, it is tempting
to relate these facts with the known properties of the phase transitions in
the Ising model. But such an interpretation is quite unclear to us, for at
least two reasons :

1) First the non perturbative behaviour may be very different from the
perturbative one, even if the perturbation series can be summed, or Borel
summed. As a very trivial example, consider the graph G2 which has a
pole at D = 3. By summing the geometric series corresponding to an arbi-
trary number of G2 insertions, at D = 4 - 8, one obtains a « dressed »
propagator ( 1 - whose analytic continuation vanishes at D = 3.

2) Moreover the process of analytic continuation does not necessarily
provide an acceptable field theory. In particular, the analytic continuation
to D = 1, 2 or 3 of the massless model does probably not coincide
with the limit of vanishing mass for the massive or model.

For example the euclidean two-point function of the free scalar field
is given by n .~_ ~__ __v

At D = 1,

But if we take m = 0 for D &#x3E; 2 we get

Vol. 45, n° 4-1986.
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which has a finite value at D = 1:

However this is a negative two-point function, whose absolute value
increases linearly at large distances : it does not correspond to a field
theory fulfilling sensible axioms.
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APPENDIX

We sketch here a proof of the convergence theorem given in section II. We use the Hepp
sectors [8] ]

where Q is any permutation of { 1, ..., }. In a given sector, we perform the usual change
of variables

and we have for any Feynman amplitude

Let us call Ri the subgraph { o-i, ..., made from the first i lines of the sector. It is well
known, and easy to verify from the definition of U and V in terms of one-trees and two-trees,
that

where P( /3) is a polynomial in ~i, ..., ~-i with positive coefficients, and P(0) = 0.

where R~ is the smallest essential subgraph among the R/s of the sector, s~ the cut-inva-
riant corresponding to {y }, and Q( /3) a polynomial in ~i, ...,~-iwithQ(0)=0.
From (A5) and (A6) we find

where ~( /3) is a bounded real function of j9i, ..., ~31-1,

Now if dG  0, the 03B2l integration can be performed, giving

which achieves the proof of the theorem.

Vol. 45, n° 4-1986.
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