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ABSTRACT. 2014 We show that a logic with reasonable properties can be
constructed from a logical cover space. Conversely, we show that such
logics can always be generated in this manner. Finally, we compare the
resulting structure with similar structures that have been considered in
the literature.

r 
RESUME. 2014 On montre qu’on peut construire une logique avec des pro-

prietes raisonnables a partir d’un « espace recouvert logique » (definition
dans Ie texte). Reciproquement, on montre qu’une telle logique peut tou-
jours etre engendree de cette maniere. Finalement, on compare la structure
qui en resulte avec des structures analogues qui ont ete considérées dans
la litterature.

1. INTRODUCTION

A cover space H is a nonempty set X together with a collection of
nonempty subsets 0 whose union is X. Such spaces have also been called
pre-manuals in the literature [4] ] [J] ] [6] ] [7] ] [72] ] [7~] ] [7~]. If X is finite,
then H has been referred to as a hypergraph [2] ] [3 ]. In the operational
approach to the foundations of quantum mechanics, X corresponds to

(*) This paper was prepared during the author’s visit at the University of Bern, Switzer-
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328 S. GUDDER

a set of outcomes and 0 to a set of operations for a quantum sys-
tem [5] ] [6] ] [72] ] [13 ]. Moreover, a subset of an operation corresponds
to a quantum event. We say that two quantum events are orthogonal if
they are mutually exclusive and can be measured using a single operation.
The states of a quantum system correspond to probability measures defined
on the set of quantum events. If a set of states A satisfies a certain compa-
tibility condition relative to the orthogonality relation, we call 

a logical cover space.
In many studies in the foundations of quantum mechanics an important

role is played by the « logic » of a quantum system [1] [8] ] [9 ] [10 [11] ] [15 ].
In the operational approach, methods have been developed for constructing
the logic L(H) of a cover space H. However, in order for L(H) to enjoy
satisfactory properties, H is usually required to obey a certain coherence
condition. Since coherence is fairly strong, it is of interest to investigate
what can be done without this condition. In the present work the coherence
condition is not assumed, but is replaced by requiring the existence of a set
of states A such that (H, A) is a logical cover space. There is an advantage
to such a procedure. In order to justify the coherence condition physically,
one can only employ the physical properties of operations. However,
to justify the existence of a logical set of states, one can also employ the
statistical properties of the system.
There is a basic difference between our work and that of the traditional

operational approach [5] ] [6] ] [72] ] [13 ]. In the traditional approach,
L(H) is constructed independently of the state space. The properties of
the states are then developed as consequences of.the original construction.
In our approach, L(H) is constructed using both H and A. In this way
statistical properties of the system are employed from the beginning.

2. LOGICAL SETS OF STATES

Let X be a nonempty set and let 0 be a collection of nonempty subsets

of X such that X = u o. We then call 0 a cover of X and we call the pair
H = (X, 0) a cover space. We call A ~ X an event if A ~ E for some E E 0,
and denote the set of events by Õ. If y E X y } E O we write
x .1 y. For B ~ X, we write

If A, B E O define A 1 B if A n B ~ 0 and A u B E O. Notice that {x}  {y}
for x, y E X if and only if x 1 y. Also, A 1 B implies A 5; B1 but the converse
need not hold. For A, B E O, if A 5; B1 implies A 1. B we say that H is
coherent,. and if every E E O is maximal in O, we call H irredun-

dant [5] ] [6 ] [12 ] [13 ]. 
-
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329LOGICAL COVER SPACES

A function  : X ~ R is a state if ,u(x) &#x3E;_ 0 for all x E X and 03A3x~E ,u(x) = 1
for any EEO. Denote the set of all states on H by Q(H). For A~Õ,
define ,u(A) _ Then  : Õ ~ R satisfies

We can thus interpret as a probability measure on the set
of events Õ. For 0394 ~ Q(H) and A E Õ we define

Notice that if A .1 B, then ,u(A)  1 - ,u(B) so Conversely, if
A ~ B implies A .1 B, then we call A a logical set of states. It is clear that
if 0394 is logical, then A ~ B if only if B ~ A. If 0394 is a logical set of states on H
we call the pair (H, A) a logical cover space.
LEMMA 1. Let H = (X,0) be a cover space which admits a logical

set of states A. (a) For any x E X, there exists E ~ with ,u(x) &#x3E; 1/2. (b) H is
irredundant.

Proof . 2014 (~) we Hence, there is
a y ~ X, ,uo E 0 such that ,u( y)  ,u(x) for all  e A &#x3E; 1 - 

We then have

Hence, &#x3E; 1/2. (b) Let E, FEO with E ~ F and suppose x E FBE.
If  E 0 we have _

Hence, ,u(x) = 0 for E Ll. This contradicts (a), so E = F. It follows that
any E E 0 is maximal in O. D
We now give an example which shows that a logical cover space can be

incoherent.

Example. - Let X = { ~ ~ c, u, v, w, x, y, z }, E 1 - ~ a, x, j;},

0 = { E 1, ... , E6 ~, H = (X, 0). Then H is an incoherent cover space. Indeed,
letting A = { ~-}, B = {y, z} we see that A, B E 0, B1 but B.
It can be checked that (H, is a logical cover space. For example,
let J11 be the unique states satisfying ,uo(x) _ ,uo( y) _ = 1/2 ;
,u 1 ( Y) _ ,u 1 (z) = 1 /4, = 3/4. Then x ~ A but + = 3/2 &#x3E; 1.
Hence, x ~ B so A ~ B. Similarly, v E B but ,u 1 (v) + J11(A) = 5/4 &#x3E; 1.
Hence, v ~ A and B $ A. 

-

Let H = (X, 0) be a cover space and let Q(H). It is clear that A
and that B implies B for any A, B However, as we shall
later show, B need not imply that B even when A is logical.
Vol. 45, n° 3-1986.



330 S. GUDDER

Let A E 0 and suppose EBA, then A’ E 0 and we call A’
a complement of A. We denote the set of complements of A by A~. The
set A~ may contain distinct elements and of course, A 1 A’ for all A’ E A".

LEMMA 2. - Let H = (X, 0) be a cover space with A E Õ. (a) If

(b) for some then (c) If
A c Q(H) is logical and x E Ao, then ~_x ~ 1 A’ for any A’ E AC. (d) If

A, r ~ Q(H) and ’~ is logical, then Ar.

Proof . 2014 (~) This is straightforward. (b) 1 A’ for A’ E AC, then
,u(x) _ 1 - ,u(A’) = ,u(A) for any  ~ 0394. Hence, x E Ao. (c) Suppose 0394 ~ Q(H)
is logical and x E Ao. Then for any y E ~ x ~o, ,u E A, A’ E AC we have

A~ 1_A’. (d) If x then by (c) {jc} 1 A’ for
any A’ E A". Hence, by (b) x ~ A0393 so Ar. D
The next result shows that Ao is independent of the logical A and that

logicality is hereditary.

THEOREM 3. - Let H = (X, 0) be a cover space. (a) If A, r ç Q(H) are
logical, then Ao = A r for any A E Õ. (b) If 0394 ~ r ç Q(H) and A is logical,
then r is logical.

Pr_oof. 2014 (~) This follows from Lemma 2(d). (b) Let A, BEO and suppose
that Applying Lemma 2(a), (d) gives

Since A is logical, we conclude that A.1 B. Hence, r is logical. D

LEMMA 4. - If (H, A) is a logical cover space with A, B E 0, then the
following statements are equivalent (a) A ~ B, (b) A .1 B’ for every_B’ E B_~,
(c) A .1 B’ for some B’ E B~, (d) A’ for every B’ E B‘, A’ E A~, (e) A’

for some B’ E B~, A’ E A~.

Proof . - (a) =&#x3E; (b) If B’ E B~, then A ~ B ~ B’. Since 1B is logical,
A .1 B’. (b) =&#x3E; (c) is trivial. (c) =&#x3E; (d) Suppose A 1 B’ for some B’ E B~
and let B 1 E B~, A 1 E A~. If x E 1B, then 

’

Hence, ~ ~ A1 so AI. (d) ~ (e) is trivial. (e) ~ (a) Suppose B’ ~ A’
for some B’ E BC, A’ ~ A~, and let x E A, ,u Since A E (A’)" we conclude
from the above that B’ ...L A. Hence,

Thus, x E B and A ~ B. D

de Henri Poincaré - Physique theorique



331LOGICAL COVER SPACES

COROLLARY 5. 2014 If (H, A) is a logical cover space with A, B E 0, then
the following statements are equivalent (a) A = B, (b) A’ = B’ for all

A’ E A~, B’ E BC, (c) A’ = B’ for some A’ E A~, B’ E B~.
If (H, A) is a logical cover space we define the logic of (H, A) to -be

L(H) = {A :Ae6}. It follows from Theorem 3 that L(H) does not depend
upon which logical set of states is used. For A E L(H) define (A)’ = A’
for any A’ E AC. It follows from Corollary 5 ’that (A)’ is well-defined and as
above, it is independent of the logical set of states A. Notice that if A = B,
then ,u(A) _ ,u(B) for all  E Q(H). Indeed, by Lemma 4 we have A 1 B’
for some and hence

Similarly, BlA’Jbr some so ,u(B) _ ,u(A).
For A E L(H), ,u E Q(H), we define ,u(A) _ ,u(A). The above observation
shows that ,u(A) is well-defined.

3. QUANTUM LOGICS

Let (P, ~) be a partially ordered set (poset) with first and last elements 0,1,
respectively. A map ’ : P ~ P is an orthocomplementation if

If P admits an orthocomplementation ’, we call P = (P, ,’) an orthocom-
poset. For a, bEP we write map ,u : P --+ [0,1] ~ R

is called a prestate if ,u(o) = 0, and ,u(a’) = 1 - ,u(a) for all a E P. We denote
the collection of all prestates on P by Q(P). A set 0394 ~ Q(P) is 
mining if ,u(a)  ,u(b) for all  e A implies a  b. A set 0394 ~ Q(P) is stately
if a .1 b implies that there is a c ~ P such that a, b  c and (c) = ,u(a) + 
for all  E A. A set 0394 ~ Q(P) is orthomodular b implies there is a c ~ P
such that c ~ b, c..l a, and ,u(b) = ,u(a) + ,u(c) for ,u Q(P) is

order-determining and stately, then clearly the element c defined above
is unique, and we write c = a + b. Also, if Q(P) is order-determining
and orthomodular, then again c is unique and we write c = b - a.

LEMMA 6. - Let P be an orthocomplemented poset and let 0394 ~ Q(P).
Then A is stately if and only if A is orthomodular.

Proof Suppose 0 is stately and a  b. Then b’  a’ so b’ .1 a. Hence,
there is a d E P such that a, !?’ ~ ~ and ,u(d ) = ,u(a) + ,u(b’) for all 
Letting c = d’, it follows that c  b, c  a and for any  e A we have

Vol. 45, n° 3-1986.
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Hence, A is orthomodular. Conversely, suppose A is orthomodular, a 1 b.
Then a  b’ so there is a d E P such that d  b’, d 1 a and ,u(b’) =,u(a) +,u(d )
for every  E 1B. Letting c = d’, it follows that a, b  c and for any  e A
we have

Hence, L1 is stately. D
If P is an orthocomplemented poset and L1 ~ Q(P) is stately and order-

determining, we call (P, L1) a quantum logic. Our next result shows that
the logic of a logical cover space forms a quantum logic.

THEOREM 7. - If (H, 0) is a logical cover space, then (L(H), ~, " L1)
is a quantum logic.

Proof - Clearly, (L(H), ~ ) is aposet. Define 0=0, 1 = X. Notice
that 0= {~-eX:~)=0 for all ,u E 0 ~ =~0 and E = X for all E E O.
Hence, 0, 1 E L(H) and 0 c A £; 1 for all A E L(H). We now show that ’
is an orthocomplementation. If B, then by Lemma 4 we have

where Moreover, then Ac (A’)’. Hence,
(A)" - (A’)’ == A. To show that A V (A/ = 1, suppose A, (A)’ c B. Then
for B’ E BC we have

Applying Lemma 4 gives B’ 1 B’. Hence, B’ n B’ == ø so B’ == ø. Thus,
BEO and B == 1. We next show that ð is an order-determining set of prestates
on L(H). If  E ð, A E L(H), it is clear that 0  ,u(A)  1. Moreover, (0) = 0.
Also, if A’ E A‘ we have

Hence, 0 ~ Q [L(H) ]. Now suppose that ,u(A)  ,u(B) for all ,u If x E A,
then for any ,u e A we have

Hence, x E B and A ~ B. To show that 0 is stately, suppose A 1. B. Then
A ~ (B)’ = B’ where B’ E BC. Applying Lemma 4, gives A 1 B so C = A u BEO.
Now A, B ~ C and for any ,u E 0 we have

We have actually proved the following stronger result.

COROLLARY 8. - If (H, A) is a logical cover space, then (L(H), ç, " ~l)
is a quantum logic for any logical Q(H).
We now prove a converse of Theorem 7. Two quantum logics Ai)

Poincaré - Physique théorique
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and (P2, [B2) are isomorphic is there exists an isomorphism J : P2
and a bijection K : [B1 -~ A 2 such that ,u(a) for all a E E [B1.

THEOREM 9. - If (P, A) is a quantum logic, then there exists a logical
cover space (H, r) such that (L(H), r) is isomorphic to (P, [B). If [B is convex,
then so is r and the bijection K : r -~ [B is affine.

Proof - We call a finite set of mutually orthogonal elements

E = { a 1, ... , an ~ ~ P a partition if E satisfies

Since 0 is order-determining, the element c in (3) is unique and we
write c = Ebi. Let 0 be the set of all partitions of P together with the set
{0,1} ~ P. Every a E P is contained in some E E 0 since { ~ ~ } E O.
Let H be the cover space (P, O). It is clear that 0 ~ Q(H). We now show
that (H, 0) is logical. Suppose that A, B E Õ and 
and ~=E{&#x26;:~eB}. Since c E A we have c E!! and hence,

for every ~0394. Thus c  d’ so eld. Let e = (c + d )’. If a E A, b E B,
then a  c  d’  b’ Moreover, a  c  c + d = e’ so 
and similarly b .1 e. Hence, finite set of mutually
orthogonal elements. Moreover, for any ,u e A we have

Suppose that 0 (if e = 0, we simply delete it). To show that E E O, let F c E.
For concreteness, suppose that F n A, F n B, Fn{~}~0 (the other
cases are even simpler). Let a 1 
Then for any  e A we have

Hence, b 1 and + .1 e. Letting c 1 = + + e we have

It follows that E E 0 and since A u BEE we have A ..1 B.
We now describe the logic L(H) of the logical cover space (H, 0). If

...~}e6, then

Since A is order-determining, A is the principle ideal

Vol.45. n° 3-1986.
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If A = ~ a 1, ...,~},B = ~ b 1, 
It follows that Eai = Ebi. Hence, for each AEÕ, there exists a unique a E P
such that A = I(a). Define J : L(H) --+ P = a where A = I(a).
If  ~ 0394 and A = I(a) E L(H), then clearly ,u(A_) _ ,u(a). If K : 11 --+ 11 is
the identity map, we have ,u(a) = ,u(A). It is straightforward to
show that J is an order isomorphism from L(H) onto P. Moreover,
let A = I(a) where A = {~,..., ~ }e6 and Eai = ~ 1. We can then show, as
we did in the previous paragraph, A’ = {/ } 
and hence, (1B)’ = A’ = I(a’). Therefore, J [(A)’ ] =_a’ _ [J(A)]’. If a = 1, then

so A = 1. Then J [(1B)’] = J(O) = 0 = [J(A)]’. It follows that J pre-
serves orthocomplementation. Hence, (L(H), 11) and (P, 11) are isomor-

phic. D

4. COMPARISONS

In the previous sections we considered a logical set of states 11 on a cover
space H. In this section we compare logicality with other conditions on 11.
Moreover, we show that stronger conditions than logicality imply a richer
structure for H and its logic L(H).

Let H = (X, 0) be a cover space and let Q(H). We say that A is full,
strong, respectively if the following conditions hold,
respectively :

The proof of the following lemma involves a straightforward appli-
cation of the definitions.

LEMMA 10. - Let H = (X, O) be a cover space and let ð £; Q(H).
(a) If ð is strong, then ð is full. (b) If ð is logical, then A is full. (c) If ð is
6-full, then ð is logical and full. (d) If ð is 6-strong, then ð is 6-full, logical,
strong, and full.
One can give examples which show that no other implications than

those given in Lemma 10 hold in general.

LEMMA 11. - Let H = (X, 0) be a cover space with 0394 ~ Q(H). Then A is
6-full if and only if ð is logical and for A, B E 0, B implies A ~ B.

Proof. _ If ð is 6-full, then 0 is logical by Lemma 10(c). Suppose A, B E 0
and B. If B’ E BC, x E A, ,u since ,u(x)  ,u(B) we have

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’
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Since A is 0-full, A .1 B’. Applying Lemma 4, we conclude that A ~ B.
Conversely, suppose A is logical and B implies A ~ B. Now sup-
pose A, B~Õ and ,u(x)_+ ,u_(B)  1 for every x E A, ,u If B’ E BC it follows
that A ~ B’. Hence, A ~ B’ and again by Lemma 4, A .1 B. Thus, 0394 is
Õ-full. D

LEMMA 12. Let H = (X, 0) be a cover space with 0 ~ Q(H). (a) If H
is full, then H is irreduncant. (b) If 0394 is 6-full, then H is coherent. (c) If H
is coherent and 0394 is full, then A is 6-full. (d) If H is coherent and A is strong,
then A is 0-strong.

Proof 2014 (~) The proof is similar to that of Lemma 1. (b) be 0-full
and suppose A, B E Õ satisfy B1-. If then ,u(x) + ,u( y) 1 for

every y E B. Since A is 0-full, we have B  {x}. Hence, {x} ~ B E Õ
so ,u(x) + ,u(B)  1 for all x E A, ,u Therefore, A 1 Band H is coherent.
(c) and (d ) are straightforward. D
Applying Lemma 12 (b) and our example in Section 2, we see that A

logical need not imply A is 6-full. We now compare our operation A
to other operations that have been used for studying a logic on H. One
such operation is A f-~ A11 [5] ] [6] ] [72] ] [13 ]. In general, A need not equal
All. For instance, in our example in Section 2,

Let 0 ~ for the cover space H = (X, 0). If A ~ X, ,u E 0, we write
,u(A) - 0 if ,u(x) = 0 for all x E A. For A ~ X, 0, we write

It can be shown that A H Ao is a closure operation on the "power set
P(X) [8 ]. Now suppose that ;ceA, Then ,u(x) ~ ,u(A) = 0
so ,u(x) = 0. Hence, and A ~ However, in general, A need not
equal For instance, in our example in Section 2,

An orthomodular poset is an orthocomplemented poset P which satisfies :

Let P be an orthomodular poset. A prestate  E Q(P) is called a state
if V b) = ,u(a) + ,u(b) whenever a .1 b. It is clear that any set of states
0 ~ Q(P) is stately and orthomodular. We say that Q(P) is strong

b whenever

Vol. 45, n° 3-1986.
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THEOREM 13. - Let H = (X, O) be a cover space with ~. ~ Q(H).
(a) If 0394 is 6-full, then A = A1-1-, (A)’ = A1-, for every A ~ 6, and L(H) is
an orthomodular poset with an order-determining set of states A. (b) If A
is 6-strong, then A = A 1-1- = Ao for every A E Õ, and L(H) is an ortho-
modular poset with a strong set of states A.

Proof 2014 (~) Suppose A is 0-full. It follows from Lemma 12(b) that H
is coherent. Suppose x E A, Since H is coherent, {y} u A E 0.
Hence, ,u( y)_+,u(x)  ,u( y) +,u(A)  1 for all Therefore x 1 y so

jc E A 1-1- and All. Conversely, let x E A 1-1-. For A’ E AC, we have A 1-
so jc E A,1-. Since H is coherent, {x} .1 A’ so by Lemma 2(b) we have x E A
and A 1-1- £; A. For the second statement, let A’ E A". If x E (A)’ = A’, y E A,
,u E 0 we have

Hence, x -L y so x E A1 and (A)’ ~ Conversely, if x E by coherence
we A. Applying Lemma 2(b) we obtain x E A’ = (A)’ so

A ~ (A)’. Since L1 is Õ-full, by Theorem 7, L(H) is an orthocomplemented
poset and L1 is an order-determining set of prestates on L(H). Now sup-
pose A, B E L(H) with A ..L B. As in the proof of Theorem 7 we conclude
that A ..L B. We now show that A V B = AuB. Clearly, A, B c AuB.
Suppose that A, C for some C E L(H). Then 
Applying Lemma 11 gives A u B ~ C. Hence, Condition (1) for an ortho-
modular poset holds. Moreover, for  E L1 we have

It follows that A is an order-determining set of states on L(H). It is now
easy to show that L(H) satisfies Condition (2) for an orthomodular poset.
(b) Suppose A is 6-strong. By Lemma 10, A is 6-full so by (a), A = 
for every A E Õ. We have already observed that A ~ Ao. Conversely, sup-
pose x E Ag. Let A’ E AC and assume ,u e A satisfies (A’) = 1. Then  E A 0
so ,u(x) = 0. Since A is A’. Hence, x E A so A.
As in (a), L(H) is an orthomodular poset and A is a set of states on L(H),
To show that A is strong, suppose A, B E L(H) and

If B’ E B~ we have ,u_(A) = 1 implies j1(B’) = 0. Since A is 6-strong, A 1 B’. ,

By Lemma 4, A ~ B. D
For a logical cover space (H, ~), L(H) need not be an orthomodular poset.

For instance, in the example in Section 2, we 
does not exist. In fact, {jc}, {~} ~ {~}’, {z}’ but {a}’ and {z}’ have
no lower bound which is an upper bound 
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