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A quantization for Kähler fields
in static space-times

Peter BASARAB-HORWATH (*) R. W. TUCKER

Department of Physics, Lancaster University,
Lancaster LA1 4YB, United Kingdom

Ann. Inst. Henri Poincaré,

Vol. 45, n° 1, 1986, Physique theorique

ABSTRACT. 2014 We examine a quantization of the Kahler equation in
terms of inhomogeneous differential forms on a class of static space-times.
Anticommutation relations between the quantized field operator and its
conjugate are imposed and their relation to the classical propagator is
demonstrated.

RESUME. - On examine une quantification de 1’equation de Kähler
en termes de formes différentielles inhomogenes sur une classe d’espaces-
temps statiques. On impose des relations d’anticommutation entre 1’ope-
rateur de champ quantique et son conjugue, et on demontre leur relation
au propagateur classique. 

-

1. INTRODUCTION

The dynamical properties of a field system described by an inhomogeneous
differential form have recently been studied intensively. The field equa-
tion first written down by E. Kahler [7] ] may be regarded as a system
of coupled equations for the components of all possible antisymmetric
tensors on a manifold with a Pseudo Riemannian metric structure. In [3]
the relation of this system to the Dirac equation in Minkowski space was
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80 P. BASARAB-HORWATH AND R. W. TUCKER

clarified and a quantization effected using anticommutators for the fun-
damental quantum brackets.

In this article, the problem of establishing a consistent quantization in
a more general space-time is dealt with. Working in a space-time with a
parallel time-like Killing vector field ensures the existence of stationary
state solutions which may be used to construct a basis of a multiparticle
Fock Space. Although the field system consists of dynamically coupled
complex p-forms we are led to a consistent quantization using anticommu-
tators between the quantized field and its quantized conjugate field.

It is to be noted that the classical dynamical system admits a class of
constrained solutions that also satisfy the Klein-Gordon or Proca field
equations. These systems would be described as quantum field theories
on a symmetric Fock space rather than an antisymmetric one. However,
for the general case discussed in this article, the demand that the hyper-
surface Hamiltonian be bounded from below leads to basic anticommu-
tation relations, and the unequal time anticommutator between the field
and its conjugate field gives the propagator for a general inhomogeneous
form solution of the massive Kahler equation.

In the following, we shall work on space-time a metric g whose signature
is (2014,+,+,+). Forms will take values in the complex field.
The Clifford product associated with g between any two covectors a, (~

is denoted by V and satisfies

It may be related to the exterior product A according to

We denote by ~ the main involution of the Clifford algebra and by ç the
main anti-involution. For further details on Clifford analysis and its
relation to the pseudo-Riemannian structure of space-time see [3 ].

2. THE KAHLER EQUATION

The Kahler equation [7] ] [2] ] [3 ], can be written on a manifold M as

where 0 is an inhomogeneous differential form and c~~ = e"~ V 
for any basis of vector fields {X } and its dual basis { e }. V is the pseudo-
Riemannian connection of space-time. The equation (2.1) may be obtained
from a variational principle with an action density 4-form

In this paper, we restrict to space-times which are static with a parallel
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81A QUANTIZATION FOR KAHLER FIELDS IN STATIC SPACE-TIMES

time-like Killing vector, in which the metric tensor may be written in
terms of a local coframe {e } as

with e° = dt. The local co-frame satisfies the properties

and the space-time has global topology assumed to
be a compact Riemannian manifold. The induced metric on M 3 will be

3

denoted g ~ ea (Indeed, if we write g = - dt ~ dt + g for

0=1

some Riemannian metric g on M 3 then we can always rewrite g in the
above form with the properties (2.4). We use these properties to perform
a 3 + 1 splitting of the Kahler equation, as follows.

Every general inhomogeneous differential form C can be written locally as

with (x, /~ satisfying = = 0. Using the above properties, this
becomes

we express as follows :

Where d = ea ~Xa a = 1, 2, 3 and - is written 
Substituting into equation (2.1) we find

or

Vol. 45, n° 1-1986.



82 P. BASARAB-HORWATH AND R. W. TUCKER

Consequently, both a and ~3 satisfy the equation

Writing d for the exterior derivative on M3 for this decomposition and
putting ~ ~ == ~ where * denotes the Hodge dual with respect to g, we
can write? _ _d + 
An important property of d is given by the following relation, a proof

of which is given in the appendix :

for all (x, ~3 E A(M3) which are We have used the following notation

We use (2.9) to investigate the spectral properties of the operator

which enters in (2. 7).

3. SPECTRAL THEORY

We denote the inner product in H° by (oc; ~3)° and we have the relation

Equation (2 . 9) still holds as d is a real differential operator.

where

The inner product in H~ is denoted by (x; ~3)l and one has

H~ is a Hilbert space with this inner product.
Remark. 2014 Rl/2 makes sense since d2 is a negative definite operator (this

Annales de l’Institut Henri Poincare - Physique theorique



83A QUANTIZATION FOR KAHLER FIELDS IN STATIC SPACE-TIMES

follows from (2. 9)) and since c~2 is self-adjoint with respect to (2.11). Thus R
is a positive definite self-adjoint operator, and as such one can define its
square root [6 ].

PROPOSITION 1. - For we have

R is an invertible operator with bounded inverse.

where we have used (2.9). Therefore R is, as claimed, bounded away
from zero and injective. Hence an inverse exists, which we denote by R-1.
By the spectral theorem, R - 1/2 exists (the positive square root of R-1).
Now Ran R c and R - 1/2 maps Ran R to Ran R1/2 and both
these are dense in H°. Thus R -1/2 is densely defined and so for a E Ran R
we have

As R - 1/2 maps Ran R onto Ran R 1/2 we also have

Thus R -1 is bounded on a dense set, which proves that it can be extended to
a bounded operator in H°. Thus R-1 is the bounded inverse of R.

PROPOSITION 2. - The operators (_c~ + m) map Hj onto for l &#x3E;_ 1.

They have bounded inverses 2014(~± n1)R - 1.
Proof First we prove the boundedness below for (_c~ + m), the case for

(Ç! - m) being almost the same. For 03B1 in the domain of d

Thus (_c~ + m) is injective, and hence invertible. As R -1 is a bounded
operator commuting with d then for a we have

To prove boundedness of the inverse we note, for a 
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84 P. BASARAB-HORWATH AND R. W. TUCKER

using the Schwartz inequality and Proposition 1. is
bounded on Dom d, which is dense in H° as contains all COO diffe-
rential forms on M 3, M 3 being compact. This means that -(4 - m)R-1
is bounded on a dense subset of H° and so can be extended to a bounded
operator on H°. That proves the boundedness of the inverse of d + m.
The same goes for d - m.

Let us note that if a E 1, R 1 ~2a E HZ. This is easily seen from the equa-
lities

PROPOSITION 3. - 1 ) The operators A+ = + are 
" bounded 0

in Hl for l  0

4) (c~ + m) maps 1 isometrically onto H for l ~ 0.

Pr««~:

1 ) If 03B1 ~ Hl then and since R1/2 03B2 ~ Hl for 03B2 ~ Hl+ 1 it follows
that maps H~ onto Hl + 1. Now Proposition 2 shows that ( ± c~-~- m)
maps Hj + 1 onto HI for ~ 0, so Ai: maps Hl onto Hl.

Therefore the graph of A± is Hl x Hl, which is a closed space in HI x Hl
(trivially !). Hence, by the closed graph theorem (Theorem 3.2 of [6]) Aj, is
bounded.

2) For any a we have

The same argument works for A-A+ == 1.

3) Let 11 E Dom d and 03B2 E H°. Then we have

as R - i is self adjoint and commutes with ~ on Dom. Hence we have
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and as Dom d is dense in HO, it follows that A + * = A _ . The same proof
gives A-*=A+.

4) ( 1 ), (2) and (3) above show that A + is a unitary operator and, noting
that if a E Hl, ~ 1, then (4" + = We obtain

using the unitary of A + . Therefore we conclude that (~+ m) maps 
onto Hl isometrically.
We now turn to investigate the spectrum of H in the spaces Hl x H~

On Hj x H’ is defined the scalar product

where C == ( ) and 03A8 = ( ). Defining addition and scalar multipli-
cation in the usual way, we turn Hl x Hl into a Hilbert space, H1 being such
a space.

PROPOSITION 4. 2014 f) For l ~ 1 H is a toplincar isomorphism of Hl x Hl
onto Hl-1 x 

-

Proof 2014 f) This follows from Proposition 2 and 3. The inverse of H is a
bounded operator. Indeed,

ii) follows directly using (2 . 9)
iii) H-1 is skew adjoint from ii) and so iH-1 is self adjoint. It maps

HZ x HZ onto x As M 3 is a compact manifold the inclusion
map inc: Hl+1 x Hl+1 ~ HZ x Hl is a compactmap([5], Theorem 2 . 6 . 3).
Thus we have that i H -1: Hl x Hl x HZ is the product of a bounded
operator and a compact one. This ensures ( [6 ], Theorem VI 12) that 
is compact.

-H is self-adjoint with domain H 1 x H 1. Thus it has a complete set
i

of eigenfunctions in H° x H°. The operator iH-1 has a discrete spec-
trum which is bounded, and each non-zero eigenvalue has finite mul- _

tiplicity 0 being the only possible limit point ( [6 ], Theorem VI .15). Fur-
thermore, has a complete orthonormal basis { E H° x 
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with iH-1up = 03BBpup and 03BBp ~ 0 as p ~ 00. It then follows that 1 i Hup = lpup
with l P ~ oo as p ~ 00, hence the s p ectrum of 1 H is discrete and has

i

no finite limit point. As H is a real operator and the eigenvalues lP are real,
it follows that uP*, the complex conjugate of uP, corresponds to the eigen-

1
value -lp. Therefore - H has a symmetric spectrum. The uP are all Cooi

on M 3 as they are in the kernel of an elliptic operator, R2 - lP2 [5 ].

If we write u - aP then an easy calculation shows that:

These relations will be useful in section 6 and in Proposition 5.

Now we are able to decompose solutions of (2.7).

If we assume that for each t, ()) E H° x HO, then we can make the
expansion : /3

where pEN, u p belongs to the positive eigenvalues lp and u p belongs to
negative eigenvalues - lp. Substituting into (2.7) we obtain the general
solution

where 03BBp, p are constants. The corresponding Kähler field is

where 03C6p = 03B1p + e° V 03B2p

PROPOSITION 5. - ~p satisfies the property

Annales de Poincaré - Physique theorique
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In formulating the quantum conditions on the Kähler field, it is useful

to introduce the inhomogeneous form

which we shall refer to as the conjugate field to C. Expanding C as a V ~3
and using the identity e° V C - 1]1&#x3E; V ~ = - 2i~~~t~ gives

writing = a p - e° V 03B2p and = a p - e° V /3 p we obtain by
combining (2.14) and (2.15) the expansion

The property (ft + = ilpe0 V TTp follows along the lines of Pro-

position 4.

4. QUANTIZATION RULES

To quantize the Kähler system, we seek a quantum algebra that enables
the construction of a multi-particle Fock space to be established, consistent
with a Hamiltonian with a spectrum bounded below. To this end we inves-

tigate the commutation relations between the Fock space operators asso-
ciated with the eigenvalues lp.
We define the classical energy density, given by equation 11.30 in [3] as

a
where is the Lie derivative with respect to the vector field ~t . Using

the orthonormality properties of ap we find the classical energy

As mentioned before, the eigenvalues lp are positive.
This motivates us to adopt for the quantum field

in a basis of Fock space operators C~, Bp, Bp satisfying the rules

Vol. 45, n° 1-1986.
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with all other anticommutators zero. Then we may adopt as quantum
Hamiltonian

where the number operators Np(Cp) = Np(Bp) = B*pBp have eigen-
values zero or one, and the multiparticle Fock space is constructed from
a ground state Q defined by

5. FIELD ANTICOMMUTATORS

We now evaluate the field anticommutators between

and

If f and h denote COO inhomogeneous differential forms on M with
compact support, we define

The operators C(/), on Fock space are then given by

Using the anticommutation rules (4.4) together with (5.4) gives an
algebra satisfying

The right-hand side of the first equation in (5.5) defines the action
of a bi-distribution kernel F on f (x) h, an action which we denote by
F f (x) M with
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which can also be written as

Thus F links up two space-like hypersurfaces which we label Et. _ ~ t’ ~ x ~
and ~t = { t ~ x M 3 . In the next section we show that F is the propa-
gator of the Kähler equation : it solves the Cauchy problem relative to
the hypersurface Et. When t’ - t, F reduces to Fo given by

which is a realization of the Dirac distribution on Et relative to the inner
product (2.10).

In terms of the bidistribution F the quantum conditions may he SUtll-
marised in terms of operator-valued inhomogeneous form distributions
satisfying the following algebra :

where n = n and the space-time Clifford algebra commutes with
the algebra of quantum operators.

6. THE CAUCHY PROBLEM

FOR THE KAHLER EQUATION

In Appendix 2, we prove the validity of the equation

which solves the Cauchy problem for the equation

(for the notation and symbols, see the Appendix).
Let us now impose the condition that 03A8 also satisfy d03A8 = Substi-

tuting this into (6.1) gives

This formula holds for all globally hyperbolic space-times and is the
solution of the Cauchy problem of (2.1). Thus we can say that

solves the Cauchy problem for (2.1) relative to the space-like hyper-
surface E and the inner product ~, ~ ~1 ~ defined by

Vol. 45, n° 1-1986.
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This then justifies the remark made by the authors at the end of their
article [9 ]. (6 .1) may also be written

Let us now return to the Cauchy problem of (2.1) in a static space-time
R x M 3 where M 3 is a compact Riemannian manifold, with the metric

given in 92. We consider the problem relative to the hypersurfaces defined
by t = constant and denote each by ~t.

LEMMA 1. - With notation Cp, Op of (5 .1 ) and (5 . 2) we have

Here ’ we have " written nit = , 
== 

The conjugate results hold o for the complex conjugates , 
Proof 2014 One uses the decomposition

and the Propositions 5 and 6 of § 3.

LEMMA 2. - The general classical solution of (c~2 - m2)~I’ = 0 can be
written in the form

Proof 2014 One uses the basis { ~, ~ } to find equations for time depen-
dent coefficients and the above form follows from the resulting differential
equations.
The first sum of (6.5) is recognised as a solution to the Kahler equa-

tion (2 .1). Lemma 1 (2) shows that the second sum is not a Kahler solution.

satisfies (6 .1 a) for solutions given by (6 . 2).

Proof - From Lemma 1

Annales de Henri Physique theorique
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Using (6.2) we obtain

A straightforward calculation using (6 .1 a) gives us the result, taking
into account that

where *1]== i~/~t * 1 is the 3-form measure on Z,.
If we now combine (6.3) with (6.4). we obtain

from which it follows that

in the notation of (2.11). Thus - ’0 (x) e° V (c~ - m)G is the propagator
relative to Et and the inner product (, ~3. for the Kahler equation.

COROLLARY. In the static space-time R x M 3 with our given metric,
and M 3 a compact Riemannian manifold, we have the result

Proof Using the form 1] (8) (d - m)G used to prove Theorem 1, it

follows that

Theorem I and its Corollary establish the connection between the anti-
commutators (5.9) and the propagator for the classical solution of the
Kähler equation.

CONCLUSION

A quantization of the Kahler equation based on anticommutation
relations between basic field variables has been established in a class

of static space-times with a parallel timelike Killing vector. The field sys-
tem has been described in terms of differential forms without recourse

to any decomposition into differentiable ideals of the space-time Clifford
Algebra. It is an open question whether the system always admits spinorial
solutions in such space-times. The existence of such a quantization scheme
for this system may require a closer scrutiny of the interrelation between
the statistics of field quanta and the tensorial properties of the underlying
field theory.

Vol. 45, n° 1-1986.
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APPENDIX I

Here we prove formula (8) of Appendix II, and obtain (2. 9). Let be any space-time
frame and its dual basis. We write ia for iXa and ia for iea where ea is the metric dual
vector field to the covector e°. We have the relationship

where gab are the components of the metric tensor:

The relation (1.1) implies that if * 1 is the volume form of the manifold then

LEMMA 1. -

Proof -

LEMMA 2. -

Proof. -

(using Lemma 1 and the result

We use the above result in proving Appendix II (8). First let us note

Therefore

Multiplying both sides by * D gives

We know from the proof of Lemma 1 that
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taking the first term of the right hand side of (A .1) we find

Consequently we find

This proves (8) of Appendix II.
Proving (2.9) is now easy. Because of the properties (2.4) * obeys the equation

for all X ~ TM3. The above results then apply, and we find

from which we then obtain

as M is compact. Hence we obtain (2.9).

Vol. 45, n° 1-1986.
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APPENDIX II

In this appendix, we adapt the work of Lichnerowicz [7] on the Cauchy problem of the

equation

to solve the Cauchy problem for the Kahler equation

DEFINITION. - For (1), T inhomogeneous differential forms on M = [R x M3 we define

Here M is any globally hyperbolic space-time and {~ }, any naturally dual
coframe and frame respectively.
We denote by An the Clifford bundle over M and if Q = M we write AM = A.

A section (~ in A has compact support if there is a compact set K c M with (~ equal to
the zero section in An for all Q such that Q n K = ~. fØ(A) is the space of all Coo sections
in A of compact support. A sequence E fØ(A) converges to zero if in any local basis the

components of and the components of all its covariant derivatives of any finite order

converge to zero in the topology of compact convergence, as n  oo. We call fØ(A) the

space of inhomogeneous test forms. The inhomogeneous distributions ~’(A) are linear
functionals on D(A). We shall denote such duality between T E !0’(A) and 03C6 E fØ(A) by
the pairing T( ~) i. e.

For the locally integrable distributions T,

T has support in Q if T(~) = 0 for all (~ whose support is disjoint from Q.
A bi-inhomogeneous kernel, or just kernel, is an element of ~’(A x A), the dual of

~(A x A) the latter being defined as the space of sections of A x A with compact sup-
port in M x M. ~(A) Q ~(A) is a subset of ~(A x A). If E E ~’(A x A) then for ~, !~ E ~(A)
we know functional from ~(A) (x) ~(A) to C. For each

fixed 03C6 E D(A), 03C8 H E(03C6 (x) 03C8) defines a distribution in D(A) which we denote by 4&#x3E;E. Thus

Similarly we define ~/’(A) by

for each fixed ~ E 9(A).

Annales de Henri Poincare - Physique theorique
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Now suppose L is an operator L: ~(A) 2014~ ’@(A). Then we can, as is usual, extend L
to act on ,@’(A) as follows : if T E ,@’(A) then LT E ,@’(A) is defined by

where L* is the adjoint of L in the inner product , ). Similarly we can use L to define ope-
rators D (x) Land L (x) D in D’(A x A) by demanding

for all E f»(A). We then obtain the following using (2), (3), (4), (5) :

The Dirac kernel x A) is defined through the formula

it follows that

so that we may identify 4&#x3E;D with 03C6 and D03C8 with if 03C6 and 03C8 are locally integrable.
Given a differential operator L: ~(A) -~ ’@(A) we define its Green’s kernel as the bidis-

tribution E E Gd’(A x A) such that

the equalities being understood in the sense of distributions. We consider the case L = c~2 - m2.
Now d is skew-adjoint with respect to , &#x3E;. Indeed, we have the following two results

(9) follows from (8). For a proof of (8) (which gives a proof of (2.10) see the Appendix I.
(8) implies

and this implies that L* == c~2 - m2. It is known [7] [8] [9] that in this case (7) gives two
kernels E~ such that has support in the future of supp jJ and has support in the

past of supp and E~ are regular in the sense of Schwartz [10] so that, in particular, 
are COO inhomogeneous forms.
Now let us define, for 03C6 E C/(;B) and 03A8 an inhomogeneous form,

Using (6.8) it follows that

If we further impose that 03A8 satisfies ( 1) then we have

Taking 03C8 to be a solution of (1) with support in Q c M and supposing that 03A8 vanishes
on the boundary of Q, we divide S2 into two parts O2 whose boundaries share a common
space-like hypersurface E. Then 03A8 can be written as

Vol. 45, n° 1-1986.
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with supp ’P1 c 03A91 ~ 1:, supp ’P2 c O2 U 1:. We consider 03A8 as a distributional solution.

Using ( 11 ),

the last equality being obtained by Stoke’s Theorem. Similarly

Combining ( 12) and ( 13) gives

Writing E + - E" = G, and using (14) and (10) gives us the result

Equation (15) represents the solution of the Cauchy problem of (1) relative to the space-
like hypersurface E. This reformulates the Cauchy problem as treated by Lichnerowicz
in [7] for (1). It can be shown that if ’P is a 0-form then (15) reduces to

where d E represents the volume form on E and V~ is the covariant derivative with respect
to the unit time-like vector ~, which is normal to the space-lime hypersurface E. Further,
in static space-times with a metric of the form g = - dt (x) dt + g where g is a Riemannian
metric independent of t, one can show that (15) reduces to

with the notation as before. These are the formulae given by Lichnerowicz in [7] for the
solution of the Cauchy problem. For general space-times and forms of degree higher
than zero, it is not always possible to recover the Lichnerowicz form for the solution of
the Cauchy problem.

[1] E. KÄHLER, Der innere Differentialkalkül. Rendiconti di Matematica, t. 21, 1962,
p. 425-523.

[2] W. GRAF, Differential forms as Spinors. Annales de l’Institut Henri Poincaré,
t. XXIX A, 1978, p. 85-109.

[3] I. M. BENN, R. W. TUCKER, Fermions without Spinors. Commun. Math. Phys., t. 89,
1983, p. 341-362.

[4] F. W. WARNER, Foundations of Differentiable Manifolds and Lie Groups. Scott, Fores-
man and Co. Illinois, 1971.

[5] L. HÖRMANDER, Linear Partial Differential Operators. Springer-Verlag, Berlin, 1964.

[6] M. REED, B. SIMON, Methods of Modern Mathematical Physics I. Functional Analysis.
Academic Press, New York, 1972.

Annales de Henri Poincaré - Physique ’ theorique ’



97A QUANTIZATION FOR KAHLER FIELDS IN STATIC SPACE-TIMES

[7] A. LICHNEROWICZ, Propagateurs et Commutateurs en Relativité Générale. Publica-
tions I. H. E. S. 10, 1961.

[8] J. LERAY, Hyperbolic Differential Equations (Princeton University). Lecture Notes,
1952.

[9] P. BASARAB-HORWATH, R. W. TUCKER, Propagateurs Spinoriels et formes diffé-
rentielles. C. R. Acad. Sci. Paris, t. 299, série I, 1984, p. 1029-1032.

[10] L. SCHWARTZ, Théorie des Distributions, Paris, Hermann, 1966.
[11] S. LANG, Introduction to Differentiable Manifolds, New York, J. Wiley, 1962.

(Manuscrit reçu le 20 juillet 1985)

(Version révisée reçue , l0 7 /9~~

Vol. 45, n° 1-1986.


