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ABSTRACT. 2014 We characterize the coherent state manifolds invariant

by a semisimple Lie group ~. Those obtained as orbits of a maximal weight
vector of an irreducible representation of y are Kahlerian spaces. We
give the list of them for simple compact ~. We select those which are
symmetric spaces and give two parametrizations of these manifolds.

RESUME. - On caracterise les varietes d’etats coherents invariantes

pour un groupe de Lie semi simple ~. Celles qui sont obtenues comme
orbites d’un vecteur de poids maximal d’une representation irreductible
de y sont des espaces Kahleriens. On en donne la liste pour y compact
simple. On identifie celles qui sont des espaces symetriques et on en donne
deux parametrisations.
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174 A. CAVALLI, G. D’ARIANO AND L. MICHEL

1. INTRODUCTION

Coherent states are the quantum states more closely related to the
classical ones : they are one of the best tool to link quantum and classical
mechanical descriptions. The usual harmonic oscillator coherent states [1] ]
are sharply localized in position and momentum : during their time evo-
lution they preserve their shape and follow the classical path in phase
space. For a general dynamical system one can try to satisfy the two con-
ditions : 1 ) the, manifold of coherent states coincides with the classical
phase space ; 2) the quantum Schrodinger’s paths on this manifold coincide
with the Euler Lagrange’s ones.
Both requirements can be fulfilled by the application of an algebraic

method [2 ] : recognize the dynamical Lie algebra g of the system (it contains
the Hamiltonian) and construct the ~-orbit of a chosen cyclic vector of
the Hilbert space ~ of states, y being a Lie group corresponding to g.
More precisely, in quantum mechanics physical states are repre-

sented by rays, i. e. the equivalence classes of collinear vectors the
manifold of coherent states ~~" is obtained formally as follows :

In eq. (1.1) u denotes a unitary irreducible representation of y on 8,
~ is the set of rays, v ~ E 8 the chosen cyclic vector and finally 7c: ~ )2014~ ~
the projection (which coincides with normalization of the vectors and

. forgetting the phase). From eq. (1.1) it follows that the manifold coin-
cides with the homogeneous space :

where ~" denotes the isotropy group of the vector ray represented by
~ ). If a Kahlerian structure can be put on ~ one obtains a manifold
which can be interpreted as a phase space, whose corresponding set of
states is suitable for constructing path integrals [3 ]. The dynamical group ~
guarantees the preservation of coherence during the time evolution, i. e.
the Schrodinger paths starting on ~ will remain on it for all times [4 ].
Moreover a path on the manifold satisfying the Schrodinger equation
minimizes the action [5 ].

In quantum physics with an invariance group, the most frequently
occurring states are the weight vectors. For instance for a spin one particle
(~ = 0(3), ~ : three dimensional complex space carrying the adjoint
(spin 1) representation), the circularly polarized (or helicity) states and
the longitudinally polarized states are weight vectors. They form two
orbits of 0(3) ; the one parameter family of other states orbits have no
name [6 ].

l’Institut Henri Poincaré - Physique theorique



175INVARIANT COMPACT MANIFOLD OF COHERENT STATES

More generally in particle physics, with internal ~-symmetry, only
weight vector states occur ; of course it is meaningful to construct coherent
states only when ~ is an exact symmetry e. g. the color SU(3).
For many non linear equations with soliton solutions the manifold of

solutions is the orbit of the maximal weight vector under the action of
infinite dimensional Lie groups and solitons can be interpreted as coherent
states for a dynamical system with an infinite number of degree of free-
dom [5] ] [7].

In this work we describe the coherent state manifold for compact semi-

simple Lie groups constructed from highest weight vector of their (unitary)
irreducible representations. 

_

In sect. 2 we give the detailed structure of the Lie algebra of ~v. In sect. 3
we show that for maximal weight vector the manifold is compact and
carries Riemaniann, symplectic and also complex structures : so it is Kahle-
rian and can be thought as a classical phase space. Moreover we give the
conditions for this manifold to be a symmetric space (with constant Rie-
maniann curvature) and we list the corresponding representations. For
the other weight vectors, when the manifold has not these properties,
we do not study them in detail.

, 

In sect. 4 we give two parametrizations of these manifolds and recall
the constructions of Bargmann spaces of holomorphic functions on them.
Finally, in sect. 5, we give a family of simple examples to illustrate this
general work.

2. THE ISOTROPY GROUPS OF WEIGHT VECTOR RAYS

In order to make this paper more self contained, we first recall some
basic facts for compact semisimple (real) Lie groups [8 ]. We denote by
x A y, (x, y E g) its Lie algebra law. On the vector space of 9 one builds
the adjont representation x H Ad (x) defining the action of the linear
operator Ad (x) on g as : Ad (x) y = x A y. Jacobi identity shows that
Ad (x) are antisymmetric real operators with respect to the Cartan-Killing
form

and that they do form a representation of the Lie algebra g. According to
physicists custom we will use in the following (pure imaginary) Hermitean
operators

denoting the Lie product by means of the commutator :

Vol. 44, n° 2-1986.



176 A. CAVALLI, G. D’ARIANO AND L. MICHEL

A Cartan subalgebra t) ~ g is a maximal Abelian subalgebra. One
shows that all are conjugated by the group ~ : their common dimen-
sion is the rank of ~. The of commuting Hermitean
operators has in common an orthonormal basis of eigenvectors in
the complexified vector space gC equipped with the Hermitean product
 Za I z~ &#x3E; - z«, z~ E g~. The eigenvalues of J(h) on the depend
linearly on h and hence they can be written as a scalar product with a fixed
vector ,ua (as the Cartan-Killing form is non degenerate on g and h too) :

Eq. (2 . 4) defines the roots ,u« E l) of g. Since J(h) = i Ad (h) and Ad (h) is a
real antisymmetric operator, is also an eigenvector that we denote
also by and (2 . 4) shows that its root is = 2014 ,u«.

Extending the Lie algebra law to gC eq. (2.4) can be written either
yl A z~ = 2014 or:

Jacobi identity shows that if z« A z~ ~ 0, the corresponding root is
= ~« + then, up to a normalizing constant

The usual normalization is fixed by :

With the simplified notation :

one obtains the three generators of a su(2) subalgebra in the standard form :

As a particular case of eq. (2 . 4) we obtain :

and from (2.9), by an analysis well known to physicists, one deduce that
has eigenvalues ~, 2014 7 ~ ~ ~ 7 with 2j, j - m positive integers, so the

numbers n«a = are integers.
Moreover the J3«~ eigenvectors are (J~~! 0  k  q and (J~~! 

0  h  p with p + q = 2j, q - p = corresponding to the roots

,u~ + p. Weyl introduced a basis of roots { ~c~ },f i = 1, ... , l
such that the off diagonal elements of the Cartan matrix:

Annales de Henri Poincare - Physique " theorique ’



177INVARIANT COMPACT MANIFOLD OF COHERENT STATES

are non positive. In such basis all roots in t) are linear combination with
integer coefficients all positive or all negative : so one can speak about
positive or negative roots. The whole structure of g is contained in the
Cartan matrix which is represented by means of a Dynkin diagram. This
is constituted by vertices (o or ~) corresponding to (long or short only
two different length are possible) roots : they are joined by bonds.
The roots generate an additive group ~ which is a Z-lattice (i. e. it is gene-
rated via Z-linear combinations of basis vectors). The reflection Ra through
the hyperplane orthogonal to the root 03B1 transform any root 03B2 into :

which is the root corresponding to the eigenvalue 2014 - n03B103B2 of 1Bf). The
reflections Ra generate the Weyl group ~’(~) which is the stabilizer in ~
ofl). Long and short roots in b form two distinct W(y) orbits. From eq. (2 . 6)
one can see that the za’s corresponding to positive (resp. negative) roots
span the complex subalgebra g~ (resp. g~ ) and gC is decomposed in the
direct sum :

The Borel algebras are maximal solvable subalgebras

The generalization from the adjoint representation to any irreducible
representation x H F(x), with [F(x), F( y) = iF(x A y) of a simple Lie
algebra g is straightforward. The roots are replaced by the weights W A E l)
and the corresponding weight vectors (~ space of the represen-
tation) form an orthonormal basis of lS. Similarly to eq. (2 . 4), the weights W A
are defined by :

With an abbreviated notation corresponding to (2.8), the generators
= and = F~ satisfy eq. (2 . 9). So 2F~ has integral

eigenvalues :

Similarly, from eq. (2. 9) applied to the one can build other eigen-
vectors (F~)" ~ common to all F(h), For instance for h 

Vol. 44, n° 2-1986.



178 A. CAVALLI, G. D’ARIANO AND L. MICHEL

so if (F~)" vA ~ ~ 0, it corresponds to the weight W A ± One also
verifies that Weyl reflections transform weight into weights :

and the weight obtained in eq. (2.17) corresponds to the eigenvalue
- So the set of weights of a irreducible representation
is stable under the Weyl group action and is a union of ~Y’(~) orbits.

Eqs. (2.15) and (2.16) show that the additive group ~ generated by
the weights is a Z-lattice, invariant by ~(~). As eq. (2.4) is a particular
case of eq. (2.14) the adjoint representation is irreducible and its weights
are the roots, i. e. R c The quotient group of the two Z-lattices:

is a finite Abelian group given in table 1. Since all weights of an irreducible
representation differ by elements of they are in a unique coset of R
in So the set of irreducible representations of ~ decomposes into families,
each one corresponding to an element of ~. As the weights of a tensor
product ~1 Q ~2 of irreducible representations 0//1 and ~2 are of the
form + w~2~ (w(i) weight of the tensor product of representations
is compatible with the group law of ~.

In the adjoint representation, since for h, n k = 0 i. e. k ~ = 0,
there is a l-degeneracy in the spectrum of the complete set of commuting
operators J(h) at zero (on the contrary all root-spaces are one dimensional).
The same degeneracy can appear in an irreducible representation : a
~’(~) orbit of weights can be m-times degenerate Weyl reflections connect
weights with the same multiplicity and there is an arbitrariness in choosing
basis for weight spaces or for the Cartan subalgebra h. On the other hand
one proves that ~li’(~) acts transitively on the set of Weyl basis. As obviously
no non trivial element of ~’(~) let fixed every vector of the basis, the choice
of a Weyl basis chooses Cw, one of the ~(~) ~ I (= the number of elements
of ~’(~)) Weyl chambers, i. e. a convex connected open cone limited by
the reflection hyperplanes (orthogonal to all the roots). ~(~) acts transiti-
vely on the set of Weyl chambers and every has an unique point
in Cw. The dual cone r of Cw-i. e. the convex hull of the basic roots
defines a partial order relation =&#x3E; 

This choice separates the roots into positive and negative
as already seen. Raising operators, corresponding to positive

roots, elevate the weights. Each irreducible representation has a maximal
weight WM corresponding to a non degenerate weight space C which

satisfies :

where is the set of indices of the positive roots.

Annales de l’Institut Henri Poincaré - Physique theorique
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Eq. (2.19) characterizes completely (up to a multiplicative cons-
tant) : the representation space ~ is built from by applying to it words
of lowering operators F~ until the minimal weight is reached (annihilated
by all F(03B1), 03B1 &#x3E; 0). All the possible maximal weights are contained in the
closure of the Weyl chamber i. e. 

being the Cartan basis. In particular the weights Wj which satisfy :

form the dual root basis (when all roots have the same lenght it is convenient
to normalize them by (~ = 2). The basic weights W j are the maximal
weights of the fundamental representations. In this basis the components ~i
/ V~ B
(WM = of a maximal weight are non negative integers. So every
B i= 1 /

irreducible representation of g can be labelled by a set of integers ~i  0
placed on the vertices of the Dynkin diagram of g (generally called Dynkin
indices).

In particular the irreducible representation with only one Dynkin
index, i. e. WM = nwi belongs to the completely symmetrized nth tensor
power of the fundamental representation of maximal weight wi.
We are now ready to study the isotropy group of the weight vector rays.

Denoting by the isotropy subgroup in ~ of the ray C its Lie

algebra g A is, by definition, given by :

The annihilator algebra 

is a Lie subalgebra of From eq. (2.14) one sees that :

We will need the two following lemmas.

LEMMA 1. Let t = t _ + to + t + E gC the decomposition of t according
to (2.13), with Lt ± - ~± «z ± a, 

aeA+

Then vA ~ _ ~ ~ =&#x3E; (to, wA) _ ~, and = 0. The
implication = is obvious. We remark that all either vanish or
are orthogonal to and among each other (they correspond to different
points of the spectrum of the set of commuting operators F(h), hE ~). So

Vol. 44, n° 2-1986.



180 A. CAVALLI, G. D’ARIANO AND L. MICHEL

by taking the Hermitean scalar product with ( on the left with any of
these vectors the lemma is proved. This lemma can also be expressend by the
equation :

LEMMA 2. 2014 If two of the three vectors F~ ! F~! 
vanish the third one is also zero.
The satisfy the second equation of (2 . 9) which applied to reads

So F~ vA ~ - 0 implies = 0. Assume now that = 0
and F~! ~ &#x3E; = 0, so, by eq. (2. 26), F~F~! ~ ) = 0. Since F~ and F~
are Hermitean conjugated each other :

Q.E.D.
Weight vectors of weight on the same ~(~) orbit have conjugated

isotropy groups : so, without loss of generality, one can choose them in
the Weyl chamber Cw i. e.

In a way analogous to the derivation of the root ladder one sees that if
(F~~ ! (F~ ! are non zero weight vectors with 0 ~ ~ ~
0  /c ~ p, then q - p = so if F~~! i;A &#x3E; ~ 0 p &#x3E; 1 and

q &#x3E; 1 + and also F~! ~ ) ~ o.
Equivalently = 0 =~ ~ = 0 =&#x3E; p  0 and also F~~ 0

and, by lemma 2, = 0 which is equivalent to WA) = 0.
Summarizing, for one has :

Beware that = 0 does not imply F~ ~ ) = 0.
Eq. (2.4) with h = W A shows that the Lie algebra gwA of the isotropy

group ~~ of the weight wA in the adjoint representation of ~ is given by :

So for any weight W A E Cw there is a natural decomposition of gC into
the direct sum of three subalgebras :

where :

Annales de Henri Poincare - Physique ’ theorique ’



181INVARIANT COMPACT MANIFOLD OF COHERENT STATES

Eqs. (2. 25), (2. 28 b) and (2. 30) show that 9~A is a subalgebra of

mA ; this latter coincides with the Lie algebra of the isotropy
group for the maximal weight vector ray :

Indeed all F~ annihilate (see eq. (2.19)) i. e. o~ c g M moreover if
vM ~ - 0 i. e. (,ux, WM) = 0, since F~~ ~M ) == 0, from lemma 2 also

Finally from eq. (2.32) it is straightforward to verify that

gvM = g M n 9 = 9wM’ Given an irreducible representation of g, we denote
by the closed convex hull, in the Cartan subalgebra t), of the orbit of
the maximal weight. For a generic degenerate weight W A the computation

depends on which vector vA is chosen in the multidimensional

eigenspace of the F (h), h E ~, corresponding to For a non degenerate
weight W A one has :

So the smallest possible 9~ is l)c and is obtained when W A is non degenerate
and satisfies 

_

g A is larger for example when WA is on the surface of In general g~
would reduce to l)c when W A is in the interior of and will grow when

WA is on a k-facet with decreasing dimension k, being maximum when
k = 0 i. e. it is on a vertex which corresponds to a maximal weight. Note
that many fundamental representations have only one weight orbit, so
every weight can be maximal for a particular choice of the Weyl basis.
These fundamental representations are all those of A~, the representations
with maximal weight wl for Bl, W1 for Q, Wb for Dl, W1 and w5
for E6, W6 for E7 (for the labelling of the weights see table 1). We will select
again most representations of this list in the next section. Finally we point

out an important case : when all components ~i of WM = 0.

Then g M = b+, the Borel subalgebra already defined. ~

3. THE MANIFOLD OF COHERENT STATES

Until now we have studied only the Lie algebra g A of the isotropy
group of a weight vector ray. In general several Lie groups have the
same Lie algebra. However for a semisimple Lie algebra g (or gC) there is
a unique simply connected semisimple Lie group y (or the universal

Vol. 44, n° 2-1986.



182 A. CAVALLI, G. D’ARIANO AND L. MICHEL

covering group, whose Lie algebra is 9 (or (gC). Its center is the finite group ~
defined in eq. (2.18) [9 ]Ot

As, by definition, ~ turns to be the kernel of the adjoint representation
of ~, one has ~c ~ j~ ~ ~. Any other group with Lie algebra 9 is the
quotient y/F where F ~ 2 and F is therefore invariant subgroup of
~~, ~, Since 

- -

the homogeneous space

is independent from the choice among the Lie, groups having the same
Lie algebra g.

Let us consider the case of maximal weight vector. We remark that the
set of rays Y of a (finite dimensional) Hilbert space is a compact manifold.
The isotropy groups of rays corresponding to maximal weight vectors
are maximal among the isotropy groups as shown in sect. 2-so their
orbit is closed [70] and compact (being contained in Y compact). We can
then apply a theorem of Montgomery [77] ] which yields :

since ~ is simply connected and ~ is maximal compact in ~ and

~ n ; = (see eqs. (2. 29) and (2. 30)).
We could also have considered the Iwasawa decomposition [72] (in the

case of complex semisimple Lie algebra, see theorem 6.3 in ref. 12) gC con-
sidered as a real algebra is the sum

where a = and n = ga has been defined in (2.13). Then for a maxi-
mal weight vector, with (2.29) and (2.30) we have

The Iwasawa decomposition is valid for any group of Lie algebra gC
~~ - ~~~V’ with JV invariant subgroup of (3.6)

and every g E ~ has a unique decomposition g = kan, k E ~, a E ~, n E J~.
So

Indeed if

from k E k we obtain

Annales de Henri Physique theorique .
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so

i. e. there is a bijective correspondence between the left cosets in ~~
and those of ~~ in ~.
We can apply these considerations to the case when all Dynkin indices

of the representation are non zero. As we have in sect. 2, = ~/~ = 
It can be shown that this a projective space [9 ].

Since is one of them, we recall the properties of ~-orbits in the
adjoint representation. By definition of Ad (a), one has

where b + is the tangent space at b of the orbit ~/~. The proof
of the last equality reads : let 0 ~ a A b E Im Ad (a) and let a A c = 0 i. e.
c E Ker Ad (a) ; then (a A b, c) = - (b, a A c) = 0. The Cartan-Killing
metric induces a non degenerate scalar product on each and

therefore a Riemaniann structure on the homogeneous space ~/~. We can
also introduce a symplectic form on as follows :

It is not degenerated i. e. for any x E gb it cannot vanish for all y E c~.
Indeed the restriction of the Cartan-Killing form on gb is non degenerate
so there exist b ^ y E Im Ad (b) = gb such that 0 -# (x, b A y) = 2014 y).
Hence y), Vb E ~/~a introduces a symplectic structure on the orbit

~/~a. Incidentally this proves that

Finally we can also establish that ~/~a is a complex manifold of dimen-
sion da/2 carrying a ~-invariant Hilbert structure :

Therefore it is a Kahlerian manifold. All these properties apply to
MvM = y/ywM, but they cannot be generalized to the orbit of all weight
vectors. However this is still true for the weight vectors of non degenerate
weight satisfying (2.34). In their case

where ~x is the centralizer of a regular group element.
From now on we consider only the case of maximal weight. Dynkin

has given a useful rule for obtaining from the Dynkin diagram and
the Dynkin indices ~i of the representation. The rule is to remove from
the Dynkin diagram all vertices whose ~i &#x3E; 0 and replace each of them
by a U(l) algebra. The remaining vertices, whose ~i = 0, form a (in general

Vol. 44, n° 2-1986.
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non connected) Dynkin diagram which correspond to a semisimple Lie
algebra t and one has :

One can see that gwM depends only on the ~i = o. The of the funda-
mental representation WM = ~ or the irreducible component of their
symmetrized tensor product of degree m (wM = mwi) are maximal sub-
algebras of g.
We want now select among the Kahlerian manifolds those which

are Cartan symmetric spaces, i. e. they have a constant curvature and in
each point have an isometric inversion which is induced by an involutive
automorphism a of ~ on the orbit ~/~ where ~ is the subgroup of fixed
points of a. The corresponding automorphism of the Lie algebra simply
multiplies by - 1 the vectors of = m. So

In our case g" = gwM and a), b) are always satisfied because g" is the Lie
algebra of an isotropy group. If equations (3.14) hold for the real algebra,
they also hold for its complexification. It is easier to study c) in the complex
version. From eq. (2 . 30) one sees that :

Each summand is a subalgebra : this property is compatible with c)
only if mM± A mM± = 0, i. e. mM± are Abelian subalgebras. For which maximal

weights WM = this necessary condition for c) is satisfied ? We

t=i

need first to recall the following lemma. If two basic roots are not

orthogonal (i. e. their vertices are connected by a segment in the Dynkin
diagram) of the two non diagonal elements or Ak~ of the Cartan matrix
respectively equal to and one is equal
to - 1 (say so eq. (2.12) for the reflection R~ applied to ,uk shows
that ,uy + ,uk is a root. Let l be a vertex joined to ,uk (i. e. 0). By
the same proof we show that ,u~ + /4 + ,uj is a root and so on... So if WM
has two non vanishing components, say ~j and ~k, denoting by L the line
of the Dynkin diagram j oining j to h, (these set L may be empty), we have

that ~a = /4 is a root and Z j /B 0 since ,u~ is also a root.

/t6L

Since WM) = WM) = &#x3E; 0, za and zk belong to wtt and it is not
Abelian. Hence a necessary condition for wtt to be Abelian is that WM has
only one non vanishing component i. e. it is a multiple of a fundamental
weight WM = In that case wtt contains all z~ corresponding to roots

Annales de l’Institut Henri Poincaré - Physique theorique



185INVARIANT COMPACT MANIFOLD OF COHERENT STATES

of the form 03B2 = i + 03B1 with wi) = 0. A further conditions must be
satisfied for abelianness

i + i + 03B1 = 2 i + 03B1 is not a root (3 .16)

We recall that the positive roots are linear combination 03B1 = ci i

m 1

of basic roots with non negative integer coefficients which are bounded
by those ~i of the maximal root ,uM (the maximal weight of the adjoint
representation) : ci 03B3i. The coefficients 03B3i are given in many textbooks
and are indicated in table 1. So eq. (3.16) is satisfied for the fundamental

TABLE 1.

Dynkin diagrams of simple Lie algebras with numbering of the vertices
_ 

used in this paper above each vertex (black dots represent shorter roots).
Below each vertex the components of the maximal root ~uM is given [15 ].
On the next column, the finite group ~ (defined in eq. (2.18)) is given.
Then the representations giving a symmetric space for are listed.
The last column gives the nature and the dimension of when it is
a symmetric space.

Vol. 44, n° 2-1986.



186 A. CAVALLI, G. D’ARIANO AND L. MICHEL

weights Wi corresponding to yi = 1. The list of such representation is given
in table 1. We prove now that the condition that u~ be Abelian is also
sufficient for to be symmetric. For a given such that 03B3i = 1 one has the
decomposition :

A belian implies A ~±~+f) == 0. The Lie products such as
z-(f+/~ vanish except if = is a root. But from

eq. (3.17) ,ua and 03B2 are orthogonal to wi, so is their difference and then
Q.E.D.

In table 1 we list for each simple ~ the fundamental weights giving a
symmetric space (whose complete dimension is also given).
The generalization from a simple to a semi-simple Lie group is straight-

forward. The corresponding orbit is the topological product of those for
the simple components of the group.

4. PARAMETRIZATION OF THE MANIFOLD
AND BARGMANN SPACES

We will give an explicit parametrization of the manifold constructing
an holomorphic local chart and writing explicitly its metric structure.

From eqs. (1.1) and (3 . 3) one has :

where B denotes the holomorphic extension of the unitary representation
of the group ~. The holomorphic ~ orbit is obtained using the Gauss
decomposition [13 ] of the ~-regular elements g E egC (we will omit the
~ symbol in the following, unless specified) :

~, X’c being the simply connected Lie subgroups corresponding to the
Cartan decomposition (2 .13) and gCreg denoting the subset of B-regular
elements : a ~-regular element is defined by the requirement that all its

principal minors in the ~ representation are non vanishing. As the set
is open and everywhere dense in ~, the set ~B~g of elements non

Gauss decomposable has zero measure (the measure is the Haar invariant
measure on ~). By means of the Gauss decomposition (4.2) the Borel
subgroup ~ = exp (b +) of the isotropy group ~~ can be factorized out.

Annales de l’Institut Henri Poincaré - Physique theorique
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The complete factorization of the stability term of g can be obtained using
the following further decomposition :

The decomposition (4.3) is possible as mM and oM are subalgebras
decomposing g~ and ~ is an ideal [ 13 ]. So a local chart of in CS

is given by identifying the coset
with the vector ray :

The chart defined by eq. (4.4) cannot cover the whole manifold MvM
as the cosets composed of non ø-regular elements ~~B~ eg are
not mapped. However these constitute a MvM-subvareity of lower dimen-
sion and the chart can be used as a domain of integration instead of a com-
plete atlas, giving the useful property that the set of states { ~ ~ ( E C" }
is overcomplete (see also the following). On the other hand an atlas can be
obtained using the transitive action of the group on the homogeneous
space 

Explicitly, the Kahlerian structure on is given in this coordinate
system by :

and the function f :

is positive definite because of the Schwartz inequality

so (4. 5 a) is a Kahlerian metric. The metric (4. 5 a) provides a measure

which can be normalized, by a suitable choice of N e C, in such a way to

obtain = 1, as MvM is compact.

One can also give a parametrization of MvM by compact coordinates

Vol. 44, n° 2-1986.



188 A. CAVALLI, G. D’ARIANO AND L. MICHEL

using the restriction of the holomorphic representation ~ of ~ to the
unitary one u of y and identifying = = y/ywM.
The relation between the two coordinate systems (the old ones, which

are non compact, and the new which are compact) can be obtained Gauss
decomposing the ~-regular representatives of the coset 

Because of the uniqueness of the Gauss decomposition, one constructs
a one to one correspondence between representatives of the ~-regular
cosets and ~/~

In general the explicit relation 03BE03B1 = 03BE03B1(03BE, () between the two coordinate
systems (and the bounds for the compact coordinates ~°‘) is obtained
solving the Baker-Campbell-Hausdorff problem for the group ~~.

Using the compact coordinate system the overcomplete set of coherent
states (4 . 4) is written :

where the normalization K(~~) is given by :
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Using the irreducibility and unitarity of the representation one can
derive the completeness relation :

d~ = dim being the dimension of the Hilbert space of the representation
and f given by (4. 5 c).
Using the Kahlerian structure of and its compact parametrization

it is possible to realize the Hilbert space ~ of the states as a space of holo-
morphic functions defined on (more precisely on the open subset
mapped by the local chart). For every E ~, let us consider the function :

The function ~r(~) is holomorphic by construction :

In particular the function VM(Ç) =  ç is everywhere constant on
Using the completeness relation (4.11) one can write the scalar pro-

duct between two vectors ~r ~, ~ ~p ~ in the form of an integral over 

where to the « corresponds the antiholomorphic function
 t/JI ç ) = ï(ç). On this Hilbert space of functions which is the genera-
lization of the Bargmann-Hilbert [7~] ] space of entire functions 
the group ~ acts as follows (see eqs. (4 . 9) and (4 .10 a)) :

where g belongs to the coset labelled by ç and g’ E ~. The function ç)
satisfies the group functional relation :

and on the isotropy group ~~ one has :

i. e. it gives a one dimensional representation of We have shown in
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eq. (3.12) that the group ywM is (modulo the division by a finite group in
the center) a direct product of a semisimple Lie algebra t and where
k is the number of non vanishing WM components. Since f has no non trivial
one dimensional representation, is simply the character of and
then :

and the label the representation of 
Thinking tJ(ç) as a function on ~ constant on one can recognize

in eq. (4.15) that the group acts on the Bargmann-Hilbert space as the
representation induced by the unitary character ?c of We emphasizes
that the manifold depends only on the zero components while this
induced representation depends on the values of the non vanishing r~i.

5. ONE EXAMPLE

We illustrate the preceeding sections by a simple example. We will
consider the compact group ~ = SU(l + 1) in its natural (l + 1) dimen-
sional representation with maximal weight WM = W1 (or WM for the

contragradient representation). From table 1 we know that the group
orbit of the highest weight vector is the projective space Pl~ which is a
Kahlerian symmetric space. For = 1 this manifold corresponds to cohe-
rent states for spin 1/2, and it is the sphere S2. For SU(3) in quantum chromo-
dynamics it can describe coherent states of quark colors.
As a complex algebra + 1) corresponds to the simple algebra

gC = A1 = sl(l + 1, C). In the representation that we consider all the weight
vectors belong to the same orbit (and can be thought as maximal). All the
weights 7~ WM can be put in one-to-one correspondence with the positive
roots ,ua not orthogonal to w~:
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(col (x 1, ... , xk)k denotes the k-dimensional column vector). With the
choice of basis (5.1) and (5 . 2) one has :

where Eij denotes the (l + 1) x (1 + 1) matrix = The Lie

algebra of the isotropy group of the highest weight vector ray is simply
written :

and the subalgebras :

are Abelian, so giving a symmetric space for 
The compact and non compact parametrization of the manifold can be

obtained using eqs. (4 . 4) and (4 . 7) :

where the compact coordinates ~ = ...,~, 

are linked to the non compact ones ( = ...,~ ~eC by the
relation :

which is the generalization to many dimensions of the stereographic pro-

jection of the sphere S2 (ç = 03B8 2 ei03C6,03B8 and 03C6 polar angles) on the projective
complex palne. The boundary of the chart (5.9) = - 2 is 

a ( 2014 1) dimen-
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sional manifold which corresponds to the non ~-regular representatives
of cosets in ~/~WM given by :

where x = col ..., 
= 1.

The Bargmann space of the holomorphic functions on the bounded
open domain of corresponding to the chart (5.9), for this 1 + 1
dimensional representation of SU (1 + 1), is given by the linear polynomials
in the compact coordinates or, for the compact ones by :

where :

and we expand any such a function on the basis :

With the action of the group ~ = SU(l + 1) on ~r(~) we have shown in
- the previous section that we obtain the representation induced by the

natural representation of the U(l) in the Cartan subgroup which is gene-
rated by the root Frobenius reciprocity theorem tells us the contents
of the induced representation as the direct sum of irreducible representa-
tions : for instance, for SU(2), it is the direct sum with multiplicity one of
all representations of spin J (Dynkin index 2J) such that 2J - r~ is a non
negative integer (where ~ is the Dynkin index of WM).
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