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ABSTRACT. 2014 After recalling the results of reference [7] on anomalous
terms in gauge theory, we apply the algorithm producing these terms to
two examples of structure group, respectively G = SU(3) x SU(2) x U(l)
and G = U(l) x U(l) x ... x U(l) = (or more generally G = an
arbitrary finite dimensional abelian Lie group). These two examples illus-
trate very clearly the influence of the structure group on the cohomology
describing the anomalous terms.

RESUME. - Apres un bref rappel des resultats sur les termes anomaux
dans les theories de j auge decrits dans [1 ], nous appliquons l’algorithme per-
mettant leur calcul explicite a deux exemples de groupes de structure, respec-
tivement G = SU(3) x SU(2) x U( 1 ) et G = U( 1 ) x ... x U(l) = 
(ou, plus généralement, G = un groupe de Lie abelien de dimension finie
arbitraire). Ces deux exemples illustrent particulierement bien 1’influence
du groupe de structure sur la cohomologie decrivant ces termes anomaux.
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1. INTRODUCTION

It has been realized by Becchi, Rouet and Stora [2] that the renor-
malization program for gauge theories involves cohomological problems
which also appear in the framework of current algebra [3 ].
The classical fields entering gauge theories are connections in a principal

fibre bundle P = P (V, G), where V is space-time and G is the structure
group; (we shall denote by g the Lie algebra of G). We denote by b the
space of connections on is an affine subspace of the space of g-valued
1-forms on P.
The group of gauge transformations is the group of automorphisms of P

which induce the identity mapping on V. We shall denote it by Auty (P) ’
and its Lie algebra by auty (P). Equivalently, an element of Auty (P) is a
map y : P ~ G with the equivariance property for

any pEP and g E G. Similarly an element of auty (P) is a map ~ : P ~, g
satisfying 03BE(pg) = ad(g-1)03BE(p), for any pEP and g E G. 

,

By pull-back, there is a right action of Auty (P) on ~. Therefore there is,
correspondingly, a linear left action W of Auty (P) on functionals on CC;
we denote by w the associated (infinitesimal) action of auty(P).

Physically, one is interested in invariant functionals on CC, (i. e. functionals
However, in the quantization process, either of the gauge

field [2 ], or of fermions in an external classical fields [3 ], non invariant
steps are required, and thus invariance is not ensured for the quantum
theory.
For antisymmetric multilinear forms on auty(P) with values in func-

tionals on CC, one defines an antiderivation £5, mapping the p-forms into
the (p + 1)-forms and satisfying £52 = 0, by the following formula:

Alternatively, one introduces the « ghost field » X, by the following cons-
truction : Define X to be the identity mapping ofauty (P) on itself, considered
as an element of the space auty (P) (8) A (auty (P))* equipped with its natural
bracket.
Then antisymmetric multilinear forms on auty(P) can be written as

« polynomials » in the « components » of X by using the identity

The action of 03B4 ’ reduces on x to the familiar rule : 03B4~ = 2014 1/2 [x, /].
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105ANOMALOUS TERMS IN GAUGE THEORY

On the other hand, the action of b on the components of the generic
connection form A on P reduces to the formula : ~A == 2014 ~/ 2014 [A, ~ ] == 2014 oAx
with the convention that X anticommutes with differential 1-forms on P
and obvious notations. 

,

It is worth noticing here that X lifts to the Maurer-Cartan forms X on
Auty (P) when one represents forms on auty (P) as differential forms on
Auty (P) by the usual transformation; X is canonically a differential 1-form
on P x Auty (P) with values in g. On the other hand a connection A on P
also defines a g-valued differential 1-form A on P x auty(P) by
A (p, y) = ( = y (p) -1 A (p) y M + y -1 (/?)) and then the exterior
differential in the direction of Auty (P) just induces the action of 03B4 on x
and A [4 ] . ’

Invariance of a functional r on ~ reads ðr = 0, while the Wess-Zumino
consistency condition for the anomaly A reads (5A = 0, where A is a local
polynomial in the fields [5 which is of degree one in x (i. e. A is a linear
form on auty (P) with values in functionals on ~ which is local [5 ]). However,
as well known, anomalies of the form A = 5r, where r is a local functional
on ~, are in fact spurious [2 ]. Thus the problem is of cohomological nature.
At the price of introducing a reference connection Ao [5 ], [6] it is easy

to write A= Q (V is space-time) and to rewrite as 

where Q and Q’ are differential forms on V. When P is trivial one chooses
as Ao the connection which vanishes in the section corresponding to the
given trivialisation. In order to avoid inessential complications, we shall
suppose here that this is the case.
We will use the natural bidegree :

bidegree = (d-degree, ð-degree)
= (degree of form on V, ghost number).

If Q satisfies (5Q + dQ’ - 0, we say that Q is a ð-cocycle modulo d.

Similarly, when A = 5 L i. e. we say that Q is a (5-coboun-

dary modulo d, and then, A is spurious.
Thus solving the consistency equation is equivalent to finding the

03B4-cohomology modulo d in bidegree (n,1), n = dim (V). It is also known
that the ð-cohomology modulo d in bidegree (n - 1, 2) corresponds to
anomalous Schwinger terms in equal time commutation relations of
currents [7 ]. In [1 ], we have completely determined the ~-cohomology
modulo d for any bidegree in the class of the natural objects generated
by the fields of the theory (B. R. S. algebra). As shown in [1 ], assumption on
the dimension of space-time may be avoided by working at the level of
the universal B. R. S. algebra.
Our aim is to apply our results to some specific examples of interest :
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For all bidegrees, we shall exhibit the possible anomalous terms for gauge
theories with structure group G = (U(1))N, or more generally G == an
arbitrary finite dimensional abelian Lie group, and G = SU(3) x SU(2) x U(l),
representative of various aspects of the problem.

2. COMPUTATIONAL ALGORITHM
FOR ANOMALOUS TERMS

It was shown in [1] ] how the ð-cohomology modulo d is obtained from
the 03B4-cohomology. We describe the ð-cohomology in step 1.

A Step 1 : the ~-cohomology.

We assume that 9 is a reductive Lie algebra of rank r, (i. e. 9 is the direct
product of an abelian Lie algebra with a semi-simple Lie algebra).
Choose r linearly independent homogeneous primitive invariant forms 

(i = 1, 2, ... , r), together with associated transgressed invariant poly-
nomials on g.
The ð-cohomology is then the tensor product of the free graded commu-

tative algebra generated by the (which is the algebra of invariant exterior
forms on g and which identifies with the cohomology of g [8 ], [9 ]), and
the symmetric algebra generated by the (which is the algebra of
invariant polynomials on g [10 ], [9 ]). This identification is done through the
compositions ~ -~ and (F=~A+1/2[A,A]);
so cco comes with its degree mi = 2ni - 1 and bidegree (0, mi), while 
is given the degree 2ni and bidegree (2ni, 0), (remembering that is
a polynomial of degree ni on g), and the 03B4-cohomology is the free graded
(in fact bigraded) commutative algebra generated by the a~i and the 
equipped with these degrees.

Practically, write 9 = x g 1 x ... x 9N where the gk are simple

Lie algebras of rank rk respectively ( so we have r = M + 03A3rk).
~=1

We have to choose for each factor gk, a basis of primitive forms c~
(i = 1,2, ...,~). The form a~k is of degree mi = 2n~ - 1 and is an
invariant polynomial of degree ni on gk which identifies with an element
of degree 2ni (bidegree (2ni, 0); in the ~-cohomology. The values
of mi for simple Lie algebras are given in table 1 [9 ] : [11 ].

For instance, if gk = then rank = p - 1 and we may take

Annales de Henri Poincaré - Physique ’ theorique ’
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where ni takes the values 2,3, ... p, and where Fk is the part of the field
strength associated to gk (and similarly for xk).

For the case of orthogonal groups S0(p), primitive elements are given
by similar formula, (notice that F is expressed as an antisymmetric matrix,
so = 0 which explains the jump of the Moreover, when
p = 2q, the determinant of F, which is an invariant polynomial, can be
written as det(F) = (Pf(F))2, where the pfaffian Pf (F) is an independent
(of tr (F2S)) invariant polynomial of degree q given by

This explains the occurence of a (new) primitive form of degree 2N - 1
in the table 1.

Finally, for each abelian factor (in (u( 1 ))M) take one couple
= xm and = Fm with degree = 1.

B The generalized transgression formula.

In order to motivate step 2 and step 3, let us reproduce lemma 7. 2 of [1 ].
Our aim is to construct 03B4-cocycles modulo d starting from products

of primitive 03B4-cocycles. Some steps in this direction appear in references [12 ].

Thus consider X = and 03C9j being primitive
i

forms. By [13 ], there are invariant Lp(A, F) such that

Vol. 44, n° 1-1986.
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and therefore Then we have :

Expanding both sides in decreasing ð-degree yields a number of equations
starting with 5X = 0 and exhibiting explicit ð-cocycles modulo d :

where drX is obtained by the first non vanishing contribution of the right
hand side, 2r -f- 1 being the smallest degree of the primitive forms

03C9p entering X :

Furthermore, it is easy to see that if degree (ç i)  2r + 1, for some ~i,
then X is a ð-coboundary modulo d. We are led to the definitions of Step 2.

C Step 2 : the 03B4-cohomology modulo d.

Let us define p2r+ 1 and Pr by p2r+ 1 = Space of primitive forms of
degree 2r + 1, Pr = Space of primitive forms of degree ? 2r + 1. Thus
we have Pr = @ P2k + 1.

r

Set ~r = (8) A Pr; ~r is the algebra generated by the primitive
forms of degree ~ 2r + 1 and their transgressions. Let E~ be the subspace
of J r of the elements « containing » explicitely at least one form of degree
2r + 1 or its transgression, i. e.

Finally write Er = @ so, EY = E;: E8 Er+ 1 .
Define dr on Er to be the unique antiderivation satisfying dr03C9 = if

03C9 is of degree 2r + 1, dr03C9 = 0 if cv is of degree &#x3E; 2r + 1 and = 0

Annales de Henri Poincaré - Physique theorique
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for any primitive form cu of degree ~ 2r + 1. This definition reproduces
the expression appearing in (* *) and implies that we have ~ = 0.

It was shown in [1] ] how to reduce the computation of the 03B4-cohomology
modulo d to the one of the ð-cohomology modulo d for even d-degree :
If Qr,s is a ð-cocycle modulo d of bidegree (r, s), we have + 

where (defined up to d of something) is also a ð-cocycle modulo d
of bidegree (r - l, s + 1); this induces a well defined linear mapping in
cohomology, ~:Hr,s ((5, mod(d)) ~ Hr-1,s+1 (03B4, mod(d)), which is an

isomorphism whenever r is odd [1 ]. Thus we have with obvious notations
an isomorphism, ~:H~~(~mod(~)) ~ and we only
need to compute for instance (~, mod (d)).
We have [7]: C Er/Nr, where the quotients

Er/Nr are given by 0 and where the index + in

(03B4, mod (d )) means restriction to strictly positive degrees, i. e.

These isomorphisms are realized by the procedure of Step 3.

D. Step 3 : construction . 
,

of representative (5-cocycles modulo d.

The previous isomorphism between and 

is realized in [1 ], by going, for instance, from an element X E Er, which is a
03B4-cocycle, to the ð-cocycle modulo d Q2r in the chain of equations (*) of B.
More precisely we choose for each s, a supplementary ES of in E;

and a basis in ES. Thus and we associate to each basis

element the corresponding 03B4-cocycle modulo d Q2r in the chain (*). Taking
their cohomology classes yields independent elements of H(5,mod(~)):
finally, by doing this for each r, we get a basis of (~, mod (d )).

Practically, in order to obtain Q2r from

write for each Lp as in B.
Lp(A + x, F) = F) + Q 1(A, F, X) + ..., where Qk is of ð-degree k;

then replace each Lp by this expansion in

n

and extract the term of ~-degree degree (cc~p) - 2r in the product.
p=o

Vol. 44, n° 1-1986.
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Since ES appears in Er/Nr for all 0 __ r  s, we see that, if X E Es we have
to apply this procedure s + 1 time.

Moreover, from the definition of a and the isomorphism

we see that all 03B4-cocycles modulo d appearing in the chain (*) give both
and when X runs over 2,, for all s.

3. FIRST EXAMPLE :

For the first factor Qi = su(3), r 1 = 2 and we choose as basis of primitive
forms the two primitive forms

together with the two 03B4-cocycles corresponding to their transgressions

We have x = with

Similarly z = with

This displays the decomposition L = Q° + Q1 + ... of Step 3.
For the second factor 92 = ~(2), ~ = 1 and we choose as basic primitive

form 6 = - 1/3 tr (x2) of degree 3 with the corresponding s = tr (F2) of
degree 4, (bidegree (4,0)). So, the same formula as above applies
and we obviously have : s = dL6 (A2, F2), with

Annales de l’Institut Henri Poincaré - Physique théorique
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Finally for the abelian factor u(l) take e = x3 as basic primitive form and
corresponding t = F3. We have : F3 = with

In accordance with Step 2, we know that in Eo either 8 or t must appear.
In other words, the general term in Eo is a linear combination of terms of

where P runs over the polynomials in z, x, s, t and A (ç, (, (7) runs over the
exterior algebra over the 3-dimensional space spanned by ~ ~ 7. Since
doe = t, the terms of the second type get cancelled in Eo/Im do and we may
choose the linear span in Eo of the terms of first type as Eo.

In the e and t do not appear and, at least one of the ç, (7, x, s must
appear. The general term in E i is a linear combination of terms of the

following types :
1) R(z, x, s) multiplied by one of the ç, cr, ~6, ~, 7~, 
2) R(z, x, s) multiplied by one of the x, s, ~ s~,

where R runs over the polynomials in z, x, s. Since d1(03BE) = x, d103C3 = s
and d1~ = 0, the terms of type 2 are killed in Ei/Im d1. Moreover, since
dl (R~6) = ~), in each term of type 1, sç may be replaced by ~7
in Ei/Im d1. Therefore, we may choose as supplementary Ei of Im d1
in Ei the linear span of the elements of the types R(z, x, ~)~7, R(z, x, s)~6~,
R(z, x, s)(7, R(z, x, s)7~, S(z, x)~, S(z, ~)~, where R runs over the polynomials
in z, x, sand S runs over the polynomials in z, x only.

In E2, only ( and z can appear so E2 is generated by T(z)~ and T(z)z
where T runs over the polynomials in z.

Since d2(~) = z (and d2(z) = 0), we choose as supplementary E2 to Im d2
the subspace of E2 generated by the T(z)~.

Finally we know that we have :

and we shall exhibit corresponding representative 03B4-cocycles modulo d
by using the procedure of Step 3.
The elements of the first sum (Eo 0 E 1 EÐ E2) are 03B4-cocycles and thus

define trivially ð-cocycles modulo d (i. e. r = 0 in the generalized trans-
gression formula).
The elements of the second sum (E 1 EÐ E2) yield b-cocycles modulo d

through the use of the generalized transgression formula (r = 1 in Step 3).
Finally the elements of the third term E2 yield 03B4-cocycles modulo d

for r = 2 in Step 3.
We summarize the results in the table 2 where the rows correspond to

independent (in (~mod(~))) ð-cocycles modulo d of given ghost

Vol. 44, n° 1-1986.
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degrees (~-degrees); the columns corresponding to the parts coming from
r = 0, r = 1 and r = 2 in Step 3. As noticed above, the table of elements
of (~, mod,(d)) is readily obtained from a similar calculation.

where

and P, R, S, T are polynomials in (z, x, s, t), (z, x, s), (z, x) and z respectively,
with z = tr = tr = tr F2 and t = F3.

4. SECOND EXAMPLE: THE ABELIAN CASE

The abelian case in easy because any b-cocycle modulo d is equivalent
(modulo a ð-coboundary modulo d) to some b-cocycle or, more precisely,
to some ð-cohomology class; indeed we have Eo = E8 and Er = 0 for r ~ 1.
Therefore we have )) ~ Eo/No = 

Nevertheless, this case is interesting since it is known [72] ] that while
anomalies in even dimension always come from invariants, Schwinger
terms (resp. anomalies in odd dimension) of different type can appear when,
for instance, at least two U(I) factors are present.
We describe here the 03B4-cohomology modulo d in the general abelian case

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’
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In this case, we have primitive forms 0i, 62.....0N of degree 1 and their
transgressions ... , FN. Thus identifying with IRN we have :

Moreover, the sequences

are exact sequences for m + ~ ~ 1, (see in [1 ], for instance).
In this case, Step 3 is not required, so we shall content ourselves with

the calculation of the dimensions

(notice that we have hm,0 = 0 for any m).
We have : , o o (~)) ~ (8) (8) An+ 
It follows that we have, (by exactness) :

Introducing the Poincare series

and

the above equation reads :

(which is meaningful because = 0 !).

It follows that h(x, y) is given by h(x, y) == y 1 +y N - 1 or
N-1 /

equiyalently h(x, y) = , 1 +Y 
,

1-x 
p=o

5. CONCLUSION

We have shown, especially in the two examples developed here, how
the interplay of the various differentials (d and ~) which naturally appear

Vol. 44, n° 1-1986.
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in the cohomological presentation of the anomaly problem in gauge theory,
brings a description of its solution as an enriched version of the (classical)
cohomology of the Lie algebra of the structure group.

In particular, in addition to the already known anomalous terms derived
from invariant polynomials, there appear for sufficiently high ghost number,
new types of anomalous terms which we can write down explicitely.
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