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Propagation and local-decay properties
for long-range scattering

of quantum three-body systems

Monique COMBESCURE

Laboratoire de Physique Theorique et Hautes Energies (*),
Universite Paris-Sud, 91045 Orsay, France

Henri 

Vol. 42, n° 1, 1985, Physique theorique

ABSTRACT. 2014 We consider quantum three-body systems interacting via
long-range two-body potentials that have arbitrary decrease at

infinity and a few regularity assumptions (Hormandefs potentials). We
prove that, in the continuous spectral subspace of the hamiltonian, the
states that are orthogonal to all two-cluster channels represent particles
which, asymptotically in time

get arbitrarily far separated from each other
are outgoing relative to each other (or incoming if time is reversed).
We borrow Hormander’s stationary phase estimates, and ideas from

Kitada-Yajima for the systematic use of suitable Fourier integral ope-
rators in long-range problems. The above results are major steps on the
time dependent route proposed by Enss for the proof of three-body asymp-
totic completeness. The final steps, still for Hormandcfs potentials, will
be given in a subsequent publication.

RESUME. - On considere des systemes quantiques a 3 corps inter-

agissant par des potentiels de paire a longue portee de decroissance arbi-
traire l’infini et satisfaisant quelques conditions de regularity
locale (potentiels de Hormander). On montre, que dans Ie sous-espace

spectral continu de l’hamiltonien, les etats qui sont orthogonaux a tous

(*) Laboratoire associe au Centre National de la Recherche Scientifique.
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40 M. COMBESCURE

les sous-canaux a deux corps representent des particules qui, asymptoti-
quement dans Ie temps

2014 s’éloignent asymptotiquement deux a deux
sont deux a deux dans un état« sortant » (ou « entrant » si 1’on change

Ie signe du temps).
On emprunte les estimations de phase stationnaire de Hormander, et

des idees dues a Kitada-Yajima pour 1’utilisation systematique dans les
problemes a longue portee de certains operateurs Fourier integraux. Les
resultats ci-dessus sont des etapes majeures de la méthode « dependant
du temps » proposee par Enss pour la preuve de la completude asymptotique
a 3 corps. Les etapes finales, toujours pour les potentiels de Hormander
seront donnees dans un article ulterieur.

1 INTRODUCTION

In this paper we begin a study of quantum three-body scattering for
long-range two-body potentials of arbitrary power decrease at infinity.
Traditionally, quantum spectral and scattering theory is organised through
the following set of questions :

1) Under what conditions on the potentials can the hamiltonian H
of the system be defined as a self-adjoint operator?

2) What is the essential spectrum of H ?
3) Does the spectral continuous subspace of H coincide with the abso-

lutely continuous subspace ?
4) Accumulation of the point spectrum of H only at zero and at the

two-body thresholds.
5) Can we define (in this case modified) wave operators associated to

each scattering channel ?
6) Asymptotic completeness : does the direct sum over all possible

scattering channels of the ranges of the corresponding wave operators
coincide with the absolutely continuous subspace of H ?

Questions (1) and (2) can easily be dealt with for a large class of inte-
ractions :

2014 self adjointness of the hamiltonian mainly requires a control over
the local singularities of the potentials as for the two-body case [28, vol. II ],
the answer to question (2) is the content of H.V.Z. theorem (see

for example [28, vol. IV ]) : provided each two-body potential goes to zero
(arbitrarily slowly) when its two-body variable goes to infinity, the essential
spectrum of H is [Eo, oo) where Eo is the minimum energy of all subsystems.

l’Institut Henri Poincaré - Physique theorique



41LONG-RANGE SCATTERING OF QUANTUM THREE-BODY SYSTEMS

Suitable « modified wave operators » for N-body Coulomb systems are
defined by Dollard [6 ], see also [21 ], thus providing an answer to problem (5)
for Coulomb interactions. For the two-body problem in the time-dependent
framework, suitably defined « modified wave operators » have been intro-
duced and proven to be complete for more general long range interac-
tions [7] ] [26] ] [79] ] [20] ] [2~] ] [2J] ] [26], and we expect that these results
easily extend to the N-body case (For similar results on the two-body
long range operators by the stationary methods, see [7] ] [7~] ] and refe-
rences therein contained, together with the bibliography of [26 ].)
As in the two-body problem, question (3), (4) and (6) are more difficult

to handle. A general proof of (3) and (4) in the N-body case for a large
class of long range two-body interactions has been given in [27]. Since
the pioneering work of Faddeev on three-body problem, various proofs
of question (6) have been provided in the short range case (see [7j~] for a
review up to 1976). Several improvements have been made in recent years
to those proofs, and among them works by Mourre [22] ] [2~] and Enss [8] ]
[72] ] (see also [32 ]). Both approaches are related by the fact that they
extend to the three-body problem the study of the asymptotic direction
of flight for the particles; that leads to a simultaneous proof of (6) and (3).
Apart from their underlying intuition, which is physically appealing,
the main merit of these works is that they cover the case of arbitrarily
short range interactions, and they do not require any assumptions on the
two-body subsystems at thresholds. This was not the case in the previous
approaches, neither in the more recent works by Hagedorn and Perry [16]
or Sigal [29] ] [30 ]. Question (6) for long range interactions has been given
very few answers in the three-body case, except for the work by Mer-
kuriev [27] ] for Coulomb plus short range interactions.
Our aim is to present a proof of steps (5) and (6) in the three-body pro-

blem, for the class of long range interactions (of arbitrary power decrease
at infinity) introduced by Hormander [17 ], yielding (3) as a subproduct.
The method mainly follows that of Enss [8 ] for the three-body short
range problem, but deviates from his by the systematic use of some « Fou-
rier-integral-operators » just tailored specifically for applying the sta-

tionary phase method of [17 ]. Thus it bears some similarity with Kitada-
Yajima’s version of two-body Enss’method for long range time-dependent
potentials [20 ]. As in [20] a fundamental use will be made of

A) the stationary phase method [77] ]
B) L2 estimates of some oscillatory integrals [3] ] [7~] ]
C) classical orbits associated to our three-body problem, and associated

Hamilton-Jacobi equations.
In this paper we present A, Band C, and show how they can be used

in the study of the asymptotic evolution of some observables, in particular
to prove the following fact :

Vol. 42, n° 1-1985.



42 M. COMBES CURE

D) if !/ is a state of the continuous subspace of H, orthogonal to all
two-cluster channels, then asymptotically in time in a suitable sense, the
particles represented by get for separated from each other.
We shall then be in a position to prove that such is actually in the

range of the three-cluster « modified wave operator », thus proving asymp-
totic completeness (6) and absence of singular continuous spectrum (3).
However for reasons of length we shall give the proof of these two statements
in a separate paper. But we claim that a separate proof of D, and a descrip-
tion of how points A-C naturally occur in our scattering problem, have
their own interest.

In section 2 we give the assumptions on the long-range two-body poten-
tials, which are the same as Hormandefs [77], and study the classical
orbits of the system of 3 incoming and outgoing particles scattered by the
long-range regular part of the potential. Then using the generating func-
tions of these orbits, we give in section 3 the « modified wave operators »
of the quantum problem for each scattering channel ; we then prove that
the complement in the continuous spectral subspace of the hamiltonian
of all two-cluster channels represents, as suggested by intuition, 3 particles
which get arbitrarily far separated, asymptotically in time. We have col-
lected in the last section results extracted from [3] ] [73] ] on L2-estimates
of some oscillatory integrals, and a slight generalisation of them.

2. CLASSICAL ORBITS

FOR THE THREE-BODY PROBLEM

In this section we shall study three classical particles, interacting via
two-body long-range potentials V«, that go farther and farther from

each other as time goes to + or - oo (let us call them « outgoing » or
« incoming » particles). We introduce the generating functions of the
corresponding orbits. For this purpose, it is convenient to built time-
dependent potentials Va,t such that the orbits for these time dependent
potentials are identical with those for the original potentials as far as
the outgoing or incoming particles are concerned. Thus we mimic Kitada-
Yajima’s approach for two-body long-range scattering [20 ], but we incor-
porate in it the more general class of long-range interactions of Hor-
mander [17 ]. More precisely the assumptions on the potentials are as
follows :

where the decrease requirement on the short range par V~ is given in the
next section (formula (3.2)) and where the long range part is such that

l’Institut Henri Poincare - Physique " theorique "
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(i is any multiindex (i 1, ... , i,,) and|i| I = i 1 + ... + i,,), m(o), ... , m(3)

are positive, Di - - ... - and

REMARK 2 .1. - Making use of lemmas 3.2 and 3.3 of Hörmander [17]
Va can in turn be split into a short range part plus a highly regular long
range par Va satisfying (2 . 2) for every multiindex i for a new 

’ 

1 dl

where the new function is such that

(H) 
~(1) + ~(3) &#x3E; 4

(H) 
~(/) is concave

is decreasing ,

m(j) - ðj is increasing fory 3, and constant 3 for some 5 &#x3E; 1/2

Thus in what follows we shall replace Va by its regularized part denoted

Va for simplicity, and we assume (H) instead of (2.2) and (2.3).

REMARK 2 . 2. - (2 . 3) together with concavity of m imply :

Let now a be a real positive constant which will be used throughout
the paper, and let X E be such that 0  X _ 1, x(x) = 1 for 1

and x(x) = 0 for x ~  1/2. We set

Consider three particles whose positions and momenta are denoted xi
and pi respectively and belong to [RB In order to avoid notational complexity
we assume they have equal masses 1. The two-body interactions Va and Va
only depend on for thus we can get rid of the center

of mass motion. Then if ya denotes the relative position of the third particle k

w. r. to the center of mass - of the pair x, and if pa and qa are the

conjugate momenta of xa and y« respectively, the (classical) hamiltonian
of the relative motion of the two particles in the potential Va is :

and that of the thr~ee particles in the time-dependent potentials Va,t:

Vol.42,~1-1985.



44 M. COMBESCURE

where

Then the classical orbit (X, V) (s, t ; Z, K) is the solution of the Hamilton
equations :

with initial conditions :

Let i = (fi, ..., be a multi-index whose components ik are non-nega-
tive integers. Then for Z, K E we use the following notations :

PROPOSITION 2.1. - Let Va satisfy assumption (H) and let be

defined by (2 . 4). Then there exists T &#x3E; 0 such that equations (2.7-8) 1
admit a unique solution satisfying for any t &#x3E; s &#x3E;_ T:

where

Proof - By successive approximations, and by noting that m( j) - j
is a decreasing sequence.

Annales de l’Institut Henri Poincare - Physique theorique



45LONG-RANGE SCATTERING OF QUANTUM THREE-BODY SYSTEMS

PROPOSITION 2 . 2. - For T sufficiently large, and T,
there exist the inverse diffeomorphisms

of the mappings

respectively. and III belong to ~1(1R x x X and

satisfy the following properties, 

iv) b i and j multiindices such that i ~ I 2 2, there exist constants C~~
such that

The proof closely follows that of proposition - 2.2 in [79] using the
contraction mapping principle, and we do not reproduce it here.
The classical action along the classical orbit which starts from the

phase-space point (3, ~) at time s ( where PK = (2014 ?" ~ )) is the momen-
tum associated to the velocity K = ~) is

We define :

is therefore the classical action along
the orbit which is characterized by the momentum PK at time s, and the

Vol. 42, n° 1-1985.



46 M. COMBESCURE

position Z at time t, for the evolution associated to the time-dependent
hamiltonian Ht. It satisfies :

PROPOSITION 2 . 3. - For t &#x3E; ~ &#x3E; T or t ::::; s  - T and T large enough,
PK) is the unique solution of the Hamilton-Jacobi e q uati ons

or

satisfying

Moreover

The proof follows from standard calculations in classical mechanics,
that we do not reproduce here.

COROLLARY 2 . 4. - i ) For any I s I sufficiently large, any I
sufficiently large, and any P = such that |p03B1| &#x3E; a, b’a,

we have :

ii) For |s| sufficiently large, any I and any P = (p. o )Z = (z«, z~) such that &#x3E; a Va

we have

Furthermore for any multiindices f /:

wnere

Proof. 2014 We only prove (ii) for the + sign case. The proof of (i ), and
of (ii) for the - sign case are similar. Let

Annales de l’Institut Henri Poincare - Physique theorique



47LONG-RANGE SCATTERING OF QUANTUM THREE-BODY SYSTEMS

Then

for s sufficiently large and t &#x3E; s.

This proves (2.14) because for &#x3E; as by (2.4).
Now (2.15) follows from assumption (H), from proposition 2 . 2 (iii), (iv),
and from lemma 3 . 6 in [77] noting that :

We shall also be interested in the following problem of classical mechanics
that will be useful for a proof of 3-body long range asymptotic comple-
teness [33 ] : let xa be a given real number, possibly depending upon t. Let :

where E~ takes the values + 1 or - 1 and let ya(t, s’) and qa(t, s’) be solu-
tions of the Hamilton equation associated with the time dependent hamil-
tonian ya(t, s’) ; qa(t, s’)) :

with initial conditions

Then the analogs of propositions 2.1, 2.2 and 2.3 hold true, yielding
existence and uniqueness of the solution y«(t, s ; r~«, q«), q«(t, s ; r~«, q«) of
(2.17-2.18) replaced by s), of the inverse F~-diffeomorphism

and of the solution of the Hamilton-Jacobi equation :

Vol. 42, n° 1-1985.



48 M. COMBESCURE

which satisfies :

Then the following property holds :

PROPOSITION 2 . 5. 2014 For T sufficiently large, and t &#x3E; s ~ T or t  s  - T
there exists the inverse F~-diffeomorphism

of the mapping

~ belongs to x IR) x x and satisfies :

iv) bi and j multiindices such that i ~ I ~ 2 there exist constants C~~
such that :

v ) Vi multiindex such that 1 ~ ) ~ ~ 2

Proof. 2014 We do not give the proof of (i )-(~v ) which is similar to that of
proposition 2 . 2. For (v) we note that, from (2 .17) :

and theretore:

Similarly

Now using the fact that, given xa and is the inverse mapping of
s ; for t &#x3E;- s &#x3E;- T (or t ::::; s  - T resp.), (2 . 22-2 . 23) and

remark 2.2 yield the result.
The orbits defined by (2.17-2.18) are mappings

(t,~03B1,q03B1) ~ ( s, y03B1,

Henri Poincaré - Physique theorique



49LONG-RANGE SCATTERING OF QUANTUM THREE-BODY SYSTEMS

from R x Rv x IRV to itself which depend on some parameter x«. If in

turn x« is given by a suitably chosen mapping from some phase-space
variables at time t to other phase-space variables at time s, then the orbits
defined by (2.17-2.18) can be compared with those of the threebody pro-
blem (2.7-2.8). This is precisely the purpose of the two following pro-
positions, in which case the answer is quite simple and physically natural.

PROPOSITION 2 . 6. - Let Z = (z«, za) and K = be such that

I &#x3E; a &#x3E; OJ zj &#x3E; 5 &#x3E; 0 for some k« with I  a/20.
Then if~&#x3E;~&#x3E;T(~~ -T resp) and T is large enough, and if

we have

Before giving the proof of proposition 2. 6 we state the next result which
is closely related :

PROPOSITION 2. 7. - Let r be the uniquely determined orbit in the 1R4v
phase space defined through equations (2.7-2.8), whose ~-component
of the starting position E at time t is ~ which has momentum j9=(~ B

at time s  t, and where ~-component of the position at time ’t  s is z~.
Thus the y03B1-component of E is a uniquely determined fonction of 03BE03B1, za, P, r,
s and t and if .

T is large enough and

Vol.42,~1-1985.



50 M. COMBESCURE

then we have

Proof of proposition 2. 6. - W’e only prove the + sign case, 
the - sign

case being similar. We consider the orbit r in the phase-space 
R4v starting

at time t &#x3E; s with momentum K and ending at time s with position Z

(see fig. 1). Then if X(s’) and P(sQ are the position and momentum 
on r

at some time s’ between sand t, it makes no difference to arrive at the

position Z at time s :

_ by starting from the phase-space point

2014 or by starting from t ; Z, K), K)) at time t.

Therefore

and the inverse mapping

of

is nothing but

Thus if one lets

in equ. (2 .17), then :

Annales de l’Institut Henri Poincare - Physique theorique



51LONG-RANGE SCATTERING OF QUANTUM THREE-BODY SYSTEMS

where the initial conditions are :

Namely if is easy to check that the conditions on pa and z« imply that :

for s, and s large enough, so that :

Thus (2.17) reduces to the y03B1-component of equation (2.7) which implies
for the inverse mappings :

for any 5’’ between  and t. Letting s’ = s implies the result

Proof of proposition 2 . 7. 2014 Let r be the orbit in the phase-space
specified by proposition 2 . 7 (see fig. 2). Then using proposition 2 . 2 (i )
we have

But one easily checks that the conditions on pa, za imply the analogs of
(2 . 24-2 . 25) so that, as above, r; za, is the y03B1-component of the
position at time s on r. But is is equivalent to arrive at position ( , z~)
at time ~ :

2014 by starting from the phase-space point (E, n~(~ s ; E, P)) at time t
2014 or by starting from the position ( , r; za, at time s ;

so that :

which completes the proof.
By analogy with (2.10) and proposition 2. 3 we have defined a classical

action W~o along the orbits in the phase-space, which satisfies equ. (2 . 20)
with a time dependent hamiltonian where xa, z~ and qa are some parameters.
However when these parameters lie in suitable phase-space regions, i. e.

intuitively as far as « outgoing » or « incoming » particles are concerned,
this hamiltonian with time dependent potentials can be replaced with
its analog with the time-independent ones. This is the content of the following
lemma which, together with previous ones, will intensively be used in the
proof of 3-body asymptotic completeness [33 ].

LEMMA 2. 8. - Let and q03B1 be such that

Vol. 42, n° 1-1985.



52 M. COMBESCURE

_ Then for any ~ ~ ~ 0 s large enough, we have:

so that the first equation m (2. 2U) becomes

Thus under the above conditions, equ. (2.27) has a unique solution wata
satisfying W±03B10 (s, s ; za, q«) = q«, which coincides with 

Proof. 2014 The argument follows Hormander’s [17 ] ; we only consider
the case of &#x3E; s (the other case can be dealt with similarly). One can
choose s large enough, so that

Therefore by (2.17) the component along the qa direction of s) and
of ~ are respectively greater than 8a/3 and

This implies that

and therefore that for any t  s

This completes the proof.
In order to complete this section about classical orbits, we state here

(without proofs because they bear a strong similarlity with previous ones)
some results about an auxiliary two-body problem that will be needed
in the study of three-body quantum scattering in « two-cluster subchannels ».
Assume is a function depending on the time para-

meter t, in such a way that if t  1:

with ~(/) specified by conditions (H). Then if

there exists T sufficiently large such that for t ~ s ~ ± T the equation

Annales de Henri Poincaré - Physique " theorique "



53LONG-RANGE SCATTERING OF QUANTUM THREE-BODY SYSTEMS

admits a unique solution with initial condition

Furthermore :

PROPOSITION 2.9. - For T sufficiently large and any ~ s ~ ± T,
we have

iii) Vi and j multiindices such that |i| + |j|  2 there exist constants Cij
such that

For any multiindices i and j

3. LOCAL DECAY AND PROPAGATION PROPERTIES

OF SOME « SCATTERING STATES »

The generating functions for the two-body and three-body classical

trajectories that have been introduced in the preceding section will be
a powerful tool in the study of three-body quantum scattering in the long
range case.
We start this section by introducing the notations and assumptions

that are needed in order to unambiguously specify our quantum problem.
We consider a system of three particles in their center of mass frame in
v-dimensional space. The physical Hilbert space of quantum states is
Jf = L 2(1R3v), and for notational convenience we assume all particles
have mass equal to 1. The free hamiltonian Ho is therefore the usually
quantified kinetic energy (~ = 1)

(where a labels the pairs of particles), which is obviously defined as a
self-adjoint operator in H. We assume the three particles interact via trans-

Vol. 42, n° 1-1985.
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lational invariant pair potentials Va. According to Remark 2.1, we assume
further that V~ can be split into Va + Vas where the long range part Va
satisfies assumption (H) and the short range part V~ obeys :

were. I denotes the vector or operator norm In H (here the operator
norm), and where F( &#x3E; R) is the multiplication operator in configu-
ration space representation by the characteristic function of the set

{ X = I &#x3E; R}. In what follows we shall use freely this nota-
tion, and similar ones for momentum space instead of configuration space.
It is then a standard result [2~] that the full hamiltonian

is uniquely determined as a self-adjoint operator in ~f with the same
domain as Ho. Thus it follows from the functional calculus that f(H)
can be defined for a large class of well behaved functions f, whose Fourier
transform will always be denoted f. For any pair x, the two-body hamil-
tonians

is also uniquely determined as a self-adjoint operator in ~f. Furthermore
under our assumptions (3 . 2) and (H), the following properties hold true :

(P 1 ) h« has no singularly continuous spectrum
(P2) h« has no point spectrum in (0, oo)
(P3) h« is bounded below and the projector over its point spectrum is

where the sum over i is in general infinite, where

is the (finite dimensional) projector over the eigenspace of h03B1 of eigenvalue
where are non-positive and can only accumulate at zero. Note

that may be zero, and thus the corresponding eigenspace may be
infinite dimensional. Moreover for any non zero eigenvalue has expo-
nential decrease at infinity.

(P4) The modified Moller wave operators exist and are asymptotically
complete.

(P1, P2, P3) are by now well established (see references in [28 ]) but (P2)

Annales de l’Institut Henri Poincaré - Physique theorique



55LONG-RANGE SCATTERING OF QUANTUM THREE-BODY SYSTEMS

would require a few additional regularity assumption on va. In order
to keep the full generality of assumption (3.2) we do not add this assump-
tion to (H)U (3.2), but we’d rather keep (P2) as an additional assumption
on subsystems. The first statement in (P4) is the results of Hormander’s
paper [17 ]. Since Dollard’s approach of Coulomb quantum systems, there
is a large amount of literature dealing with two-body long range asymp-
totic completeness, especial ly by the « stationary methods », and we have
not checked precisely whether their results cover our class of potentials.
However the method developed in this paper, and in the following, for
the proof of three-body long range asymptotic completeness provides
a proof of two body asymptotic completeness as well, under our assump-
tions (3 . 2) and (H) (see [33 ]). We shall further need the following addi-
tional property on subsystems :

let be an eigenfunction of h03B1 with zero eigenvalue (if any ! ).
Then we require 

/~

There is, up to now, no complete result about the exact decrease of threshold
eigenstates for the general class of potentials considered in this paper.
Thus we keep (P s) as an additional assumption on subsystems, although
we know that for some particular va’s actually requires the absence
of a zero eigenvalue, or the dimension v not being too small.
Each eigenstate of each two-body subsystem gives rise to a scattering

channel for the corresponding three-body system. Given

which obviously satisfies (2.28), we define the corresponding time-depen-
dent two-body hamiltonian ht, and solutions 03C9± of Hamilton-Jacobi

equations as in (2 . 29-2 . 30), denoting the latter t ; za, This func-
tion is particularly convenient for the study of the (a, k)th scattering channels
in the three-body problem.
Using corollary 2 . 4 (i ) we can proceed as in [17, theorem 3 . 8 ] to prove

the existence of a solution W ± (s, t ; 0, P) constructed independently of
the cut off a on the potentials, and similarly for t ; 0, In the
momentum space representation of Jf, they are multiplicative operators
that we denote WI (s, t ) and t ), for simplicity. Then we have the
following :

PROPOSITION 3.1. - i ) There exist the strong limits

Vol. 42, n° 1-1985.



56 M. COMBES CURE

where and are defined by (3.6) and property (P3)
ii) Q6= intertwines Hand Ho, and

intertwines H and 3 4 q203B1 + (any (x, k) 
,

iii) Moreover their ranges do not depend on s.

Proof 2014 We do not give the proof of (i ) which would be a word by word
repetition of Hormander’s [17 ], modulo the replacement of by

for which can be dealt with as in the proof of lemma 3.5 (f)
(see below). Again as in [17 ], (ii) easily follows from the dominated conver-
gence theorem and the fact that for almost every P (resp. qa) and every s’ :

Now using (ii ), we see that (iii) reduces to proving the following lemma :

LEMMA 3 . 2. - For any s, s’ and s’ ~ &#x3E; T as in prop. 2 . 2 or 2. 5)
and any P ~ 0 (resp. 0) the following limits exist :

. 

For a proof of similar statements, see [20, prop. 2 . 8 ].
In the rest of this section, we shall prove that the complement in the

continuous spectral subspace Hcont of H of all two-cluster channels repre-
sents, intuitively, three asymptotically free particles. More precisely :
the particles get, asymptotically in time, arbitrarily far separated,
for any pair, the particles in the pair are outgoing relative to each

other (or incoming if time is reversed).

PROPOSITION 3 . 3. E B be such that there exists
~ a,k

a ~0(A, oo) function G, A &#x3E; 3 a , with 03C8 = Then for

any sequence oo (n ~ (0) there exists a sequence in (resp. 7:;)
converging to + oo (resp. - (0) as n  oo such that :

(one statement for the + sign case, and one statement for the - sign).

Annales de l’Institut Henri Poincare - Physique theorique



57LONG-RANGE SCATTERING OF QUANTUM THREE-BODY SYSTEMS

Proof 2014 It is enough to prove convergence in the time-mean, i. e.

for any p  oo. The proof splits into several lemmas, along the same
lines as in the short range case [8 ] :

There exists a ~(fR) function G’, with G’ = 1 on supp G and

supp G’ c [4( 1 + ~/2/3)~ oo). Thus G’G = 1 and it is easy to check
that  p) [G’(H) - is a compact operator, so that

 p) [G’(H) - goes to zero in the time mean.
Thus we only have to prove for any p  oo :

We now split this term via projection operators in ya-space. We define
them using « generalized coherent states » as proposed by [5 ]. Let  be
a function with support contained in q ~  2a/3 and let

for any Then the following operators

are known to be bounded operators in L 2(~2V) such that

is multiplication operator in ya-space by dza I z«) ~ 12, and
s-lim PR( y«) = 0. &#x3E; R

R -&#x3E; o0

Now we write:

where P« = P«,k is the projector on the point spectrum of ~. But as
k

F( ~  p) (1 - is a compact operator, the contribution
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to (3.12) of the first term of (3.15) is o. K. because lies in For
the second and third terms, we use lemma 3. 5 below. Let

where the sum lies over all bound states Ea,k of h03B1, and where for any 03C6 E Jf :

LEMMA 3 . 4. - 03A9±03B1,R is a well-defined, bounded operator in H, whose
range is independent of s and contained in Q+ 

Remark. is a long range generalization of

where S2a is the sum of all wave operators for the channel a and 
are the projectors over the positive and negative parts of the spectrum of
the operator y03B1.q03B1 + q03B1 . Y« .

LEMMA 3 . 5. - Let t/1 be as in proposition 3 . 2. Then

i ) II (Q~ - I  P) I I ~ 0 as R ~ 00

ii) Vs, 3T(e) and R(B) such that T &#x3E; T(B) and R &#x3E; R(B) imply

Admitting these two lemmas for the moment, we complete the proof of
proposition 3.3 :
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It follows immediately from lemma 3.5 (i ) that the first term satisfies

and the proof of lemma 3 . 5 (i ) easily implies that so does the third term
of (3.19). But the second is zero because 03C8 (and thus is orthogonal
to ~(S2a k) for any k. The fourth term is dominated by II F yj &#x3E; I
which obviously satisfies (3.20), and the fifth term is dominated by

which satisfies (3 . 20) by lemma 3 . 6
below. Thus given e &#x3E; 0 there exists R’(e) such that the second term of
(3.15) is dominated by e for R &#x3E; R’(e). Let us choose R &#x3E; Max (R(e), R’(e)),
where R(e) is as in lemma 3.5 (ii ). Then there exists T’(e) (depending on R)
such that the first term of (3.15) is bounded by e in the time mean for
T &#x3E; T’(e). But so is the third term provided T &#x3E; Max (T(e), T’(e)), from

lemma 3 . 5 (f~ and thus - ~!!F(~Jp)G’(H~’~!!~/3~,T Jo
which completes the proof of proposition 3.3.
We now state and prove lemma 3 . 6.

LEMMA 3.6.

The proof is ari easy application of the « non-stationary phase method »
( [17, lemma A1 ]) Given any ~p E ~(G’(Ha)),

But if + 2 then 2 M 2But 1 H0152 &#x3E; 
3 

a, and 0152 
= E03B1,k  0, then 

4 q0152 
&#x3E; 

3" (3 
+ v 2)a ,

so that  03C8a,k ~ ~z’03B1k’03B1, 03C6&#x3E; = 0 if |k’03B1|8a 3 - 2a 3 = 2a because of the

support property of ij. Now for s negative and |I s | sufficiently large, we have:

and on the other hand the conditions  0, za &#x3E; R imply

Therefore
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for R sufficiently large. Thus if yj  R/2, the integral over qa is non-
stationary, and therefore bounded by

This easily implies that the norm of

is bounded by + II for any n, which completes the proof
of lemma 3 . 6.
We now come back to the proof of lemmas 3.4 and 3. 5. For t = s,

s) = G’ 4 q« + so that it is a bounded operator

in Jf. For t ~ s, it is no longer obvious that t ) defines a bounded
operator in ~f. We give a proof of this fact, using a result on oscillatory
integrals due to Fujiwara [13 ) (see proposition 4.1 below). Let ~p E ~f. Then

r

so that for any fixed ka- the integral over za in takes the form

where ~) = F(z . I &#x3E; R)  Q9 belongs to

and where

satisfies

so that Det ,i4’ &#x3E; 1/2 for | s| sufficiently large. Therefore for |s|
B~z~~~/ /r B

lar g e, the L2 norm w. r. to ?~ of (3 . 24) is bounded by C ~) 2 1 /2
uniformly for t &#x3E; s. But the integration support over k’a in (3.21) is a

fixed compact K. SO that

from (3.23).
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Given that, proof of lemma 3.4 is a simple, technical adaptation of that
of Hormandefs [77] ] for the existence of two-body modified wave ope-
rators ; we do not give the details for this, because very similar but harder
estimates are derived along the proof of lemma 3.5 (i ). We first prove
lemma 3 . 5 (ii ), proceeding similarly to [8 ] : if the T(e) under investigation
can be found, any T &#x3E; T(e) belongs to some interval [NT(e), (N + 1)T(E) [
with N integer, and the L. H. S. of (3.18) is smaller than

Thus the proof reduces in showing that there exists R(e) such that R &#x3E; R(E)
implies that (3.25) is smaller than ~, or which is sufficient

where T(G) is such that

((3 . 27) easily follows from a slight extension by Enss [9] of Ruelle’s theo-
rem [29] for ha, using properties (Pi, P2) of subsystems which imply that
(l2014Px) is the projector over the spectral continuous subspace of hj. But
the L. H. S. of (3.26) is dominated by

For T(G) fixed, F(  p)(l - is a uniformly continuous
(in s) family of compact operators, and strongly converges to zero
as R ~ oo, thus (3 . 26) holds for R &#x3E; some R(G) (depending on ~ and T(G)).
This completes the proof of part (ii) of lemma 3 . 5.
For the proof of part (i ) we may restrict ourselves to a finite number N

of bound states in P because :

Vol. 42, n° 1-1985.



62 M. COMBESCURE

Thus it is enough to show that for each k

or equivalently

(because s) = 
Now we show that the integrand in (3 . 29) is bounded by (R + 

for some e &#x3E; 0, which implies the result. When applied to a vector in ~
the operator in (3 . 29) can be written, in X-space, as

(we recall that Vp includes the short range part of the potential). But, as
in the proof of lemma 3.6:

for R large enough, some e. Therefore = Now

using property (Ps) for the possible zero eigenvalues, together with the

exponential decrease of non-threshold eigenstates, we have that

(any b &#x3E; 0) by a simple use of proposition 4.1 below. Furthermore the
contribution of obeys (3.29) by an easy

« non-stationary phase » argument as in lemma 3. 6 .Therefore we are left
to consider

and we use the splitting
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We first consider the contribution of the last term in (3 . 31) which vanishes
at the point of stationary phase defined by

Therefore, in the contribution of this term to (3.30) the q03B1-integration
can be expanded in a stationary phase expansion. From proposition 2.9
for c~ instead of we deduce that, if we denote by c the value 1 - ð
of + 1) - for large j, the derivatives of order &#x3E; 2 of the mapping

are uniformly bounded. Taking advantage of this fact, as in [17, proof
of theorem 3 . 9 ], we can perform a change of variable qa ~ Then

using a partition of unity x(qa - g) = 1 where g runs over lattice

g

points of we can consider contributions close to and far from the cri-
tical point qa = Z«) :
for those g with

a « non-stationary phase » estimate holds as in [77] and we do not repro-
duce the detailed estimates leading to the bound :

for the contribution of these terms to the integral over q03B1; therefore, using
the boundedness in of the convolution by a function, their
contribution to ~J03B1,k03C6~ is bounded in norm by Min ( 1, (
(any N)
the number of g’s such that

is obviously uniformly bounded in t, and each of the corresponding terms
can be expanded, using lemma A . 4 of [77] ] into finitely many terms in
the asymptotic expansion of the stationary-phase method at q« = q«,
plus an error after N steps bounded by

for some ~ &#x3E; - + 2N [77, lemma A . 4] ] (where we have used the fact

that the Sobolev norm in q03B1 of
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is bounded by C Max from prop. 2.9 But
o~~~~

the exponent in (3.34) is negative and can be made arbitrarily large for
large N. But (3 . 33) implies ! ya - za ~ ~ and therefore

Thus one can extract from (3 . 34) a factor (1 + ~ ya - Za I ) N~ for some N’ &#x3E; v,

which yields a bounded contribution to ~j03B1,k03C6~ I as above (because the
convolution by ( 1 + z~ )’~’ is bounded in multiplied by a fac-
tor with e &#x3E; 0 (~~ 1).

In order to study the various terms in the stationary-phase expansion,
we come back to the original variable qa, and we use a Morse lemma [17,
lemma A . 6 ] :

there exists a change of variable q03B1 ~ OJ such that if t &#x3E; 1:

where A is nothing but the non-singular matrix of the second derivatives
of 03C9+03B1/t w. r. to qa at qa = qa. Of course this change of variable depends
on z~ s.
We denote by the jacobian and by the image of

by this change of variable. The contribution I of the terms of
order n in the stationary phase expansion is

where L2n is a differential operator in co of order 2n. As we have already
noticed, n has to be ~ 1, because the oth order term vanishes. But

satisfies

for some . constant C independent , and o z~ (where Det a~~ is the
determinant of the v x v matrix whose elements are Namely it follows
from f3.32~ that
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and therefore

so that (3.37) holds by proposition 2.9 (ii). Furthermore (L~~/)(0)
is a G~ function of y03B1 and z’03B1 whose derivatives satisfy Lemma 3 . 7 below.
Thus one can perform a change of variable z’03B1 ~ tz’03C9 y« H so

that Proposition 4.1 is applicable. It implies that there exists an integer K
such that the contribution to II II of (3 . 35) be bounded by

(because the support of integration in ka in compact). Using lemma 3.7
below, (3.40) is bounded by

LEMMA 3 . 7. - and W &#x3E; 1, there exists a constant C~~ s. t.

Proof This will follow from the estimates :

because the L. H. S. of (3.42) is then bounded by t 2 times

But using [17, lemmas 3 . 6 and A. 6 ] we easily see that it is enough to show :

But one checks easily that for 1:
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Thus using [17, lemma 3.6] again, (3 . 43-3 . 44) easily follow from propo-
sition 2.9 (iii) and (3 . 45).

In order to complete the proof of lemma 3.5 (i ), we split the integration
support in t in (3.29) into

and

For t in the first interval, we write

and 0 we bound 0 the integral over qa by because ’ of (3.33) which

implies yj &#x3E; RIJ3 for Is I large enough. Then using, proposition 4.1
again, and 0 therefore

which goes to zero as R ~ 00.

For t in the interval oo) we use the estimate (3 . .41) for the terms
of the stationary-phase expansion, together with estimate ~ 03C6 I I t -1- ~ for

the rest, so that its contribution to dt ~J03B1,k~03C6 II I is bounded by

which also goes to zero as R ~ oo because v(2)  0.

This completes the proof of lemma 3 . 5 (i ) for the contribution of the

last term in (3 . 31 ).
We now consider the contribution to (3.30)’ of the two first terms in

(3 . 31), omitting about the factor ( 1 + Ho) -1 in (3 . 2) that only deals with

possible local singularities. Then, as operator norms, we have
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Therefore their contribution satisfies (3 . 29) because &#x3E; 1, and because
of properties 

This completes the proof of lemma 3 . 5 (i ).
The intuitive meaning of the sequences pn and in is that the particles

described by the time-zero state 03C8 become more and more separated from
each other along the time evolution labelled by r~. Moreover we can get
control over their relative kinetic energy, and their relative direction of

flight :

PROPOSITION 3.8. - Let t/1 be as in proposition 3.3 and T! be the
sequences obtained in it. Then for any f E and any 03C6 E we have :

Proo, f: 2014 As ! C for 1 with m(o) &#x3E; 0, we have
for the increasing sequence /)~ associated to in

The second term goes to zero by proposition 3 . 2 and the first one is bounded
by which also converges to zero as n  oo. The rest of the proof
is similar to that of the short range case [8, see also 10 ] and we do not
reproduce it here.

4. L2-BOUNDEDNESS
OF SOME OSCILLATORY INTEGRALS

PROPOSITION 4.1. - (Fujiwara [13 ], see also [3 ]). Let Jf be an Hil-
bert space, with ~.~ the norm in it, and B(H) the space of bounded ope-
rators on ~P, and denote by Jf) the space of square-integrable func-
tions with = (dx ~ ~ f (x) ( ~ 2) 1 ~2.

Let ,f’E ~), and S : fw x (w ~ ~(~), a E x be
such that :
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i ) For any multiindices i,j, there exists a positive constant Ci~ such that

ii) S E ([Rv x is selfadjoint, and ~xS and ~yS are mul-
tiples of the identity operator in 

iii) DS(x, y) = Det is a complex valued function satisfying

uniformly in x, y E x [RV

iv) V multiindices i and j, there exists a positive constant Ci~ such that

Then A(~,) defined by

is a bounded operator in ~f) with

REMARK 4.1. - Fujiwara’s papers [3] ] [7~] ] only deal with the case
C, but for further use we present here a slight extension where S(x, y)

is operator-valued in some Hilbert space ~f, but its partial derivatives w. r.
to x or y are complex valued.

Sketch of proof - By a simple homogeneity argument (x H ,~ 1 ~2x,
y H ~1~2y, which yields H Ds), the case ~, &#x3E; 1 follows from the

case ~, = 1, that we consider below. Let be the unit lattice points
of be a smooth partition of unity in [RV subordinate

to the covering of open cubes of side 2 with center at We set :

so that

Then, dut to the following lemma, it is enough to prove that
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b) there exists a positive such that

LEMMA 4 . 2 (Cotlar-Stein) [4 ]. - Let A(z) be a weakly measurable,
uniformly bounded operator-valued function ~f, where Z is a

measure-space of measure dz, and ~f a separable Hilbert-space. Assume

where h(z, z’) ~ ~0 is the kernel of a bounded operator in L2(Z) of norm Z.
Then

uniformly in E, E being a finite measure subspace of Z.
As the integration support in (4.2) is fixed, up to a translation (a) easily

follows from (i ) and Schwarz inequality. On the other hand we have

Let L be the following differential operator

It satisfies

so that (4.8) becomes, for any entire number l :
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where L* is the adj oint of the operator L :

But it is easy to check by induction, using (i ), that

where Ci is a constant times sup sup y) ~. .
~y l

But under assumptions (ii) and (iv ), (iii) is equivalent to the following :
there exists a positive constant C such that

uniformly in x, y E [RV (by a simple use of the global implicit function theo-
rem). Therefore for any integer 1, there exists a positive constant C such that :

Let X be the characteristic function of the set 8y01; then for x ~ y,
we have, from (4.12) and (4.16) :

We shall now find a bound for the Hilbert-Schmidt norm of

Similarly we have

Thus we can choose

with &#x3E; ~ which obviously satisfies (4.6-4.7). This completes the proof
of proposition 4.1.
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