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ABSTRACT. - A Cameron-Martin formula is established for the Feyn-
man map definition of the Feynman integral in non-relativistic quantum
mechanics. This formula involves the Morse or Maslov indices and shows
the connection with the Feynman-Hibbs definition of the path integral
and the Fresnel integrals of Albeverio and Hoegh-Krohn. Applications
are given to the Feynman-Kac-Itô formula for anharmonic oscillator

potentials.

RESUME. - On etablit une formule de Cameron-Martin pour l’inté-

grale de Feynman en mecanique quantique non relativiste. Cette formule
fait intervenir les indices de Morse et de Maslov et montre la relation
avec la definition de Feynman-Hibbs de l’intégrale de chemins et les

integrales de Fresnel considerees par Albeverio et Hoegh-Krohn. On donne
des applications a la formule de Feynman-Kac-Itô pour des potentiels
d’oscillateurs anharmoniques.

~~~. 1. INTRODUCTION

In this paper, as announced in Ref. (5), we derive a Cameron-Martin
formula for Feynman integrals in non-relativistic quantum mechanics
(Theorem 3 C). A special case of this formula explains how Feynman
integrals transform under linear changes of integration variables. Here
the transformation law is very similar to the well-known Cameron-Martin
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116 D. ELWORTHY AND A. TRUMAN

formula for Wiener integrals [3 ]. The more general result which we prove
here involves Morse (or Maslov) indices [70] and shows clearly the connec-
tion between the Feynman-Hibbs definition of-the path integral and Albe-
verio and Hoegh-Krohn’s Fresnel integrals relative to non-singular qua-
dratic forms [7] ] [7].
Our simple derivation depends rather heavily upon the use of oscillatory

integrals introduced by Hormander [9 ]. This treatment seems to make
the proofs technically easy because it is equivalent to working with the
physicists’ convention « exp (± i ~) = 0 » [6 ]. It is known that this conven-
tion gives physically correct answers in a wide variety of circumstances
(see Ref. (6)). Thus, oscillatory integrals seem natural in this context [8 ].
We give a simple application of the Cameron-Martin formula to esta-

blishing the Feynman-Kac-Ito -formula for a class of anharmonic oscillator
potentials by proving the L2-convergence of Feynman integrals (see Sec-
tions 4 A, B, C). Applications to quasiclassical expansions were already
given in Refs. (5 b) and (11). Our Cameron-Martin result also highlights
a potential difficulty in defining Feynman integrals by general approxima-
tion schemes as we explain in Corollary 3 C. We also discuss other connec-
tions with the Wiener integral such as the transformation properties under
translations of the path-space (see Sections 5 A, B). Again the proofs here
are not involved if one works with oscillatory integrals.

2. FINITE DIMENSIONAL INTEGRALS

A. Oscillatory Integrals.

Let B : ~ -~ f~m be linear and self-adjoint with respect to ~ -, -),
the Euclidean inner product on Rm, so that B* = B. Set T = 1 + B. Sup-
pose 03C6 E (Rm), the space of rapidly decreasing functions 03C6: Rm ~ C
and take 8 &#x3E; 0. For a measurable E into a complex Banach

space E set n ~ . 1

where ’ is chosen so that tor Ke (z) &#x3E;_ U it is continuous ana equals 1 at .
If = lim l~03C6(f) exists for all 03C6 v E with = 1 and o has a

value independent we say that f ~ B(Rm ; E) and o we write

where denotes the « oscillatory» integral. We are usually concerned
with E = C and will any way assume that E is separable.

Annales de l’Institut Henri Poincare - Physique theorique



117FEYNMAN MAPS, CAMERON-MARTIN FORMULAE

B A Simple Cameron-Martin Formula.

By a measure of bounded variation we will mean one of the form
~ = h( ’ ) 1111, where h is a complex-valued function with = 1, all x,

and where is a finite (positive) measure. = 1d | | ~ O.

DEFINITION. - For a Hilbert space H, let denote the space of
such measures on H, equipped with its Borel 6 field, and let ~(H) denote
the space of their Fourier transforms : if f E (H) then f : H -~ C and

for some f E U(H), (, ) being the Hilbert space inner product.
It is not easy to characterise the functions in ~ (H) even for H = ~m.

However, since each  E is a finite, linear, complex combination of
positive measures, is a C-linear combination of functions
of positive type [see Ref. (12 b) ]. In particular, it is bounded and uniformly
continuous on H. For infinite dimensional H there is the extra necessary
condition that it must be continuous in the Sazanov topology [see Ref. (14) ].
Since the Fourier transform maps ~(f~m) into itself, we have the trivial
result that ~(~) 
Our first formula is a slight extension of the well-known basis for the

principle of stationary phase. [See Ref. (9), p. 145 ]. A proof is given here
to show how it is a finite dimensional « Cameron-Martin formula », as
well as showing where the extra phase factor arises. The index, Ind T,
of a self-adjoint linear automorphism T : [Rm ~ [Rm is the dimension of
the negative eigenspace. We need the following lemma.

LEMMA 2B. - Let T : IRm ~ ~m be a self-adjoint linear isomorphism.
Then, for h = fg, f E ~(f~m), g E and p &#x3E; 0,

’" 

being inverse Fourier transform.

Proof 2014 First suppose g = 1 E 

Vol. 41, n° 2-1984.



118 D. ELWORTHY AND A. TRUMAN

i ) If T is positive definite by a simple change of scale the above is equi-
valent to

where This is a standard result [see e. g. Albeverio and

Hoegh-Krohn ].
ii) The formula follows for T negative definite, Ind T = m, by replacing p

by - p and observing that for p &#x3E; 0

iii) For arbitrary T write ~m as the product of the positive and nega-
tive eigenspaces, [R~ = E + x E - . Then write T as T = T + x T -, for
T + : E + --~ E + positive definite, T - : E- ~ E - negative definite. The
formula now follows from (i ) and (ii) above for/: E + x E - ~ ~ of the
formf(u, v) = E It therefore follows for f a linear com-
bination of such functions i. e. forf E Y(E +) (x) ~(E’). Since ~(E + ) (8) 
is dense in ~(~m), as can be seen by using Hermite polynomials, the result
now follows by a simple continuity argument.
We now prove the result for h = fg, f E ~(0~) and general g E ~(~).

Let Irs : [R’" -~ p~m be a linear operator with r eigenvalues ( -1) and s
eigenvalues ( + 1), r+s=m and p &#x3E; 0. Then we show that

’" 

being Fourier transform. For substituting g(y) = exp { i ( y, p~} d g(p)
and using Fubini’s theorem, gives _ 

’ 

Since 1~ = 10m = I, we see that

Annales de Henri Physique - theorique -



119FEYNMAN MAPS, CAMERON-MARTIN FORMULAE

But f E ~(~) and so we can use the above to evaluate the bracketed term
giving after a little calculation

A simple change of scale then gives finally for h = fg, f E ~(~), g E 
T as above and p &#x3E; 0

as required.

PROPOSITION 2 B. - Suppose T = 1 + B is a self-adjoint linear bijec-
tion T : Rm ~ Rm. Then F(Rm) c C) and for g E 

Proof 2014 Define f in the last lemma &#x3E; E ~(~).
Then we obtain

Since = = 1, letting ~ ~ 0 proves the proposition for any

C Integrable Functions.

We will not need this section later. It shows that there is a wide class
of functions in C) and is essentially a simple special case from Hor-
mander [Ref. (9) ].

Let T : Rm ~ Rm be a linear isomorphism and X : Rm ~ R a func-

Vol. 41, n° 2-1984.



120 D. ELWORTHY AND A. TRUMAN

tion with compact support which is identically 1 near the origin. Define
a : ~m ~ ~m and c: fR~ -~ C by

and c = x + i div a, ~ ~ being Euclidean norm.
Let L denote the differential operator on functions f : ~m ~ C

given by

Then

DEFINITION. - For real numbers n, 03BB with 0  03BB ~ 1 we will say that
a C is in if for all a = there
is a constant Ca such that

where + + ... + 
For example if f is and satisfies/(~) = tnf(x), for large II and t &#x3E; 0

then f E Si . 
’

Hormander shows that S1(~m) is a Frechet space under the topology
defined by taking as seminorms the best constants Ca. The space increases
as n increases and ~, decreases. and then the pro-
duct ( fg) is in S~+n’(~m). The details of this and of the proof of the following
proposition of Hormander can be extracted from [9 ]. The example after-
wards, worked from first principles, may be helpful. (The bound on k is
not best possible.)

PROPOSITION 2C. - If T =1 + B is an isomorphism and 0  ~, then

In fact, if f ~Sn03BB(Rm), then for k &#x3E; (n + m + 1)/03BB

Annales de l’Institut Henri Physique ’ theorique -



121FEYNMAN MAPS, CAMERON-MARTIN FORMULAE

Proof 2014 Let 03C6 E with = 1 and take [; &#x3E; 0. For f E 
Then

Now fE E S~+ 1(~m) so Also, if n + 1 - k~,  - m,
then with a continuous inclusion. Therefore, if
~,k &#x3E; n + 1 + m, r. h. s. of (*) determines a continuous function 
However,.!:: ~ f in S1 + 1 as ~ ~ 0. Thus, with p = 1,

EXAMPLE 2 C. - Take m = 1 and f(x) = x2. Integrating by parts, using
cjJ E ~([R) and ~(0) = 1, gives .

Hence we see that while 

does not exist as an improper (Riemann or Lebesgue) integral.

D . Analyticity.

One approach to Feynman integration is by analytic continuation to
Gaussian integrals, although for this our linear map T will need to be
positive. First note that we can, in exactly the same way, define oscillatory
integrals ~~( f ), p E [R, by

Vol. 41, n° 2-1984.



122 D. ELWORTHY AND A. TRUMAN

/) ~ 0 and

When T is positive definite and f has at most polynomial growth we can
define for im z  0 by

PROPOSITION 2 D. - Suppose T is positive definite and 
some 0  ~,  1 or f E Then is analytic in im z  0 and
continuous on im z  0.

Proof 2014 The is known : it follows from the analogue
of Lemma [2 B ]. Assume therefore that 
For X and a : ~ as in § C set

and define the differential operator LZ by

Then for

Consequently as in Proposition 2 C, for im z  0, 0

for sufficiently large k, independent of z.
Since r. h. s. is analytic on im z  0 and continuous on im z  0, z 7~ 0,

the result follows after some standard manipulation for the case z = 0. D

l 
_

The result is standard for z = - i 6, r &#x3E; 0, and if/M then f ~ S~1(R)
and so we can apply the proposition (cf. Ref. ( 18)).

Poincaré - Physique théorique



123FEYNMAN MAPS, CAMERON-MARTIN FORMULAE

3. FEYNMAN MAPS

A. Hilbert Space of Paths.

We consider here a quantum mechanical system with Hamiltonian
H= 20142~A+V,A being the Laplacian on V some real-valued poten-
tial on whose precise properties we specify later. For simplicity we take
units so that Planck’s constant h is equal to 27c and particle mass ~ is unity.

DEFINITION. - The Hilbert space of paths H is the space of continuous
functions y : [o, t ] ~ satisfying y(t) = 0, with y(r) = (y 1(i), y2(’r), ..., /(r)),

i dY l 2
-r E [0, y absolutely continuous, 2014 

E L 2 [0, t], for i = 1,2, ... , d.

H is then a real separable Hilbert space with inner product ( , )

(,) being the Euclidean inner product in ~d.
Let 7T = {0 = to  tl  t2 ...  ~(7r)+i = t ~ be a finite partition of

[0, ~ ]. Define the piecewise linear approximation p~ by

LEMMA 3 A. - P1t: H -~ H is a projection and P1t ~ 1 as 5(7r) -~ 0,
where 03B4(03C0) = 

= 

max 
m( 

I. .
j = 0, 1, 2,...,m(03C0) 

-" -’’

Proof - See for example Ref. ( 19). D
We shall require the complex Gaussian H ~ C defined by

For the complex-valued functional f : H ~ C we now define the Feyn-
man integral 

DEFINITION. - We define ~ according to

Then, if lim exists we say that f is Fz-integrable and write
-+0

Vol. 41, n° 2-1984.



124 D. ELWORTHY AND A. TRUMAN

When z = 1, ffz is just the Feynman integral of Feynman and Hibbs
suitably abstracted for suitable integrands [7]. When z== 2014f, ffZ reduces
to the Wiener integral. This explains why we write ffl as ~ as E.

B. The Index.

If L E L(H, H) is compact and self-adjoint it has a complete set of eigen-
vectors, with eigenvalues of finite multiplicity and with 0 as their only
possible limit point. It follows that if T = (1 + L) is invertible then the
index of T,

Ind T = * of - ve eigenvalues of T counted according to multiplicity,
is the number of eigenvalues of L less than -1, taking multiplicities into
account. In particular Ind T  oo . In general the index is defined to be
the maximum dimension of those subspaces on which T is negative definite.
We require the lemma :

LEMMA 3 B. - For any net of orthogonal projections
strongly convergent to the identity and for any compact self-adjoint L

Proo_ f : 2014 Suppose Ind ( 1 + L) = p and ~,1, ~,2, ... , ~,p are eigenvalues of L
each less than -1, with corresponding orthonormal eigenvectors e 1,

e2, ... , ep in H. Then

and so lim «1 and in particular for sufficiently large x

But (( 1 + P03B1LP03B1)P03B1ei, P03B1ei) = ((1 + L)P03B1ei, P03B1ei) and therefore {P03B1e1, ..., P03B1ep}
lie in a subspace in which ( 1 + P03B1LP03B1) is negative definite. Since P03B1e1, ..., P03B1ep
are linearly independent for sufficiently large oc, lim 
this gives 

ex

On the other hand if Ka is the subspace spanned by the negative eigen-
value eigenfunctions of (1 + then Ka lies in PaR and so if v E Ka,
with 1~ 0,

Thus for all 0

C The Cameron-Martin Formula.

We now give our most useful result.

Annales de l’Institut Poincaré - Physique theorique
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THEOREM 3 C. - Let L : H -~ H be trace-class and self-adjoint with
( 1 + L) : H ~ H a bij ection. Let g : H -~ C be defined by

Define Ind (1 + L) as above. Then g is F-integrable and

det being the Fredholm determinant.

Proof. - The proof is technically simple but involves a certain amount
of computation. To avoid a vast number of subscripts and superscripts,
we give the proof here for the case d = 1. We write 03B3j = for the partition
7T =  ~  ~2 ...  ~)+i = ~Ay,= y j + 1 - ~-+1-~.
{~ denotes the orthonormal basis of 

G being the reproducing kernel G(6, 
s  t~ ,

= s - t; + 1, s - s &#x3E; For all ’}’EH1, we have

L~ -’

~0 being the oscillatory integral.
The above equation and Proposition 2 B now give after a little calculation

det being the trace-class continuous Fredholm determinant. Since Pn  1

as ~(vc) ~ 0 and since PnLPn  L in trace-norm as ~(vc) -~ 0, the final

Vol. 41, n° 2-1984.



126 D. ELWORTHY AND A. TRUMAN

result follows from Lemmas 3 A and 3 B by letting ~(~c) ~ 0 in the above
identity. D
To see that the above result is just an extended Cameron-Martin for-

mula, consider the case in which (I+L»O, (1 + L) = (1 + K)~, K : H --+ H

being self-adjoint. the above yields, for hE(H),

This is just a Cameron-Martin formula for the Feynman integral [19 ].
We have extended the above result to include the possibility that (1 + L)

has negative eigenvalues. This gives rise to the Morse or Maslov indices
in the second factor of the above expression for ~ (g). The first factor is of
course just a Jacobian determinant. The third term is precisely a Fresnel
integral relative to a non-singular quadratic form [1 ].

In the literature other families of projections are often used to define
the Feynman integral.

Let P be a family of projections on H strongly convergent to 1 e. g. f?lJ

might be the sequence of projections obtained by using truncated Fourier
series for the paths y E H. Let ff f!P be the Feynman integral obtained by
replacing { by P in our definition. Then a consequence of the results
of the last section and the above method of proof is our next corollary.

COROLLARY 3 C. - Lct(l+L):H - H be a bijection, for self-adjoint,

f E (H). Then 2 

whenever the limit exists.

Proof 2014 Let { ~ }~ 1 be the real eigenvalues of the self-adjoint Hilbert-
Schmidt L arranged in ascending order. The regularised Fredholm-Carl-
man determinant det2 is defined by

This infinite product converges for Hilbert-Schmidt L since

(1 - = 1 + O(Àf) and  oo for Hilbert-Schmidt L. Moreover

trivially for a projection 

Annales de l’Institut Henri Poincare - Physique " theorique ’
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The final result follows by referring to the last proof using the fact that
det2 (1 + . ) is Hilbert-Schmidt continuous [16]. 0 -

In the last corollary it should be borne in mind that if L is not trace-class
by varying ~ any non zero value can be obtained for the third factor.
Thus one cannot be too cavalier in evaluating Feynman integrals with
different families of projections. Note that, more generally, we have shown
that if L is compact and self-adjoint then ~ ~(g) exists if and only if

lim det ( 1 + PLP) exists and in particular if L is Hilbert-Schmidt then Fp(g)
exists and is independent of P if and only if L is trace-class, see also Blatt-
ner [2 ].

4. APPLICATION TO ANHARMONIC OSCILLATORS

We show in this section how the Feynman-Kac-Itô formula for anhar-
monic oscillator potentials can be deduced from the above. Namely we
shall prove :

THEOREM 4. - The solution of the Schrodinger equation

with Cauchy data ~r(x, 0) = ~(x) E ff n L2((~d), for the real anharmonic
potential V(x) = 2-1x03A92x + Vo(x), Q a positive definite qua-
dratic form, is given by the Feynman integral

A. The Evaluation of a Feynman Integral.

We shall be considering the anharmonic oscillator potential

where Vo E and. Q2. is a positive definite quadratic form on (~d.
We define ~ ~d the real symmetric positive definite operator with
the property

( , ~ being the Euclidean inner product on (~d.

Vol. 41, n° 2-1984.



128 D. ELWORTHY AND A. TRUMAN

Corresponding to Q define L : H -~ H by

d ds (Ly)(s) 1.=0 = 0, (Ly)(t ) 
= 0, for all y E H, so that explicitly for s E [0, t ]

Observe that for (, ) the Hilbert space inner product and for 03B4, y E H

showing that L is self adj oint with respect to the H inner product. Using
the condition ~ ds ~ L Y~~ ~ s Is= 0 - 0, a simple but tedious calculation gives
for t = n 

, 03A9j any eigenvalue of SZ,2

Moreover the following lemma is valid.

LEMMA 4 A. - The self-adjoint L : H -~ H is trace-class. If

S2~ an eigenvalue of Q

[- ] being the integer part, 03A91, Q2, ..., S2d being the eigenvalues of Q
repeated according to multiplicity. And finally

Proof There is no loss of generality if we assume that Q is diagonal.
We do this to simplify the algebra. We look for eigenvalues of L in the

d2
form ( -p2) so that Ly= -p2y. Since 2 (Ly)(s) = SZ2y(s), this leads to

ds

Annales de l’Institut Henri Poincare - Physique theorique
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y(s)=(/(~ ~(s), ...,/(s)), where /(s)=A,sin for constants
A~, s~ f = 1, 2, ..., d. Substituting these into the explicit expression for (Ly)

above gives that necessarily = + -)~ + -)7r; ~,
ni E Z. Hence the only possible p are of the form + - )7r, ni E Z.

Using the fact that (n + 1" )  00, it follows that L: H ~ H is

trace-class. For the eigenvalues p=03A9it/(ni + 1 2)03C0 to contribute to the
index of (1 +L) we require p &#x3E; 1 and so ni=0, 1, 2, ..., -;- - 2" ’ [ ]

being integer part, and if the eigenvalues 03A9i arc distinct the corresponding

(non-degenerate) eigenfunction is ( 0,0, ...,0, cos [( ~ + - )s7r/~ J 0, ...,0 )
f~ entry being non-zero. The case of non-distinct ~ is dealt with similarly.
To complete the proof we merely observe that

COROLLARY 4 A. - Let 03C6 E (Rd). Then

where Ho = - 2’~ + 

Proof. - The proof is no more complicated for d &#x3E; 1 than it is for d= 1.
To avoid having to use an elaborate notation we give here the proof in
the case ~=1. Let G(7, ’L) = ~ - be the reproducing kernel and define

b ~ H by b(x, 03B1(.) = 03B1G(0,.) - x 03A92 t0 G(s,.)ds, for Then, for

= f exp E (R),

Vol. 41, n° 2-1984.
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A straight-forward application of the last lemma and Theorem 3C gives

and after a tedious calculation we obtain

1

where ’ in [Q - 1 tan (SZt ) ] 2 the same " branch of square " root is being § taken.
Hence, using the above " notation,

We now recognise r. h. s. as being equal to exp for 03C6 E (R).
This completes the proof of the lemma. D

B The Proof of the Feynman-Kac-Itô Formula.

The proof here is based on the second proof given in Simon [see Ref. (15),
p. 50] for the diffusion equation. It avoids the lengthy computations of the
proof given in Ref. ( 1 ) (see also Refs. ( 13), ( 17)).

First some notation. For x E I~d and t &#x3E; 0 let Ht be the space of paths
which we have denoted by H and let be the Feynman integral

where y ~ -~ g(y) is a suitable function of paths on M" and (x + y) refers
to the path + y(s). Also, for 0  M ~ ~ let ,uu ~ Vo, jc }, Vo, x ~

Annales de Henri Poincare - Physique " theorique "
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be the measures on Ht whose Fourier transforms when eva-
luated at y E Ht are vo(x + y(u)),

respectively. We shall often write

and

and give the corresponding meaning. We shall find
it convenient to use the notation for « d,u(y) » in integrals.

If { : a ~ u ~ b} is a family in .A(H), we shall let b 03BBudu denote the
measure on H given by *-

whenever it exists.

Then, since for any continuous path y

we have, by Fubini’s theorem,

where 5o is the Dirac measure at Since (5, Ly)= 2014 r ~ b(s), 
for all 03B4, 03B3 ~ Ht, we have

Therefore, if we set

the Cameron-Martin formula, Theorem 3 C, assures us that !R~ -~ C

the subscript t reminds us of the t dependence.

Vol. 41, n° 2-1984.



132 D. ELWORTHY AND A. TRUMAN

Applying (b) we obtain

where

and

We can now use the Cameron-Martin formula in the other direction to get

Let 03C01 and 71:2 be partitions of [0, u and [0, t - u] respectively and let 03C0
be the partition of [o, t whose partition points are those of 03C01 up to time u
and translates by u of those of ~c2 thereafter. Then by Fubini’s theorem, if

where y E and y 1 E Hu are the integration variables. Assume now that
the right hand limits are strongly convergent in L2(~d). Then r. h. s. converges
to Hence, assuming the L2-convergence of
Feynman integrals, we have proved that as defined in Eq (d ) satisfies

It is now a simple matter to show that the iterative ’ solution of this inte-
gral equation in L 2(d) is just the Dyson series for exp (- 

Annales de l’Institut Henri Poincaré - Physique " theorique "
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where H = - 2-10x + 2-1x03A92x + Vo(x) = (Ho + V). (See Ref. (12b)).
The desired L2-convergence of Feynman integrals is established in the

next section.

C L2-convergence of Feynman Integrals.

In this section we establish one important inequality useful in discussing
the L2-convergence of Feynman path integrals. For the partition

denote the corresponding Feynman path-integral over paths x ending at b
by ~ { ~-: x(t) = b }. Then we shall prove :

where the anharmonic oscillator potential 
A : ~d ~ ~d being linear and symmetric.

Proof 2014 Let Fm(b) be the given path integral : we must compute ~Fm~L2.
Take {0 = to  t1  ...  tm = t } to define ~. Set Okt = tk+ 1 - tk,

with 1, 2, .... Then, if

Vol. 41, n° 2-1984.
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Then

Note that

Then

where

Thus,

Annales de Henri Poincaré - Physique " théorique "
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where is the function

Hence B is the Fourier transform (with strange conventions) of 
evaluated at ( - 
Now, if " denotes Fourier transform, for sufficiently small A~

by the Plancherel theorem
Thus,

Vol. 41, n° 2-1984.
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Now, if al, ... , ak are the eigenvalues of A, for small enough 

and so the result follows. D
When A = for positive definite Q2 as above, the results of the last sec-

tion ensure the L2-convergence of Feynman sums for initial data 

and times + 2 ~/SZ~, Qj the eigenvalues of S2, n E ~.
COROLLARY 4 C. - For the above anharmonic oscillator potentials,

at all save a discrete series of times, the Feynman sums converge in L2
for any ~o E L2 (i. e. we have strong convergence.)

Proof Uniform boundedness theorem [see Ref. (4), p. 60] ] and the
fact that we have L2-convergence, if ~(f~d), at times

5. SOME CONNECTIONS
WITH THE WIENER INTEGRALS

In this section we spell out some of the connections between the Feynman
maps and the Wiener integral.

Annales de l’lnstitut Henri Poincaré - Physique theorique
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A. Analytic continuation.

Let (~d be the one-point compactification of Identifying a typical

path y : [0, t ] ~ Rd U { ~} (y(t ) = 0), with an element of r = 
.,

in the weak product topology, gives, according to Tychonoff’s theorem, a
compact Hausforff model for the path-space r (see Ref. (12 b), p.2??]. C(r)
denotes the space of continuous functions defined on r. When f E C(r)
is such that E ff (H), we say that f E Co(r).

LEMMA 5 A. - Co(r) is dense in C(F).

Proof: 2014 The point here is that Co(r) is a subalgebra of C(F) containing 1.
the identity, which is the Fourier transform of ~o the Dirac measure concen-
trated at 0 E H. Co(r) is closed under multiplication because is closed
under convolution * and ,u f$ _ Clearly /eCo(r) =&#x3E; /eCo(r),
- being complex conjugate with

for each Borel A c H. Finally, Co(r) separates points of r, because y 7~ / ~
y,y’ E r ==&#x3E; E [o, t) such that y’(6) and so 3 a with

giving ~= eiaY~(~) Y~2~6~ for y ~ Q
By inspection, 0, , then 0 and 0 so for

" .. " 0 , using = 1,

It follows easily from this that for complex-valued f E Co(r)

Corresponding to the unique continuous extension E of F- i to C(r), accor-
ding to the Riesz-Markov theorem, 3 a unique regular Borel measure 
on r with .

Since = i (/ 0 for ~~ Wiener measure supported

on Co [0, ~ ], we see that, in fact,

Vol. 41, n° 2-1984.
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Hence, for f E Co(r), we have proved the infinite dimensional Parseval
identity

which by the denseness ofCo(r) is sufficient to determine We summarize
our results in the next proposition.

PROPOSITION 5 A. - Let /e~(H), the Banach algebra of Fourier
transforms of measures of bounded absolute variation on H, with ~ 110

defined by /(y)= y) } Then

is a regular analytic function of s in ims  0, continuous in 0. Further,
if f : Co[0~] ~ C is a continuous bounded function, 
then the Feynman integral ~ and the Wiener integral satisfy

Interpolation gives for s &#x3E; 0

where

Proof 2014 The first part of the theorem follows from

the dominated convergence theorem and Morera’s theorem. The second
part of the theorem follows from Hadamard’s three line theorem by consi-

TCtZ

dering ~(/), for fixed f as above, for s = e 2 . [See Ref. (12 b),
p. 33.] ] 0

B Wick’s Theorem and the Translation Formula.

In this section by exploiting the similarities with the Wiener integral
we extend the class of ~ -integrable functionals. We shall conclude this
section with a version of Wick’s theorem. We begin with a proposition

l’Institut Henri Poincaré - Physique theorique
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which represents the simplest version of a translation formula. (See also
Refs. (1), (18), (19)).

PROPOSITION 5 B. 2014 For fixed define ~: H -+ C by + ~

Then, if exp{i s(a,.)}ga(.) is Fs-integrable and

Proof. - Define /: H ~ C by + i s(a, 03B3)ga(03B3), for fixed

~ E H. Then for a partition 7r a simple computation gives

Since and we

obtain

Hence,

Vol. 41, n° 2-1984.
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m(~)

Writing ~(p) - exp i i I  p~, } ~(qo, ... , qm(n))dq and

using Lemma 2B gives 
°

And so, since = = 1, using dominated convergence for  0,

The final result follows letting b(~c) ~ 0 so that Pn  1. D

COROLLARY. - Let E denote expectation with respect to the Wiener
measure Then, for fixed a E H, with aj of bounded absolute variation,
a = (a 1, ..., ad), each’ = 1, 2, ... , d,

when g : Co [o, t ] -~ C is a continuous bounded function.

Proof - This is a simple application of the dominated convergence
theorem, u~.’:~ the facts that, if a~ is of bounded absolute variation,
7= 1~ ..-.~

while y) ~ (a, y) a. e. w. r. t. satisfying above. D
We conclude with a final result. (See also Ref. (18)).

EXAMPLE 5 B. - Suppose f E ~ (H) and ~31, with

Annales de Henri Poincare - Physique " theorique "
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Then, if im z ~ 0 n »

where ... , /3k ; z) : H -~ C is the Hermite polynomial

For H = [R" and f E L2(~n) with im z  0 the result is immediate

from the Plancherel theorem and the definition of Hk. It follows for H ===[?"

by continuity in z and then by mollifying f’ For infinite dimensional H it
then follows by dominated convergence.
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