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About some theorems by L. P. 0160il’nikov

C. TRESSER

Equipe de Mecanique Statistique, L. A. 190,
Pare Valrose, 06034 Nice Cedex, France

Ann. Inst. Henri Poincaré,

Vol. 40, n° 4, 1984, Physique , theorique ’

ABSTRACT. - Some theorems by L. P. Sil’nikov, which describe the
dynamics in the neighbourhood of homoclinic orbits, bi-asymptotic to
a saddle-focus, and initially proved for real analytic vector fields, are
collected here. Recent results in dynamical systems theory allow us to
precise some of the conclusions, and to generalize these theorems to the
C 1 ° 1 class. Certain heteroclinic loops involving a saddle-focus are also
considered.

RESUME. 2014 On rassemble ici quelques theoremes de L. P. Sil’nikov qui
decrivent la dynamique dans Ie voisinage d’une orbite homo cline, bi-

asymptotique a une selle-foyer. Des resultats recents en theorie des systemes
dynamiques nous permettent de preciser les conclusions, et de generaliser

. a la classe C1,1, des theoremes initialement demontres pour des champs
de vecteur analytiques reels. On considere aussi Ie cas de certaines boucles
heteroclines faisant intervenir une selle-foyer.

I INTRODUCTION

A local C" linearization theorem by P. Hartman [21] ] (improved notably
in [8 ]) and hyperbolicity criteria [2~] ] [34] which apply in particular to
the non-wandering set of a horseshoe [~7] ] allowed us to improve (at
least in dimension 3) a theorem [43] [46] obtained by L. P. 0160il’nikov
for certain real analytic vector fields. More precisely, we obtained the
following [52 ] :

l’Institut Henri Poincaré - Physique theorique - Vol. 40, 0246-0211
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442 C. TRESSER

THEOREM A. Consider the system:

where P, Q, Rare C1,1 functions which vanish, as well as their first order
partial derivatives, at O. Suppose that there exists a homoclinic orbit 
biasymptotic to O, which remains at finite distance from any other singu-
larity. Suppose at least that:

Then, if 8 is a first return map correctly defined on a well chosen piece of
surface one gets the following conclusions:

a) for each positive integer m, there exists a map:

which is a 1 homeomorphism of Em onto ’ 0 = such that :

b) the set Om is hyperbolic,
c) for each real a with 1 a 03BB/03C1, there exists a map:

which is a homeomorphism of E*~°‘ 
’ 

onto ’ = h*,a(~*’°‘) such that:

We have used the notations :

These sets are natural domain for a shift map, denoted cr in both cases,
and defined as usual by :

REMARK 1. 2014 In this theorem, c) implies a) ; we isolated a) since a) and b)
together describe well known hyperbolic sets.

REMARK. One of the consequences of a) or c) is that any neighbour-
hood of ro contains infinitely many periodic orbits of saddle type : this
was the main conclusion of [43 ].

In section II of the present paper, we recall the proof of theorem A,
since all other results can be obtained by small modifications of this proof.

de l’Institut Henri Poincaré - Physique théorique



443ABOUT SOME THEOREMS BY L. P. SIL’NIKOV

Section III is devoted to other kinds of vectors fields involving homo-
clinic orbits biasymptotic to saddle-foci.

In section IV, we describe consequences of small perturbations on the
flows examined in sections I to III. In section V, we give some results
about certain heteroclinic loops involving at least one saddle-focus.
A large part of an unpublished version of this paper was devoted to

applications. Since many references are now available on this matter,
we shall only make brief comments, mainly bibliographical ones, in the
last section.
The author acknowledges the hospitality of many institutions : The

Summer School of Les Houches (July 1981), Courant Institute, Stevens
Institute of Technology and the I. M. A. (Minneapolis). The author has
benefited there from many discussions, notably with A. Chenciner, P. Collet,
J. Hale, M. Herman, S. Newhouse, J. Palis and R. F. Williams. Special
thanks are due to the co-authors of previous papers on related topics :
A. Arneodo, P. Coullet, J. Peyraud and E. Spiegel.

II PROOF OF THEOREM A [52]

The proof will consist in four steps. The geometric construction in steps
2 and 3 follows [~2] ] [42 ]- [46 ]. Most of the proof is indeed quite standard
after a glance at Figure 1. Let us remark that in three dimensions, we do
not need the genericity hypothesis formulated in [46] ] for the case of a
dimension at least equal to 3.

STEP 1.

By [27] (or [8 ]), the flow described by (1) is C1-conjugate to its linear
part in some neighbourhood U of O. Extending the change of variables
which allows this conjugacy, one gets a flow which is globally C 1 and linear
in U. We shall continue to denote the coordinates by (x, y, z).

STEP 2.

In U, the local stable manifold Ws1oc of 0 is given by z=O, and the local
unstable manifold by x= y=O; we will suppose (for definiteness) that it
is the z ~ 0 part of which belongs to the homoclinic orbit roo We shall
denote by IIo the intersection of U with the 
and by Qo = (xo, 0, 0) one of the points of ro n n Ho.
The linear flow in U induces a first return map Po on 03A00, at least for

initial conditions such that I z is small enough. One then chooses a point
A 1 in Ho, with z 1 &#x3E; 0, such that with A i = Po(A1), Qo is inside the ortho-

gonal projection of on On the vertical line through A 1, we

Vol. 40, n° 4-1984.



444 C. TRESSER

define a sequence {Ai}~i=0 of points with z = This gives
a sequence {A’i}~i=1 with A’i = Po(Ai) on the vertical line through Ai.
We shall denote by 03C00 the interior of the union (over i 1) of the rec-
tangles in IIo. For a correctly chosen h &#x3E; 0, if

03A91 = (0, 0, h) is a point of Wu1oc in U, and II1 the plane orthogonal to 
at 521, one can define a mapping 0o : 03C0 ~ 03A01, which associates to M E 03C00,
the first intersection M of II1 with the orbit issued from M. We then define
~c, = The expression of 0n reads :

Let us remark that 03C01 is the complementary set of a logarithmic spiral
in a snail-shaped quasi-disk (Figure 1) and that the particular choice we
have made for 7~0 allows 8o to be a bijection.

Annales de l’Institut Henri Poincaré - Physique theorique
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STEP 3.

The global part of the flow (out of U), induces a first intersection map
0i : 03C01 --+ IIo. If one identifies II 1 and IIo so that 03A91 and Qo coincide,
this map appears as a small perturbation of a linear non singular map 
since ro is supposed to be bounded away from any singularity out of U
(see for instance [33D. One can force (}1 to be as close as one wants from
03B81L in the C1-topology by choosing U small enough. The product
() = ~o -~ no is the first return map we wanted to construct :
let us denote that the very existence of a singularity at 0 prevents the possi-
bility of defining a global section for the flow. It is however usual, specially
when one wants to exhibit a horseshoe effect, to consider a mapping from
a rectangle to a larger surface which contains it.

STEP 4.

To get statements a) and b) of theorem A, we shall invoque the horse-
shoe theorem, as it is presented for instance in [31 ], and the remark that
theorem (3.1) of [34] allows us to avoid the particular condition of theo-
rem (3 . 3) of [31 ], and thus gives the hyperbolicity of the non-wandering
set of the horseshoe map, and its well known dynamics, under the sole
hypotheses of theorem (3 . 2) in [31 ] (essentially the existence of contracting
and expanding invariant sector bundles). Statement c) of theorem A needs
a straightforward rewording of the horseshoe theorem: the coding by X* ex
comes evidently from the spiral structure of More precisely, one
associates the symbols + i and - i to the two horizontal strips of the
rectangle Ri, whose image under 0 cuts vertically the rectangles Rk for

i
k &#x3E; - ; these vertical images are as usual also associated to the symbols

a

:t i. To get the coding by Em for statements a) and b), one isolates m conti-
guous rectangles i = k, ..., k + m, close enough to and one

chooses one strip per rectangle ( or one isolates E m + 2 1 rectangles and
chooses two strips per rectangle, and only one for one of them if m is odd).
To check the hypotheses of the horseshoe theorems and conclude the

proof, we use the fact that 0 is arbitrarily C1-close to 03B8L = (}lL 0 So- BL is
given by :

Vol. 40, n° 4-1984.
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where ad - 0, since 81L is non singular. One then remarks that one
can find (x, z) pairs such that T8L has zero-trace : this however cannot
occur for « interesting » points. Indeed, if U is small enough, the intersection

condition along two vertical strips, of 8 R with R (n k 03B1), warrants
the good behavior under direct (resp. inverse) iteration of contracting
(resp. expanding) angular sectors. -

REMARK. This proof can be readily adapted to piecewise C 1 ° 1 vector
fields which are only Lipschitz-continuous on smooth enough surfaces
transversal to roo Examples of this kind are given by the piecewise linear
vector fields considered in [5 ] and [7 ]. To adapt the proof it is enough
to decompose 81 in p + 1 mappings: 03B81 = 6i,p+i 0 91,p ° ... ° (}1,1, where
p is the number of bad surfaces crossed by roo Jack Hale informed me,
before publication, of an independent adaptation of Sil’nikov theorem
to piecewise linear cases [16 ].

III. OTHER HOMO CLINIC CASES
INVOLVING A SADDLE-FOCUS

The most direct consequence of theorem A is that it applies as well
for equations of type ( 1 ) but with : 

.

since one has only to reverse time to get the hypotheses 0 theorem A.
On the contrary, when :

one has :

THEOREM B. - Under the hypotheses of Theorem A, except that (4)
replaces (2), there is no periodic orbit in a neighbourhood of 03A00 if it is chosen
small enough.

Remark. 2014 For real analytic vector fields, a generalization of this result
can be found in [44 ].

Proo, f. 2014 One constructs a map () like in steps 1 to 3 of the proof theorem A.
It then remains only to check that the image of a point of large
enough, is either in or in some R~ with m’ &#x3E; m. II

Figure 2 represents and 0(7ro) under the hypotheses of theorems
A and B.
We shall now consider differential equations like (1), under the supple-

mentary hypothesis that they are invariant under the change of variables

l’Institut Henri Poincaré - Physique theorique
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(x, y, z) ( - x, - y, - z). In other words, P, Q, R, are supposed to
be odd functions, or there is a central symmetry. Then, for each orbit,
there are only two possibilities :
either the orbit is invariant under the central symmetry,
2014 or there exists a pair of orbits which are exchanged by the central

symmetry.
In particular, homoclinic orbits biasymptotic to 0 can only occur

by pairs ro - Clearly, such symmetric systems can fulfil the hypo-
theses of theorems A or B and the conclusions of these theorems remain
relevant if one is only interested in the neighbourhood of the orbit ro+
or It is however interesting to consider what occurs in the neighbour-
hood of the « figure eight » ro-. This yields theorems AS and BS
below. The fcrmulation of these theorems and of theorem C in section V
will be easier by the following notations.

Let

and

Vol. 40, n° 4-1984.



448 c. TRESSER

We shall denote by the subset constituted by those sequences
~ such that, for each i :

where a &#x3E; 1 is a real number.

Also, will be the subset of constituted by those sequences
S = such that, for each ~ 0 :

where ~3  1 is a positive real number.
The main advantage of introducing these notations is that the coding

will be somehow « natural » : for instance, all symbols beginning with a
in Z, will correspond to a single horseshoe with 2n branches

in theorems AS and C.

THEOREM AS. - Under the hypotheses of theorem A, and if P, Q, R are
odd functions, one gets, beside the conclusions theorem A, a map:

which is defined for each which is a ’ homeomor-

phism onto ’ its image O*,«,2 = h*,«,2 ’ such that :

where 82 stands for a first return map on 03C02.

02 and ~c2 will be defined in the proof: they are natural adaptations of o
and ~co in theorem A.

THEOREM BS. Under the hypotheses of theorem B, and if P, Q, Rare
odd functions, one gets, beside the conclusions of theorem B a map :

which is defined for each /3 with 0  03B2  - 03BB/03C1  1 and which is a bijection
onto its image 0.,~,2 = h.,~,2(~2~+~ such that:

Furthermore, ro+ u ro- is an attractor.

One can simplify the coding in theorem BS to get the:

COROLLARY [24 ]. Under the hypothese of theorem BS, in each neigh-
bourhood of ro+ u rü there exist sets of orbits in one to one correspondance
with { 1, 2 This correspondance can be described as follows : to each
sequence s = { si ~~ o, si E ~ 1, 2} one associates an orbit which starts, at
an arbitrary initial time, close to (resp. Wu-1oc) if si = 1 (resp : if si = 2)

Annales de l’Institut Henri Poincare - Physique theorique
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and which starts each new loop in the neighbourhood of 0393+0 or ro according
to the same law.

Proof for theorems AS and BS. -- The main modification which needs
to be made in the proofs of theorems A and B is a geometrical construction
which takes into account the central symmetry. This construction is more

easily explained in two steps.

STEP 1.

One renames, by adding a superscript « + », all sets and maps used in
the proof of theorem A, and one uses the same symbols, except that a
« - » replaces the « + ~ for the sets and maps induced by the symmetry.
In particular, one gets two maps :

Vol. 40, n° 4-1984.



450 C. TRESSER

STEP 2.

Denoting by ~t the linear flow in U, one remarks that, for each M in TIÓ
(resp. lYo), one and only one of the points belongs
to no (resp. nt) : we shall denote this point by P(M). Setting then :

one defines a map :

by :

where 8 ± means that 0~ (resp. 0 ) has been applied if M E nri (resp. 
The action of e2 has been schematized in Figure 3.

Remark. 2014 P. Holmes gives another geometrical construction for the
symmetric case in [24 ], corresponding to the one given in [27] ] for the
non symmetric case. The choices made in the present paper were motivated
by our attempt to be as close as possible to the original proof in [43 ],
at least for theorem A.

IV . PERTURBATION OF SYSTEMS
HAVING A HOMO CLINIC CURVE,

BIASYMPTOTIC TO A SADDLE FOCUS

In this section, we shall consider small C 1 perturbations of flow verifying
the hypotheses of the previous theorems. We shall denote by Z the z-coor-
dinate of the point in the general cases, and by Z ± the z-coordinates
of the points in the symmetric cases. We use the same symbols
to refer to sets and maps related to unperturbed and perturbed systems.
The results below are determined by the sign of Z (or assuming the
perturbations are small enough in the C 1 topology. In each case, we shall
be interested in the dynamical behavior in a small neighbourhood V of ro
(or. r~). In order to avoid repetitions, most of the hypotheses of
the theorems we shall formulate will be contained in the name of the theo-
rem : for instance theorem AP describes C1 perturbations to systems
satisfying the hypotheses of theorem A. We shall begin with theorems AP
and ASP which are immediate consequences of the proofs of theorems A
and AS (see also [2~] ] [.?2] ] [46D.

THEOREM AP. For ~ I Z I small enough, one can find M &#x3E; 1, and for
with 1  m  M, a map:

Annales de l’Institut Henri Poincare - Physique theorique .
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which is a ’ homeomorphism onto ’ its image Om = such that :

Furthermore, Om is hyperbolic.
Remark. 2014 If Z  0, there cannot be any homoclinic curve in V. On

the contrary, for Zo &#x3E; 0, one can find Z in ]0, Zo [ such that there exists
a homoclinic curve in V ; for each of these values of Z one gets the hypo-
theses of theorem A, but in order to find the corresponding 0~, one has
to redefine ... with respect to the new homoclinic orbit.

THEOREM ASP. - Beside the conclusions of theorems AS, which work
for a neighbourhood V + (resp. V - ) of (resp. r~), there can be zero,
one or two homoclinic orbits in general C 1 perturbation of the flow,
zero or one pair symmetric homoclinic orbits . for symmetric perturbations
in ei ther case Z+ = Z - &#x3E; 0 and Z’’ = - Z -  0.

Remark. 2014 Theorem AP can be interpreted as follows : among the infinity
of nested horseshoes that occur when there is a homoclinic curve, finitely
many persist under a small C 1 perturbation.

This remark was already reported in [46] ] (see also [~2]). The two
following theorems are proved (with different smoothness assumptions),
the first one in [32 ] [45] the second in [24 ]. They will be given here without
further comment, and we leave to the reader the task of listing the possible
consequences of a general perturbation of a system verifying the hypotheses
of theorem BS.

THEOREM BP.2014 If Z &#x3E; 0, there is a single periodic orbit in V, and this
orbit is stable. If Z  0, 0 is the unique non wandering point in V.

THEOREM BPS. - For a symmetric perturbation, ~Z~=2014Z’&#x3E;0,
there is a pair of stable and symmetric periodic orbits. If Z+ = - Z-  0

single periodic orbit which is stable and invariant by the central
symmetry.

V ABOUT CERTAIN HETEROCLINIC LOOPS

The aim of this section is to extend some of the previous results to some
heteroclinic loops. One is then faced with the fact that the problem of
local C 1 linearization is more delicate for three real eigenvalues than for
saddle-foci (see the example of P. Hartman in [21 ]) As a consequence
of a lemma by S. Sternberg in [~9] ] (p. 812), one can use a theorem by
G.R. Belitskii [8]. This theorem generalizes the theorem of P. Hartman [21],

Vol. 40, n° 4-1984.
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by insuring the existence of a local C 1 linearization for C 1 ~ 1 maps (and
thus, by [~9] for C 1 ~ 1 flows), under the mildest non resonance-type condi-
tions. These non-resonance hypotheses can be formulated for maps as :

and for flows, the p/s represent the exponentials of the eigenvalues ~,i’s.
This chapter is organized as follows : after some general considerations

in (a), we define what we call « simple type » heteroclinic loops in (b) :
another class (semi-simple type) will be brievely examined in the Appendix.
The theorem C of (c) apply to the simple type loops.

a) Genera~ considerations

Let X be a C 1 ° 1 vector field in (~3 and { 0, },=i,...~ ~ hyperbolic critical
points of X. All 0/s are supposed to be codimension - 1 unstable with
Woi n Woi+ 1 ~ ~ where we have used the notation Oi+ 1 - O~.
The intersections :

are heteroclinic connections and the union :

will be called « heteroclinic loop » (if n = 1, the heteroclinic loop
ro = Wol n Wol appears as a particular case of heteroclinic loop since
01 elo in this case). ,

Remark. - Unlike homoclinic orbits, homoclinic loops are generally
not non-wandering sets. This is already true in two dimensions : Figure 4(a)
gives an example of a non wandering case, and Figure 4(b) an example
of a wandering case.

Annales de l’Institut Henri Poincare - Physique théorique
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b) Simple type heteroclinic loops
We shall use the following notations and hypotheses :
~n + ~ = Oi, Do = ~" and more generally : On+k = Ok,
2014 w~ = ri U Ob the other part of Woi being denoted by W~,
each ri is bounded away from all singularities except Oi and 
2014 for each Oi of saddle type, the eigenvalues of the linearized flow

at 0~ are: 
_ _

one has m saddles with O  m  n,
2014 for each saddle focus Ob the eigenvalues of the linearized flow at Oi are :

DEFINITION. 2014 Let ro be a heteroclinic loop joining the critical points 0~
1 ~ ~ ~ and let 0~ for be a saddle. We shall say that OJ
is of simple type if WsOj + 1 u OJ contains a disk which in turns contains

and the local part of the strong stable manifold corresponding
to ~3j. In the sequel, such a disk, say Dj, will be supposed to contain OJ
and in its interior. Each Dj generates two half-tubes and +j
will refer to the one which contains the local part of near 0~ which
is tangent to the eigenvector corresponding to ~,2,~.

DEFINITION. 2014 We shall say that a heteroclinic loop involving at least
one saddle focus, is of simple type if :

i) all saddles are of simple type,
ii) for each of them, ~ ~ contains W}; 1,

iii) ro always follows the leading direction in WsOj near saddles.

PROPOSITION. - A heteroclinic loop simple non wandering set. I

The proof is left to the reader.

c) Dynamics in the neighbourhood of a heteroclinic loop of simple type.

THEOREM C. - Let X be a C1 ° 1 vector field in ro a heteroclinic loop
simple type such that all saddles in ro verify the non resonance conditions (5).

..
Then:

a) if p &#x3E; 1, one ’ has the conclusions of theorem A, with replaced
I and 1 ~ oc ~ p.

b) if p  1, one ’ has the conclusion of theorem B.

Vol. 40, n° 4-1984.
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Proof 2014 With section II in mind, we first illustrate the role of a saddle
in a heteroclinic loop of simple type. To this end, let us consider the hetero-
clinic in Fig. 5. The two main phenomena which have been represented are :

1) the splitting of the spiral produced by the saddle focus (see section II),
due to the stable manifold of the saddle,

2) the pinching effect characteristic of hyperbolic equilibria of saddle
type ; further saddles would not bring any new qualitative effect
and would only contribute to the quantity p.

If there is only one saddle focus and at least one saddle in ro, the action
of the first return map defined similarly to what has been done in section II
is like what is represented in Fig. 6, where a) and b) refer to corresponding
parts in theorem C. The other important characteristic of the heteroclinic

Annales de l’Institut Henri Poincaré - Physique theorique
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case is that the of theorem A is replaced This comes from

iterated deformations (indeed n - m - 1 of them) consisting in :

1 ° stretching (if~&#x3E; 2014 p) or compressing (if ~,  - p) a pinched rainbow
as those in Fig 6,

2° roling it in a logarithmic spiral. -

VI. APPLICATIONS AND FINAL REMARKS

Beside works already mentioned, there have been many articles devoted to
theorems « a la 0160il’nikov » [9] [77] [13] [32] [42] [44] ] [45 ] ( 1 ). The consi-
derations of more general homoclinic loops leads to the rough classification
of volume contracting flows in ~3, proposed in [51 ] [53] ] and still in process.
For the relevance of 0160il’nikov’s results on saddle foci in the context of the
problem of the onset of turbulence ([~7]), see [6] for an explicit example
of piecewise linear differential equation satisfying the hypotheses of theo-
rem A, and [4] ] for an example where central symmetry allows the numerical
observation of an attractor with spiral structure when a pair of homoclinic
orbits exists.

Remark. 2014 Condition (3) instead of (2) on the eigenvalues of (1) yields
another kind of attractor simultaneous to a homoclinic curve, but with

less « spectacular » Poincare maps [5 ] [77] ] [51 ].
Part of the importance of 0160il’nikov’s theorem in applications to Physics

is put forward in the following two remarks (see also the end of this section) :

REMARK 1. 2014 Many « classical » systems displaying numerically observed
chaotic behavior, such as the ones presented in [77] ] [2~] ] [JW] ] [35] ] [~7] ]
[38] ] [39] [57] have been successfully analyzed at the light of 0160il’nikov’s
theorems (see for instance [5] ] [7] ] [77] ] [7~] ] [36] ] [~7]). The equations
in [~0] and [38] are rather special in this respect since one has to extend
the parameters space in order to find heteroclinic loops joining saddle
foci, and get a comprehensive interpretation of the origin and structure
of the « attractors » observed numerically [51 ].

REMARK 2. 2014 The z-projection of the action of the map 0 (02 in symmetric
cases) yields a one dimensional map. Such map allow a good qualitative
understanding of the behavior of one parameter families of flows which
meet homoclinic conditions, with saddle foci [3] ] [7~] ] [51 ].
To complete these remarks, one should mention that systems like those

presented in [~] ] [53 ], or those presented in [2~] ] [~J] ] [38 ], (in different

(1) For return maps near critical points in f~2, see e. g. [1] or [19].

Vol. 40, n° 4-1984.
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parameter ranges than those discussed in the present paper : more precisely
near the onset of chaos) should be analyzed using different approaches :
see [J~] ] for some references.
Most authors decided to reconstruct their own proof of Theorem A,

often because the geometry is not quite transparent in [43] ] or [46 ]. All
these proofs start with a local linearization near O. One recognized in [52 ]
that good (optimal 03C1) smoothness conditions (C 1 ° 1 ) for the flows were pos-
sible, thanks to a theorem of P. Hartman [21 ]. The generalization of [21] ]
by G. R. Belitskii [8] ] allowed the study of heteroclinic cases involving
saddles in the present paper.

Center manifold type arguments are presented in [3] ] [20] ] [2~] ] (see
also [10]) to suggest the relevance of 0160il’nikov’s theorem in the description
of certain macroscopic states (corresponding to P. D. E.’s). In this context,
the interest of a C 1 ~ 1 version of bifurcation theorems lies in the fact that
in general, a center manifold is not [50 ], but always Ck (for k &#x3E; regu-
larity of the initial problem) and the size of the center manifold can only
increase if one requires less smoothness.

. Let us end this section by the observation that 0160il’nikov’s results seem
to be relevant for the interpretation of the data of some experiments on
the onset of turbulence (see for instance [26] ] [~0] ] [55 ]).

Annales de l’Institut Henri Poincaré - Physique ’ theorique
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APPENDIX

Lotka-Volterra equations and semi-simple loops.

Lotka-Volterra equations read [29] ] [56 ] :

...,~} (A . 1)

and only the case n = 3 will be considered here.
One is generally interested in the region R such that, di, 0 in phase space : let us

remark that coordinate planes and axis are globally invariant. Beside 0, (A .1) admits :
- at most one critical point per coordinate axis
- at most one critical point per coordinate plane, out of the axis
- at most one critical point of the coordinate planes.
If we restrict ourselves to the cases with the last critical point belonging to R, (A. 1) can

be rewritten as :
-~-)) (A . 2)

The fact that chaotic behavior can be numerically observed with (A. 2) was announced
in [54 ]. In [4] examples were given and interpreted using theorem AP (perturbation of
homoclinic orbits). We shall see that Theorem C could not be invoqued, despite the fact
that indeed, one has perturbations to heteroclimc loops. However, the claim in [4] that
no chaotic behavior can occur near heteroclinic loop involving a saddle is incorrect.
The examples in [4] (these examples do not belong to Smale’s class in [48 ] : see [2 ])

involved a heteroclinic loop joining one saddle focus and two saddles (the loop was observed
numerically). This loop is not of simple type and I do not know any example of loop of

simple type arising with equations (A. 2), despite the fact that many examples of chaotic
dynamics can be generated using the computer program mentioned in [4 ]. Instead of
looking at all possible cases of heteroclinic loops generated by (A. 2), we shall analyse three
heteroclinic loops, represented in Figure 7. These examples correspond to the simplest
configurations, which can be numerically observed with Lotka-Volterra equations. More
precisely :
- in Figure 7(a), neither O2 nor 03 are of simple type,
- in Figure 7(b), O2 is of simple type, 03 is not,
- in Figure 7(c), 03 is of simple type, O2 is not.
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Nevertheless, in all these cases, the violation of the simple type of the loop is of the simplest
kind: the disks D j are still defined, but they contain the local part of the invariant manifold
corresponding to ~,2,~, instead of This motivates the following definitions:

DEFINITION 1. - A saddle is of semi-simple type if it satisfies the same properties as
a simple type one, with the roles of ~,2,~ and ~3 j permuted.

DEFINITION 2. - A heteroclinic loop involving at least one saddle focus, is semi-simple
if all saddles it contains are simple or semi-simple, one at least being semi-simple.

Remark. - The proposition in section V remains true if one replaces « simple type »
by « simple type or semi-simple type ».

If one wants to study the dynamics in the neighbourhood of a semi-simple heteroclinic
loop, one has first to replace the quantity p computed in theorem C by the quantity

We have represented in Figures 8 and 9 how the spiral issued from the saddle focus 01
are transformed in the neighbourhoods of O2 and 03 for the configurations in Figure 7.
In Figure 8 (neighbourhood of O2), a) corresponds to the figures 7a) and 7c).

In a case with a semi-simple configuration, and near a semi-simple saddle, the images
of the rectangles Ri (as defined in section II) under the flow come closer and closer to the
stable manifold of the saddle when becomes larger and larger. As a consequence, the
computation of the quantity p’ does not allow any more to conclude that there exist horse-
shoes in the case p’ &#x3E; 1: the result depends on the details of the non-linear dynamics.
The only significant result corresponds to the cases when p’  1:

THEOREM D. - If one replaces « simple » by« semi-simple» in the hypotheses of theorem C,
and if p’  1, the conclusion remains unchanged.

Consequently, the point of view adopted in [4] to interpret the numerical results presented
there seems reasonable: one just remarked that the perturbations of a heteroclinic loop
resembles the perturbation of a homoclinic orbit and invoked the stability of horseshoes
that occur under the hypotheses of theorem A.
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