
ANNALES DE L’I. H. P., SECTION A

A. M. ANILE
Evolution of shock waves in relativistic
continuum mechanics
Annales de l’I. H. P., section A, tome 40, no 4 (1984), p. 371-387
<http://www.numdam.org/item?id=AIHPA_1984__40_4_371_0>

© Gauthier-Villars, 1984, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1984__40_4_371_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


p. 371

Evolution of shock waves

in relativistic continuum mechanics
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Vol. 40, n° 4 , 1984 Physique theorique

ABSTRACT. 2014 The compatibility relations are applied in order to study
the evolution of shock waves in relativistic continuum mechanics. General
results are presented on the damping of shock waves in relativistic fluids
when the shock velocity tends to the light speed.

RESUME. 2014 On utilise les relations de compatibilite pour etudier 1’evo-
lution des ondes de choc en mecanique relativiste des milieux continus.
On presente des resultats generaux sur l’amortissement des ondes de choc
dans les fluides relativistes lorsque la vitesse du choc tend vers la vitesse
de la lumiere.

1. INTRODUCTION

The study of shock waves presents several problems in continuum
mechanics. One of these is that, once a shock wave is formed (say by the
steepening of an acceleration wave in a solid or of an acoustic wave in
a fluid), it is difficult to follow its subsequent evolution short of finding
an exact solution to the general dynamical equations. In some particular
cases heuristic methods can be used [7] but their mathematical validity
is doubtful.

In general, however, the only way of tackling the evolution of a shock
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wave is by resorting to a numerical integration scheme. This situation
is to be contrasted with that arising in the case of weak discontinuity
waves (as acceleration waves, thermal waves, etc.) where the evolution
of the wave can be studied independently of the full solution. In fact, if

the state ahead of the wavefront is known, it is possible to separate the
evolution of the wave from the solution behind the wavefront. In fact
the wave decouples from the field behind the wavefront and its evolution
can be determined, once the state ahead of the wavefront has been specified,
by the knowledge of the initial data for the wave’s amplitude [2] ] [3] ] [4 ].

This is not possible in general in the case of a shock wave because the
wavefront is subsonic with respect to the 8ow behind it and therefore
the evolution of the shock wave can be influenced by acoustic signals
coming from behind the wavefront.
However, although the general program of separating the wave’s evolu-

tion from the solution behind the wavefront is not feasible for a shock

wave, a limited progress can be achieved by using Thomas’ method of
iterated discontinuities [5]. A general method can be devised which leads
to a sort of transport equation for the shock amplitude which, however,
is not sufficient to determine completely its subsequent evolution, but
still allows some qualitative results to be obtained.

This method has been applied to various situations in classical continuum
mechanics, as in non linear elasticity [6] and viscoelasticity [ 7 ], and has
been proved to be extremely useful in deriving exact qualitative results
on the evolution of shock waves.

Relativistic shock waves can occur in various physical situations. Rela-
tivistic blast waves can be produced in laboratory plasmas by strong
laser beams [8] ] [9 ]. Also relativistic electromagnetic shocks could perhaps
propagate in polarizable media [10 ]. Finally in many areas of astrophysics
such as supernovae, extragalatic radio sources, and galaxy formation,
relativistic shocks seem to be a basic ingredient [77] ] [72] ] [13 ].
For these reasons it is desirable to extend Thomas’ method of iterated

discontinuities to relativistic shock waves.
A first attempt in this direction was made in [7~] ] [1 S ] [7~] where the

case of one-dimensional shock waves in a relativistic fluid was treated

in detail. The aim of this paper is to develop Thomas’ method of iterated
discontinuities for relativistic shock waves of arbitrary geometry.
The plan of the paper is the following.
In Sec. 2 the basic formalism of the relativistic compatibility relations

is briefly recalled.
In Sec. 3 the main compatibility equations are derived for relativistic

shock waves in an arbitrary continuum, drawing only on the conservation
equations.

In Sec. 4 a foliation of space-time consisting of space-like hypersurfaces
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373SHOCK WAVES IN RELATIVISTIC CONTINUUM MECHANICS

is explicitely introduced and the previous equations are rewritten in terms
of data on one of these hypersurfaces.

In Sec. 5 the compatibility equations are specialized to the case of a
relativistic fluid.

In Sec. 6 some general qualitative results are obtained and the limiting
case of an extremely relativistic shock is investigated.

2. THE COMPATIBILITY RELATIONS

Let ~~ be a space-time, i. e. a 4-dimensional differentiable manifold,
oriented, paracompact, endowed with a Lorentz metric g (of signature
+ 2) and time-oriented.
Let E be an orientable hypersurface of It is easy to prove [77] that

there exist :

i) a differentiable 1-form such that 111: 7~ 0, which is orthogonal to
all tangent vectors of E.

ii) three differentiable submanifolds Q, Q+, Q- of Q+ and Q-
having boundaries, such that :

a) Q = 

b) Q is an open neighbourhood of E

A tensor field T of type (r, s), smooth on said regularly disconti-
nuous across 03A3 if there exist two tensor fields T +, î-, of type (r, s), smooth
on Q+ and Q- respectively, such that

In this case the jump of T across E is defined by

Let V denote the riemannian connection of ~ and T be regularly dis-
continuous across E. Then VT is a tensor field of type (r, s + 1) which is
regularly discontinuous across E. In fact ViI are well defined and smooth
on 03A9±  03A3 and the jump of VT is then given by

Similar remarks apply to the higher covariant derivatives of T.
From the previous definition it is apparent that [T] ] can be extended

(in an obviously non unique way) to a tensor field smooth on a neigh-
bourhood of E.

Vol. 40, n° 4-1984.
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Let now E be a time-like hypersurface and let n denotes its unit normal.
_ In local coordinates n is given bv

where 1~ are the components of the 1-form l.

The inner covariant derivative ~ is defined on the smooth tensor fields
of Q defined on E as follows [18 ], in local coordinates,

where h 03BD = 03B4 03BD - n n03BD is the projection tensor onto E. is a smooth
tensor field of Q defined on E, which depends only on the restriction of

-

Except when acting on scalar functions, V is different from the induced
riemannian connection of E because, in general, is not tangent
to E even when T::: is tangent to E.
The definition of the inner covariant derivative given by (2) is local

and holds only for non-null hypersurfaces. A global definition which holds
also for null hypersurfaces is given in [19 ].
The compatibility relations restrict the jump ] of the covariant

derivative of a tensor field T regularly discontinuous across E and are
given by [7~] ] [79] ]

These relations are the natural extension of the classical Hadamard ones [5] ]
to general relativity. A different approach to the compatibility relations
is given in [2~] ] where use is made of the theory of tensor distributions.
For the aim of this paper, however, the present approach is adequate.

3. THE GENERAL COMPATIBILITY EQUATIONS

In this section general compatibility equations are derived on the basis
of the conservation equations alone. Therefore they hold for an arbitrary
relativistic continuum. Further compatibility equations can be obtained
from the constitutive equations once a particular class of media has been
selected.

Let T 03BD be the energy-momentum tensor and j  the mass-flux vector
of the continuum. Both and j  are assumed to be regularly discontinuous
across E. Then, as a consequence of the conservation laws

Poincaré - Physique theorique



375SHOCK WAVES IN RELATIVISTIC CONTINUUM MECHANICS

the following junction conditions hold across E, [20] ] [21 ],

which state that both ] and [/"] ] are tangent to E.
Let

then the junction conditions can be rewritten in the form

From (4), (5), the compatibility relations (3) and the junction conditions,
it follows easily

Let x ~ 03A3 and U be a coordinate neighbourhood around x in U such
that U = U n E is a coordinate neighbourhood of x in E. If yi) are
local coordinates in U, then 0 is the local equation of E in U and (yi)
are local coordinates in U. 

_

In the following all considerations will be restricted to U and U or
subsets thereof. 

_

It is easy to see that in U there exists an orthonormal basis 
A = 2, 3, such that k is time-like and future-directed and e is space-like.

A way to construct it is the following. {~ yi} is a basis field in U and
h03BD03BD = 03B4 03BD - n n03BD defines a metric of signature + 1 on U. Therefore it is

possible to orthonormalize the basis vectors 2014~ with respect to the metricY1 _ .

h 03BD thereby obtaining the orthonormal basis {k, eA}. Hence in U one has

With respect to the basis {k, eA} one has the following decomposition

Vol. 40, n° 4-1984.
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A simple substitution of ( 10) and ( 11 ) into (8) and (9) yields

At thistage it is convenient to introduce the induced riemannian connection
of E, V, defined on smooth tensor fields T~" tangent to E by

Obviously, on scalars, V coincides with V.
Also, from 

_

it follows

and analogous results hold for 
The second fundamental form of 03A3 is defined by

and, for any couple of vector fields tangent to E, one has

Eq. ( 12) can be rewritten in the form

After some manipulations eq. ( 13), contracting with nv, yields

From (18) it follows that, if x is a flat point of E (i. e. = 0), then

By further contracting eq. ( 13) with kv and e~" respectively one obtains

It is interesting to notice that in eqs. ( 18), ( 19), (20), the operators

appear which are 
" suggestive " of conservation laws along £ the lines tangent
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to k~‘ and respectively. The extra terms appearing in these equations
are then suggestive of diffusive terms while the jumps of the derivatives
would represent the contribution from the flow behind the wavefront.

In eqs. (17-20) the normal jumps of and appear, which, in
general, are unknown and therefore these equations cannot be called
« transport equations » in a proper sense. However they would become
transport equations after some knowledge of ] and has
been obtained.

4. THE INITIAL DATA

Let the open subset U be endowed with a foliation of space-like hyper-
surfaces t E [a, b] c R and let N be the future-directed time-like
vector field of unit normals to The existence of such a foliation is entailed,
for instance, by global hyperbolicity [22 ].
Denote by H the projection tensor onto Ft, given in local coordinates by

Huv = + 

The propagation speed V"£ of the hypersurface E with respect to the family
of observers identified with the time-like vector field N is given by

where is the Lorentz factor of E.
Here the condition

will be assumed, in order to have progressive waves (V1: &#x3E; 0).
By suitably restricting U it is possible to characterize ~ by a smooth

function such that

On U then one has

which represents a 2-surface 6t.
On U one has a foliation by the 2-surfaces ~t.

Let k be the unit normal vector to 03C3t in U,

and eA be two orthogonal unit vectors tangent to 03C3t in U. 
is a basis field in U. Explicitely one has

Vol. 40, n° 4-1984.
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In the sequel, instead of using the anholonomic frame {~ ~A}, one
a a

could as well use the holonomic basis - , where z are two coordinates
on Qt. 

~t ~zA

Let one of the hypersurfaces say ff 0, be considered as the initial
hypersurface, i. e. the data for and j  are given 
On F0 one can define an orthonormal basis field as follows.
In U n is a vector field (in fact dy° is a 1-form in U) and therefore!! is

defined One can then construct the basis field 

where

and E A are two orthogonal unit vectors such that

Explicitely

Notice that as a vector field, is defined on U.
Now let f be any quantity which is regularly discontinuous across E.

Then f has a jump [f]o across 7o, which can be considered as an initial
datum for [ f ]. Also, if fo is the initial datum for f one has, across 7o

Moreover can be computed from fo, being equal to 
Therefore it is convenient to express (which appears in the trans-

port equations of the previous section) in terms of (which can be
computed from the initial datum). 

-

This can be done by expressing !1 in terms of b and k, as follows

Then one obtains

hence

Annales de l’lnstitut Henri Physique - theorique .
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After some manipulations eqs. ( 17)-(20) rewrite, on o-o,

Obviously these equations hold also on any 6t considered as an initial
surface.

It is convenient to view 6o as a 2-surface of the pseudo-riemannian
manifold ~ o and introduce the induced metric on do,

and its second fundamental form

Let B be the second fundamental form of ~ o,

then it is easy to prove that

In fact

Also

whence eq. (33) follows.

Vol. 40, n° 4-1984.
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With some simple manipulations it is easy to prove the following formulae :

where V denotes the induced riemannian connection on o-o,

for any vector z tangent to o-o,

Therefore eqs. (26-29) can be rewritten in the following form

where D = is the derivative along k, D = (on scalars D and D
coincide),

Obviously these equations too o hold o on considered o as an initial
surface.

Annales de Henri Poincare - Physique theorique .
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5. THE RELATIVISTIC FLUID

In this section the equations derived in the previous section are specia-
lized to the important case of the relativistic perfect fluid. The energy-
momentum tensor is [21] ]

where u  is the fluid 4-velocity, wand p are the enthalpy and pressure
respectively, both measured in the local rest frame.
The mass-density current is

where p is the proper rest-mass density.
It is convenient to introduce the index f of the fluid, defined by [7~] ]

The Rankine-Hugoniot relations express the invariance across E of the
scalar [7~] ]

and of the vector

Let T = 2014 be the dynamical volume . [20 ]. Then it is easy to show that [20 ]
n

For the sake of simplicity let the fluid ahead of the shock front be at rest
with respect to the family of observers defined by N. Then one has, on X,

and u  coincides with N  on U+ = S2 + n E.
It follows easily that

whence

Vol. 40, n° 4-1984.
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Therefore eqs. (40-43) can be rewritten as follows

Also, it is easy to see that

A better understanding of these equations is obtained in the case of

special relativity.
Let ~ be the Minkowski space-time, (t, xa) global inertial cartesian

coordinates, where , , , ~ , , , ,

Annales de l’Institut Henri Poincaré - Physique théorique
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The hypersurfaces ~ t can be taken to be

Then

where v is a unit 3-vector,

where i a, are two unit 3-vectors orthogonal to v,

The fluid 4-velocity is in the inertial frame,

where v is the velocity 3-vector and r is the Lorentz factor.
From the invariance of Z~ = + it follows that

Let - = - D (which on scalars coincides with - D , then eqs. (54-57)
~ 1~ B 1~ /

yield, with 

These equations look rather formidable. However some qualitative infor-
mation can be obtained from them, as will be seen in the next section.

Vol. 40, n° 4-1984
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6. QUALITATIVE RESULTS AND CONCLUSION

From eq. (65) one can obtain at once the following important result.
Let [/?] ] be uniform all over the shock wavefront 6t,

and (a~Y)- be normal to the wavefront,

then it follows

bk~
Now, since 2014 

lies in the two-plane spanned by e2~, it follows

which states that in this case k  is a geodesic vector field on E with respect
to the induced connection, and s is an affine parameter on these geodesics.
One might enquire under which conditions k  is a geodesic vector

field in the full space-time The answer is that, beyond (66), k"~ must
satisfy

which, from eq. (34), implies

which means a constant amplitude shock, c~
In the general case one obtains from the condition - = 0, being

~ = V1:~’ 
~ 

~

which states that the shockfront 2-surfaces 6t are parallel surfaces.
This result is analogous to a well known theorem on wave propagation

in classical continuum mechanics [7].
Another important result can be obtained from eqs. (63-64). Consider

the case of a radiation fluid, for which the equation of state is

A simple " analysis of the Rankine-Hugoniot relations (48), (49), shows

Annales de l’Institut Henri Poincare - Physique " theorique "
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that, in the limit of an extremely relativistic shock, V r. ~ 1, one has the
asymptotic relations, to the order r~ 1,

It follows that - remains finite in the limit V ~ 1, and in particular
one has i

Therefore, asymptotically, one has,

to the order ri 1.
Hence from eq. (64) it follows, asymptotically,

Similarly, from eq. (63) one obtains, asymptotically,

Now one can assume that 03BD.(~03BDV)_ remains finite in the limit V03A3 ~ 1.

Then, from eqs. (68)-(69) it is easy to show that, in the limit ~ 1,

This result which is at striking variance with the behaviour of shock waves
in classical fluiddynamics had already been conjectured by Liang and
Baker [23 ]. The first rigorous proof was given by Anile, Miller and Motta
[7~] in the case of a plane shock wave propagating into a constant state
in a relativistic barotropic fluid and confirmed in more general cases by
numerical calculations [13 ].

In this section the asymptotic behaviour (70) has been proved for a
shock wave of arbitrary geometry propagating into an arbitrary state in
a radiation fluid. By using a similar method it should be possible to prove
the asymptotic behaviour (70) without any restriction on the equation
of state.

Vol. 40, n° 4-1984
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In this section the first order compatibility relations (62-65) have been
investigated and some qualitative results have been obtained. Further
work could be done on the following two lines. The first is to envisage
an approximation method for weak shocks which would close the system
(62-65) thereby obtaining a system of propagation equations. The second
is to postulate special relationships among (~p)-,v’(c~Y)- and 
drawn from the requirements of self-similarity, which would also permit
to obtain proper propagation equations for the shock amplitude.
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