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On the structure of relative identification operators
for quantum fields and their connection

with the Haag-Ruelle scattering theory

Hellmut BAUMGÄRTEL
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ABSTRACT. 2014 The paper recalls the notion of a relative identification

operator K of a Wightman field A(’) with respect to a corresponding
free field A~(’), useful for the definition of wave operators with respect
to the field A(’). The corresponding pre-wave operator eitHKe - itHo can
be linked directly with the Haag-Ruelle approximants of the field A(’).
Thus the Haag-Ruelle scattering theory can be embedded formally into
the framework of the abstract scattering theory. Some structural properties
of K are presented. It is pointed out that K is uniquely determined by
a single field operator where h(p) is a smooth function with
support in a sufficiently small neighbourhood of the discrete mass hyper-
boloid characterized by the mass mo &#x3E; 0 belonging to A 0(.) (as is usually
introduced within the Haag-Ruelle framework) and where 
is multiplicative-generating.

RESUME. 2014 On rappelle la notion d’operateur d’identification relatif K
d’un champ de Wightman A(’) par rapport au champ libre correspondant
A~(’), utile pour la definition des operateurs d’onde du champ A(’). Le
pre-operateur d’onde correspondant peut etre relie directement
aux approximants de Haag-Ruelle pour le champ A(’). Ainsi la theorie
de la diffusion de Haag-Ruelle peut etre formellement incorporee dans
le cadre de la theorie abstraite de la diffusion. On donne quelques proprietes
structurelles de K. On remarque que K est determine de façon unique
par un seul operateur de champ ou est une fonction lisse
a support contenu dans un voisinage assez petit de l’hyperboloide de
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226 H. BAUMGARTEL

masse caracterise par la masse mo &#x3E; 0 du champ A0(.) (comme on 1’in-
troduit de façon usuelle dans la theorie de Haag-Ruelle), et ou yo E (R3)
est generatrice par multiplication (voir Definition 3). 

’

§ 1. INTRODUCTION

Let A(’) be a Wightman field on a (separable) Hilbert space ~f. For
convenience we collect the properties of such a field. The tensor algebra
over the Schwartz space ~(I~4) is denoted by . Its elements are finite
sequences f :_ ~ f°, ’’-./? 0, -.. L where N depends on f and
where fn E ~(Il~4n). ff is equipped with the usual topology 1: (locally convex
direct sum of the Schwartz space topologies of the ~(~4n)). The Wightman
functional W(’): ~ ~ C of the field A(’) is assumed to be linear, normed,
positive, continuous and Poincare invariant. There is a unique vacuum
co E J~ and the field is assumed to be spectral and local. The continuous
linear functionals on F have the form W = { Wo, Wb W2, ... }, where
Wn is a continuous linear functional on ~(f~4n), a so-called n-point func-
tional, and W(/) = Recall the special form of the functionals

Note that we prefer to work with momentum coordinates, that is with
functions ~,(~i,/?2? ’ - ’~)~~(~") which are Fourier transforms

of functions depending on position coordinates. (’, ’) denotes
the Cartesian scalar product in 1R4. Hm denotes the mass hyperboloid
Hm ’= {~ po - ~ ~ ~ 12 = m2, T~o &#x3E; 0 }, ,um( ’ ) denotes the Lorentz invariant
measure on Hm, given by = + I p 2) 1 /2 and ~(’) is a charac-
teristic polynomially bounded Borel measure on m &#x3E; 0. Formula (3) is
called the Kallen-Lehmann representation of the 2-point functional.
The set of all f E ff satisfying W(f* f) = 0 is denoted by lker W

(left kernel). Note that f * denotes the usual conjugation in ff,
.fn(p 1 ~ ...~J = ~(-~ -~n-i....,-7?i).
The field A(’) is defined on ff, i. e. A( f ), is a generalized field
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227RELATIVE IDENTIFICATION OPERATORS FOR QUANTUM FIELDS

operator, the usual field operator is given by where f1= (0,f1, 0,...)~F.
For brevity we write also A(, f ’1) in this case.

Furthermore, an upper and lower mass gap is assumed, the discrete
mass is denoted by mo, the corresponding one-particle subspace of ~f
is denoted by Jfi, it is assumed to be irreducible with respect to the Poin-
caré group, the corresponding representation is labeled by mo and s = 0.
Recall the representation (SNAG-theorem)

for the unitary representation Ua of the translation group a E ~4 associated
with the field. In terms of E( - ) the mass gap is expressed by

(5) 

where suppm E denotes the mass spectrum (note that supp E ~ clo V +,
V + the forward cone, and that supp E is Lorentz invariant, i. e. it contains

only full mass hyperboloids Hm, then the mass spectrum is the closure
of all m such that supp E).

Finally, the condition of « coupling of the vacuum to the one-particle
states » is assumed to be satisfied (see for example M. Reed and B. Simon
[1, p. 319 ]. Note that this condition is satisfied if and only if

(6) mo E supp P

is valid. That is, in this case one obtains

(7) { mo ~ ~ supp P ~ suppm E,

(the latter inclusion is obvious).
The free (scalar) field, corresponding to mo &#x3E; 0 and s = 0, is denoted

by A 0(.), acting on the Hilbert space Its measure « p » (mass distri-
bution of the Kallen-Lehmann representation) is given by the Dirac measure
P(m) _ ~(m - ~).

In H. Baumgärtel et al. [2] a so-called relative identification operator K
is introduced, useful for the definition of wave operators with respect to
the field A(-). For convenience, we recall the definition and simple pro-
perties of K : First, by h E we denote a fixed real-valued

function, 0  h  1, with the following properties :

Second, we define a certain linear manifold 5£ by : g ~ F if and only
if g0~C arbitrary, 

symmetric with respect to p1, P2, ..., Pn’
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228 H. BAUMGARTEL

Then, denotes the Wightman functional and J° denotes the (abso
lute) identification operator of the free field, it turns out that 2 contains
exactly one element from each equivalence class mod lker W°, that is,
ima (J° ~ 2) = ima J° and : f E 2 and J°f = 0 imply f = 0, in other
words, 2 n lker W0 = {0} and F E9 lker W0 = F. Now an operator K :

can be defined by

where J denotes the (absolute) identification operator of the field A(’).
(9) means that K is a certain factorization of J, J = on J5f. K is called
the relative identification operator between A0(.) and A(’) with respect
to 5£. Recall the following simple properties of K :

I) K is densely defined, dom K = ima JO, which is dense in ~°.
II) dom K is invariant with respect to U~ (the unitary representation

of the Poincare group belonging to the free field).
III) K is continuous with respect to the Schwartz space topology L

of ff (more precisely : dom K may be equipped with this topology by
the bijection 5£ 3 f H J°f E dom K, then K is continuous with respect
to this topology).

IV) cc~.

V) The intertwining relation

is valid if g = { Ao, (0, a)}, where is a pure spatial translation
and where Ao is a pure rotation in the a-space (the intertwining relation (10)
is not valid in general for time translations).
Using K, the standard two-space pre-wave operator is given by

where e - itH == e - itH0 = denote the unitary representations
of the time translations in Jf, respectively.

In this paper some further structural properties of K are presented.
In fact, it is shown that the expression (11) is intimately connected with
the Haag-Ruelle approximants with respect to the field A(’).

If ~ is a subset of ff, for brevity we denote by ~~ the set of all f e ~
with f = {0, ..., 0, fn, 0, ... }, i. e. the intersection of ~ with 

Finally recall the assignment between one-particle states and field

operators. ,

then Moreover, the assignment 
is an injection, the f E ~~1’ ~ coincides with

and 0 this linear manifold 0 is dense " in ye 1.
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That is, the vector u = with f E 5£(1) is in one-to-one cor-
respondence with f Therefore, one has an assignment of one-particle
states u E H1 to certain field operators Bu = A( f ). This assignment satisfies
the property Bu03C9 = u..
On the other hand, the assignment can be considered as the assignment

of vectors of the free one-particle space to vectors u E H1 via K. Namely,
if f E 5£(1), then y(p), 0, ... }, where = 

and where y(p) is to be considered as an element of L2(1R3, d~/,u(~)). That
is we have

§ 2. CALCULATION OF K

In this paragraph we calculate K on a dense subdomain of
dom K = ima J° = ima (J° 2). For this purpose we use the structure

which is given in [2 ]. According to this paper (Corollary 1) we have

where T denotes a certain continuous linear operator, acting in ff (see
[2, Theorem 2 ]) and where Sn denotes the symmetrization operator

Note that T f = f for f E 5£ (cf. [2, Lemma 5 ]), that is, one obtains

Recall that / E f£ means ~i, ..., ~) = ?2. - ..., P~
where ~ is symmetric. Therefore ~~

where ...,?~) is to be considered as an element of

where ,u(p) := (mo + p 1211/2.
Now let Kn be the n-particle component of K, that is

Vol. 40, n° 3-1984



230 H. BAUMGARTEL

such that

Furthermore, let

According to (8) we obtain

where we write for brevity instead 0, ...}).
We denote the linear submanifold of 2 defined by ( 12) by 20 c 2.20 is
dense in 2 with respect to r. Then we have

PROPOSITION 1. - The relative identification operator 
is given on the (dense) submanifold ima (J° ~ of dom K by formula (13).

Proof 2014 Obvious by the preceding arguments of this paragraph. II
According to ( 13), K r ima (J° ~ 20), hence K itself, is already uniquely

determined by the field operators a E g(1R3). But the Poincare
covariance property of the field A(’) implies a strong connection between
these field operators. Namely, we have

LEMMA 2. - Let a E ~(~3), f E g(R4). Then

where (X denotes the spatial Fourier transform of x and  denotes the
Fourier transform of /. The integral on the right hand side is weakly

for vectors u, v~D = ima J of the field operators A( . )).

Proof. - From the covariance property of A(.) we obtain

where, as usual, a). Further we obtain

Annules de ’ l’Institut Henri Poincaré - Physique theorique 
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But (VQ = and

This concludes the proof. II
The relation (14) implies that the field operators A(h(p)a(p)) are uniquely

determined by a single field operator A(h(p)yo(p )), where yo is multiplicative-
generating in g(1R3) (together with the representation Ua).

DEFINITION 3. - The function yo E g(1R3) is called multiplicative-gene-
rating with respect to g(1R3), if {03B103B30 : a E (R3)} is dense in Y(1R3).
For example, if yo E g(1R3) and y(~) ~ 0 for all p E 1R3, then yQ is multi-

plicative-generating. For example let = exp ( - ~ I P 12).

PROPOSITION 4. - Let yo E g(1R3) be multiplicative-generating. Then

{ 03B30 : a E Y(1R3)} is dense in g(1R3) and

Proof Obvious. II
Proposition 1 and Proposition 4 together lead to an explicit description

of K, showing, that K is uniquely determined by A(h(p)yo(p)) for some
multiplicative-generating function yo.

COROLLARY 5. - Let yo E g(1R3) be multiplicative-generating and put
Bo := A(h(p)yo(p)). Then K ~ ima (J° ~ explicitly given by

Proof.Obvious. -

§ 3. CALCULATION OF THE PRE-WAVE OPERATOR

Let yo E g(1R3) be multiplicative-generating and put Bo := A(h(p)yo(p)).
The next Proposition calculates the pre-wave operator (11).

PROPOSITION 6. - Let oci, a2 , ..., an E ~( (~ 3 ). T hen
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where

i. x) is the spatial inverse , Fourier transform x)
’ so-called smooth solution of the Klein-Gordon equation with « nega-

tive » frequencies.

Proof 2014 According j to Proposition 4 we have " the assignment

Furthermore,

is valid, thus we obtain

Therefore we finally obtain (17) O ... O anYo
because of and = II

Proposition 6 gives a link between the pre-wave operator eitHKe-itH0
and the expressions (Haag-Ruelle approximants) used in the Haag-Ruelle
scattering theory for Wightman fields. That is, Haag-Ruelle’s theory
appears as a special part of the abstract two-space scattering theory (see
H. Baumgärtel and M. Wollenberg [4 ]). The basic concept of the abstract
scattering theory is given by the pre-wave operator mentioned above.
Note that the identification operator K in the field-theoretic case is
unbounded and not closable but densely defined whereas the identification
operators appearing usually (e. g. in the non-relativistic scattering theory)
are bounded.

It should be mentioned that the characteristic t-dependence of the special
field operators occuring in the Haag-Ruelle approximants
(see for example K. Hepp [5, p. 96 ]) suggests the introduction of a pre-
wave operator, i. e. of an operator K. In fact, one obtains, in an intimate
connection with Proposition 6, that
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is valid (see for example [2, Lemma 6 ]). Proposition 6 shows explicitly
that the pre-wave operator, i. e. also K, depends on a single field operator

only.
Under the assumptions listed at the beginning of paragraph 1 the strong

limits for t ~ :t 00 of (11) exist and they turn out to be isometric (Haag-
Ruelle). Because K is uniquely determined by Bo the question arises, what
properties of Bo are decisive for the existence and isometry of the wave
operators. Some authors (for example A. S. Schwartz [3 ]) have shown
that the (sufficient) assumptions of Haag-Ruelle can be weakened. It would
be nice to have some insights what properties of K resp. Bo are necessary
for the existence and isometry of the wave operators in order to attack
the corresponding inverse problem.
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