HELLMUT BAUMGÄRTEL

On the structure of relative identification operators for quantum fields and their connection with the Haag-Ruelle scattering theory

Annales de l'I. H. P., section A, tome 40, nº 3 (1984), p. 225-233 http://www.numdam.org/item?id=AIHPA_1984 40 3 225 0>

© Gauthier-Villars, 1984, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section A » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On the structure of relative identification operators for quantum fields and their connection with the Haag-Ruelle scattering theory

by

Hellmut BAUMGÄRTEL

Institut für Mathematik, Akademie der Wissenschaften der DDR, Berlin

ABSTRACT. — The paper recalls the notion of a relative identification operator K of a Wightman field $A(\cdot)$ with respect to a corresponding free field $A^{0}(\cdot)$, useful for the definition of wave operators with respect to the field $A(\cdot)$. The corresponding pre-wave operator $e^{itH}Ke^{-itH_{0}}$ can be linked directly with the Haag-Ruelle approximants of the field $A(\cdot)$. Thus the Haag-Ruelle scattering theory can be embedded formally into the framework of the abstract scattering theory. Some structural properties of K are presented. It is pointed out that K is uniquely determined by a single field operator $A(h(p)\gamma_{0}(p))$, where h(p) is a smooth function with support in a sufficiently small neighbourhood of the discrete mass hyperboloid characterized by the mass $m_{0} > 0$ belonging to $A^{0}(\cdot)$ (as is usually introduced within the Haag-Ruelle framework) and where $\gamma_{0} \in \mathscr{S}(\mathbb{R}^{3})$ is multiplicative-generating.

Résumé. — On rappelle la notion d'opérateur d'identification relatif K d'un champ de Wightman A(·) par rapport au champ libre correspondant A⁰(·), utile pour la définition des opérateurs d'onde du champ A(·). Le pré-opérateur d'onde e^{itH}Ke^{-itH₀} correspondant peut être relié directement aux approximants de Haag-Ruelle pour le champ A(·). Ainsi la théorie de la diffusion de Haag-Ruelle peut être formellement incorporée dans le cadre de la théorie abstraite de la diffusion. On donne quelques propriétés structurelles de K. On remarque que K est déterminé de façon unique par un seul opérateur de champ A($h(p)\gamma_0(p)$, où h(p) est une fonction lisse à support contenu dans un voisinage assez petit de l'hyperboloïde de

> Annales de l'Institut Henri Poincaré - Physique théorique - Vol. 40, 0246-0211 84/03/225/9/\$ 2,90 © Gauthier-Villars

masse caractérisé par la masse $m_0 > 0$ du champ $A^0(\cdot)$ (comme on l'introduit de façon usuelle dans la théorie de Haag-Ruelle), et où $\gamma_0 \in \mathscr{S}(\mathbb{R}^3)$ est génératrice par multiplication (voir Définition 3).

§ 1. INTRODUCTION

Let $A(\cdot)$ be a Wightman field on a (separable) Hilbert space \mathscr{H} . For convenience we collect the properties of such a field. The tensor algebra over the Schwartz space $\mathscr{G}(\mathbb{R}^4)$ is denoted by \mathscr{F} . Its elements are finite sequences $f := \{f_0, f_1, \ldots, f_N, 0, \ldots\}$, where N depends on f and where $f_n \in \mathscr{G}(\mathbb{R}^{4n})$. \mathscr{F} is equipped with the usual topology τ (locally convex direct sum of the Schwartz space topologies of the $\mathscr{G}(\mathbb{R}^{4n})$). The Wightman functional $W(\cdot) : \mathscr{F} \to \mathbb{C}$ of the field $A(\cdot)$ is assumed to be linear, normed, positive, continuous and Poincaré invariant. There is a unique vacuum $\omega \in \mathscr{H}$ and the field is assumed to be spectral and local. The continuous linear functionals on \mathscr{F} have the form $W = \{W_0, W_1, W_2, \ldots\}$, where W_n is a continuous linear functional on $\mathscr{G}(\mathbb{R}^{4n})$, a so-called *n*-point functional, and $W(f) = \Sigma W_n(f_n)$. Recall the special form of the functionals W_0, W_1, W_2 :

(1)
$$W_0(f_0) = f_0$$
,

(2)
$$W_1(f_1) = \gamma f_1(0), \quad \gamma \in \mathbb{R},$$

(3)
$$W_2(f_2) = \gamma f_2(0, 0) + \int_0^\infty \int_{H_m} f_2(-p, p) \mu_m(dp) \rho(dm) \, .$$

Note that we prefer to work with momentum coordinates, that is with functions $f_n(p_1, p_2, \ldots, p_n) \in \mathscr{S}(\mathbb{R}^{4n})$ which are Fourier transforms

$$f_n(p_1, \ldots, p_n) = (2\pi)^{-2n} \int e^{-i \sum_{j=1}^n (p_j, x_j)} \check{f}_n(x_1, \ldots, x_n) dx_1 \ldots dx_n$$

of functions $\check{f}_n \in \mathscr{G}(\mathbb{R}^{4n})$ depending on position coordinates. (\cdot, \cdot) denotes the Cartesian scalar product in \mathbb{R}^4 . H_m denotes the mass hyperboloid $H_m := \{ p : p_0^2 - |\mathfrak{p}|^2 = m^2, p_0 > 0 \}, \mu_m(\cdot)$ denotes the Lorentz invariant measure on H_m , given by $\mu_m(dp) = d\mathfrak{p}/(m^2 + |\mathfrak{p}|^2)^{1/2}$ and $\rho(\cdot)$ is a characteristic polynomially bounded Borel measure on $m \ge 0$. Formula (3) is called the Källen-Lehmann representation of the 2-point functional.

The set of all $f \in \mathscr{F}$ satisfying $W(f^*f) = 0$ is denoted by lker W (left kernel). Note that f^* denotes the usual conjugation in \mathscr{F} , $f_n(p_1, \ldots, p_n) = \overline{f_n(-p_n, -p_{n-1}, \ldots, -p_1)}$.

The field $A(\cdot)$ is defined on \mathcal{F} , i. e. A(f), $f \in \mathcal{F}$, is a generalized field

Annales de l'Institut Henri Poincaré - Physique théorique

operator, the usual field operator is given by $A(\tilde{f}_1)$ where $\tilde{f}_1 = (0, f_1, 0, ...) \in \mathscr{F}$. For brevity we write also $A(f_1)$ in this case.

Furthermore, an upper and lower mass gap is assumed, the discrete mass is denoted by m_0 , the corresponding one-particle subspace of \mathscr{H} is denoted by \mathscr{H}_1 , it is assumed to be irreducible with respect to the Poincaré group, the corresponding representation is labeled by m_0 and s = 0. Recall the representation (SNAG-theorem)

(4)
$$\mathbf{U}_a = \int_{\mathbb{R}^4} e^{-\mathbf{i}(a,p)} \mathbf{E}(\mathrm{d}p)$$

for the unitary representation U_a of the translation group $a \in \mathbb{R}^4$ associated with the field. In terms of $E(\cdot)$ the mass gap is expressed by

(5)
$$\operatorname{supp}^m \mathcal{E} = \{0\} \cup \{m_0\} \cup \Lambda, \Lambda \subseteq [m_0 + \varepsilon, \infty), \varepsilon > 0, m_0 > 0,$$

where $\operatorname{supp}^m E$ denotes the mass spectrum (note that $\operatorname{supp} E \subseteq \operatorname{clo} V^+$, V^+ the forward cone, and that supp E is Lorentz invariant, i. e. it contains only full mass hyperboloids H_m , then the mass spectrum is the closure of all m such that $H_m \subset \operatorname{supp} E$).

Finally, the condition of « coupling of the vacuum to the one-particle states » is assumed to be satisfied (see for example M. Reed and B. Simon [1, p. 319]. Note that this condition is satisfied if and only if

(6)
$$m_0 \in \text{supp } \rho$$

is valid. That is, in this case one obtains

(7)
$$\{m_0\} \subseteq \operatorname{supp}^m \mathcal{E},$$

(the latter inclusion is obvious).

The free (scalar) field, corresponding to $m_0 > 0$ and s = 0, is denoted by $A^0(\cdot)$, acting on the Hilbert space \mathscr{H}^0 . Its measure « ρ » (mass distribution of the Källen-Lehmann representation) is given by the Dirac measure $\rho(m) = \delta(m - m_0)$.

In H. Baumgärtel *et al.* [2] a so-called relative identification operator K is introduced, useful for the definition of wave operators with respect to the field $A(\cdot)$. For convenience, we recall the definition and simple properties of $K: \mathscr{H}^0 \to \mathscr{H}$. First, by $h \in C^{\infty}(\mathbb{R}^4)$ we denote a fixed real-valued function, $0 \leq h \leq 1$, with the following properties:

i) supp
$$h \subseteq \bigcup_{m \in [m_0 - \delta, m_0 + \delta]} H_m$$
, $\delta > 0$,
ii) $h(\Lambda p) = h(p)$ for all $\Lambda \in \mathscr{L}_+^{\uparrow}$ (proper Lorentz group),
iii) $h \upharpoonright H_{m_0} = 1$.

Second, we define a certain linear manifold $\mathscr{L} \subset \mathscr{F}$ by: $g \in \mathscr{L}$ if and only if $g_0 \in \mathbb{C}$ arbitrary, $g_n(p_1, p_2, \ldots, p_n) = h(p_1)h(p_2) \ldots h(p_n)\gamma_n(\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_n)$, $\gamma_n \in \mathscr{S}(\mathbb{R}^{3n})$, γ_n symmetric with respect to $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_n$.

Vol. 40, nº 3-1984

Then, if $(W^0(.))$ denotes the Wightman functional and J^0 denotes the (absolute) identification operator of the free field, it turns out that $\mathscr L$ contains exactly one element from each equivalence class mod lker W⁰, that is, ima $(J^0 \upharpoonright \mathscr{L}) = \text{ima } J^0$ and : $f \in \mathscr{L}$ and $J^0 f = 0$ imply f = 0, in other words, $\mathscr{L} \cap \text{lker } W^0 = \{0\}$ and $\mathscr{L} \oplus \text{lker } W^0 = \mathscr{F}$. Now an operator K: $\mathscr{H}^0 \mapsto \mathscr{H}$ can be defined by

(8)
$$\mathbf{K} \{ \mathbf{A}^{\mathbf{0}}(f)\omega^{\mathbf{0}} \} := \mathbf{A}(f)\omega, \qquad f \in \mathscr{L},$$

or

 $\mathbf{K} \{ \mathbf{J}^0 f \} := \mathbf{J} f, \qquad f \in \mathscr{L},$ (9)

where J denotes the (absolute) identification operator of the field $A(\cdot)$. (9) means that K is a certain factorization of J, $J = KJ^0$, on \mathscr{L} . K is called the relative identification operator between $A^{0}(\cdot)$ and $A(\cdot)$ with respect to \mathscr{L} . Recall the following simple properties of K:

I) K is densely defined, dom $K = \text{ima } J^0$, which is dense in \mathscr{H}^0 . II) dom K is invariant with respect to U_g^0 (the unitary representation of the Poincaré group belonging to the free field).

III) K is continuous with respect to the Schwartz space topology τ of \mathcal{F} (more precisely : dom K may be equipped with this topology by the bijection $\mathscr{L} \ni f \leftrightarrow J^0 f \in \text{dom } K$, then K is continuous with respect to this topology).

IV) $K\omega^0 = \omega$.

V) The intertwining relation

(10)
$$\mathbf{U}_{g}\mathbf{K} = \mathbf{K}\mathbf{U}_{g}^{0}$$

is valid if $g = \{\Lambda_0, (0, \mathfrak{a})\}$, where $\mathfrak{a} \in \mathbb{R}^3$ is a pure spatial translation and where Λ_0 is a pure rotation in the a-space (the intertwining relation (10) is not valid in general for time translations).

Using K, the standard two-space pre-wave operator is given by

(11)
$$e^{itH}Ke^{-itH^0}u, \quad u \in \text{dom } K$$
,

where $e^{-itH} = U_{(t,0)}$, $e^{-itH^0} = U^0_{(t_2,0)}$ denote the unitary representations of the time translations in \mathcal{H} , \mathcal{H}^{0} , respectively.

In this paper some further structural properties of K are presented. In fact, it is shown that the expression (11) is intimately connected with the Haag-Ruelle approximants with respect to the field $A(\cdot)$.

If \mathcal{M} is a subset of \mathcal{F} , for brevity we denote by $\mathcal{M}^{(n)}$ the set of all $f \in \mathcal{M}$ with $f = \{0, \ldots, 0, f_n, 0, \ldots\}$, i. e. the intersection of \mathcal{M} with $\mathcal{G}(\mathbb{R}^{4n})$.

Finally recall the assignment between one-particle states and field operators.

If $f \in \mathscr{L}^{(1)}$ then $A(f)\omega \in \mathscr{H}_1$. Moreover, the assignment $\mathscr{L}^{(1)} \ni f \mapsto A(f)\omega \in \mathscr{H}_1$ is an injection, the image { $A(f)\omega$, $f \in \mathcal{L}^{(1)}$ } coincides with

$$\{ \mathbf{A}(f)\omega, f \in \mathcal{F}^{(1)}, \operatorname{supp} f \cap \operatorname{supp} \mathbf{E} \subseteq \mathbf{H}_{m_0} \}$$

and this linear manifold is dense in \mathcal{H}_1 .

Annales de l'Institut Henri Poincaré - Physique théorique

That is, the vector $u = A(f)\omega \in \mathcal{H}_1$ with $f \in \mathcal{L}^{(1)}$ is in one-to-one correspondence with f. Therefore, one has an assignment of one-particle states $u \in \mathcal{H}_1$ to certain field operators $\mathbf{B}_u = A(f)$. This assignment satisfies the property $\mathbf{B}_u \omega = u$.

On the other hand, the assignment can be considered as the assignment of vectors of the free one-particle space to vectors $u \in \mathscr{H}_1$ via K. Namely, if $f \in \mathscr{L}^{(1)}$, then $A^0(f)\omega^0 = \{0, \gamma(\mathfrak{p}), 0, \dots\}$, where $f_1(p) = h(p)\gamma(\mathfrak{p})$ and where $\gamma(\mathfrak{p})$ is to be considered as an element of $L^2(\mathbb{R}^3, d\mathfrak{p}/\mu(\mathfrak{p}))$. That is, we have

$$\mathscr{H}_{1}^{0} = \mathrm{L}^{2}(\mathbb{R}^{3}, d\mathfrak{p}/\mu(\mathfrak{p})) \ni \gamma(\mathfrak{p}) \stackrel{\mathrm{K}}{\mapsto} \mathrm{A}(f)\omega = u \in \mathscr{H}_{1},$$

where $\mu(p) := (m_0^2 + |p|^2)^{1/2}$.

§ 2. CALCULATION OF K

In this paragraph we calculate K on a dense subdomain of dom $K = \operatorname{ima} J^0 = \operatorname{ima} (J^0 \upharpoonright \mathscr{L})$. For this purpose we use the structure of J^0 , which is given in [2]. According to this paper (Corollary 1) we have

$$\mathbf{J}^{0}f = \left\{ f_{0}, (\mathbf{T}f)_{1} \upharpoonright \mathbf{H}_{m_{0}}, \mathbf{S}_{2}(\mathbf{T}f)_{2} \upharpoonright \mathbf{H}_{m_{0}} \times \mathbf{H}_{m_{0}}, \ldots \right\}, \qquad f \in \mathscr{F},$$

where T denotes a certain continuous linear operator, acting in \mathcal{F} (see [2, Theorem 2]) and where S_n denotes the symmetrization operator

$$(\mathbf{S}_n f_n)(p_1, \ldots, p_n) = (n !)^{-1} \sum_{\pi} f_n(p_{\pi(1)}, p_{\pi(2)}, \ldots, p_{\pi(n)}).$$

Note that Tf = f for $f \in \mathcal{L}$ (cf. [2, Lemma 5]), that is, one obtains

$$\mathbf{J}^0 f = \{ f_0, f_1 \upharpoonright \mathbf{H}_{m_0}, \mathbf{S}_2 f_2 \upharpoonright \mathbf{H}_{m_0} \times \mathbf{H}_{m_0}, \dots \}, \qquad f \in \mathscr{L}.$$

Recall that $f \in \mathscr{L}$ means $f_n(p_1, \ldots, p_n) = \prod_{j=1}^n h(p_j)\gamma_n(\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_n)$, where γ_n is symmetric. Therefore

$$\mathbf{J}^0 f = \{ f_0, \gamma_1(\mathfrak{p}_1), \gamma_2(\mathfrak{p}_1, \mathfrak{p}_2), \ldots \}, \qquad f \in \mathscr{L},$$

where $\gamma_n(p_1, \ldots, p_n)$ is to be considered as an element of

$$L^{2}\left(\mathbb{R}^{3n},\bigotimes_{j=1}^{n}\mathrm{d}\mathfrak{p}_{j}/\mu(\mathfrak{p}_{j})\right),$$

where $\mu(p) := (m_0^2 + |p|^2)^{1/2}$.

Now let K_n be the *n*-particle component of K, that is

$$\mathbf{K}_{\mathbf{n}} := \mathbf{K} \upharpoonright \mathbf{S}_{\mathbf{n}}(\mathscr{H}_1 \otimes \mathscr{H}_1 \otimes \ldots \otimes \mathscr{H}_1),$$

Vol. 40, nº 3-1984

such that

$$\mathbf{K}u = \sum_{n=0}^{\infty} \mathbf{K}_n u_n, \, u = \mathbf{J}^0 f, \, f \in \mathscr{L}, \, u_n = \mathbf{J}^0 f_n.$$

Furthermore, let

(12)
$$\gamma_n(\mathfrak{p}_1, \ldots, \mathfrak{p}_n) = S_n(\alpha_1(\mathfrak{p}_1) \otimes \alpha_2(\mathfrak{p}_2) \otimes \ldots \otimes \alpha_n(\mathfrak{p}_n)), \alpha_j \in \mathscr{S}(\mathbb{R}^3).$$

According to (8) we obtain

(13)
$$K_n \{ S_n(\alpha_1 \otimes \alpha_2 \otimes \ldots \otimes \alpha_n) \}$$

= $S_n \left\{ \prod_{j=1}^n A(h(p)\alpha_j(p)) \right\} \omega, \quad n = 1, 2, ...,$

where we write for brevity $A(h(p)\alpha_j(p))$ instead of $A(\{0, h(p)\alpha_j(p), 0, ...\})$. We denote the linear submanifold of \mathscr{L} defined by (12) by $\mathscr{L}_0 \subset \mathscr{L}$. \mathscr{L}_0 is dense in \mathscr{L} with respect to τ . Then we have

PROPOSITION 1. — The relative identification operator $\mathbf{K} : \mathscr{H}^0 \mapsto \mathscr{H}$ is given on the (dense) submanifold ima $(\mathbf{J}^0 \upharpoonright \mathscr{L}_0)$ of dom \mathbf{K} by formula (13).

Proof. — Obvious by the preceding arguments of this paragraph.

According to (13), K \uparrow ima (J⁰ $\uparrow \mathscr{L}_0$), hence K itself, is already uniquely determined by the field operators A($h(p)\alpha(p)$), $\alpha \in \mathscr{S}(\mathbb{R}^3)$. But the Poincaré covariance property of the field A(\cdot) implies a strong connection between these field operators. Namely, we have

LEMMA 2. — Let $\alpha \in \mathscr{S}(\mathbb{R}^3)$, $f \in \mathscr{S}(\mathbb{R}^4)$. Then

(14)
$$\mathbf{A}(\hat{\alpha}(\mathfrak{p})\hat{f}(p)) = (2\pi)^{-3/2} \int_{\mathbb{R}^3} \alpha(\mathfrak{a}) \mathbf{U}_{\mathfrak{a}} \mathbf{A}(f) \mathbf{U}_{-\mathfrak{a}} d\mathfrak{a} ,$$

where $\hat{\alpha}$ denotes the spatial Fourier transform of α and \hat{f} denotes the 4-dimensional Fourier transform of f. The integral on the right hand side is weakly convergent for vectors $u, v \in \mathcal{D} = \text{ima J}$ (domain of the field operators $A(\cdot)$).

Proof. — From the covariance property of $A(\cdot)$ we obtain

$$\mathbf{A}(\mathbf{V}_{\mathfrak{a}}f) = \mathbf{U}_{\mathfrak{a}}\mathbf{A}(f)\mathbf{U}_{-\mathfrak{a}},$$

where, as usual, $(V_{\mathfrak{a}}f)(x) = f(x_0, \mathfrak{x} - \mathfrak{a})$. Further we obtain

$$\mathbf{A}\left(\int_{\mathbb{R}^3} \alpha(\mathfrak{a}) \mathbf{V}_{\mathfrak{a}} f \, d\mathfrak{a}\right) = \int_{\mathbb{R}^3} \alpha(\mathfrak{a}) \mathbf{U}_{\mathfrak{a}} \mathbf{A}(f) \mathbf{U}_{-\mathfrak{a}} d\mathfrak{a} \, .$$

Annales de l'Institut Henri Poincaré - Physique théorique

230

But
$$(V_{\mathfrak{a}} f)^{\wedge}(p) = e^{-i(\mathfrak{a},\mathfrak{p})}\hat{f}(p)$$
 and

$$\int_{\mathbb{R}^{3}} \alpha(\mathfrak{a})(V_{\mathfrak{a}} f)^{\wedge}(p)d\mathfrak{a} = \int_{\mathbb{R}^{3}} \alpha(\mathfrak{a})e^{-i(\mathfrak{a},\mathfrak{p})}d\mathfrak{a}\hat{f}(p) = (2\pi)^{3/2}\hat{\alpha}(\mathfrak{p})\hat{f}(p).$$

This concludes the proof.

The relation (14) implies that the field operators $A(h(p)\alpha(p))$ are uniquely determined by a single field operator $A(h(p)\gamma_0(p))$, where γ_0 is multiplicativegenerating in $\mathscr{G}(\mathbb{R}^3)$ (together with the representation U_a).

DEFINITION 3. — The function $\gamma_0 \in \mathscr{S}(\mathbb{R}^3)$ is called multiplicative-generating with respect to $\mathscr{G}(\mathbb{R}^3)$, if $\{\alpha\gamma_0 : \alpha \in \mathscr{G}(\mathbb{R}^3)\}$ is dense in $\mathscr{G}(\mathbb{R}^3)$. For example, if $\gamma_0 \in \mathscr{G}(\mathbb{R}^3)$ and $\gamma(\mathfrak{p}) \neq 0$ for all $\mathfrak{p} \in \mathbb{R}^3$, then γ_0 is multi-

plicative-generating. For example let $\gamma_0(p) = \exp((-|p|^2))$.

PROPOSITION 4. — Let $\gamma_0 \in \mathscr{S}(\mathbb{R}^3)$ be multiplicative-generating. Then $\{ \hat{\alpha}\gamma_0 : \alpha \in \mathscr{S}(\mathbb{R}^3) \}$ is dense in $\mathscr{S}(\mathbb{R}^3)$ and

(15)
$$A(h(p)\hat{\alpha}(p)\gamma_{0}(p)) = (2\pi)^{-3/2} \int_{\mathbb{R}^{3}} \alpha(\mathfrak{a}) U_{\mathfrak{a}} A(h(p)\gamma_{0}(p)) U_{-\mathfrak{a}} d\mathfrak{a}$$

Proof. Obvious.

Proposition 1 and Proposition 4 together lead to an explicit description of K, showing, that K is uniquely determined by $A(h(p)\gamma_0(p))$ for some multiplicative-generating function γ_0 .

COROLLARY 5. — Let $\gamma_0 \in \mathscr{S}(\mathbb{R}^3)$ be multiplicative-generating and put $B_0 := A(h(p)\gamma_0(p))$. Then $K \upharpoonright ima(J^0 \upharpoonright \mathscr{L}_0)$ is explicitly given by (16) $\mathbf{K}_n \{ \mathbf{S}_n(\hat{\alpha}_1 \gamma_0 \otimes \hat{\alpha}_2 \gamma_0 \otimes \ldots \otimes \hat{\alpha}_n \gamma_0) \}$

$$= \mathbf{S}_n \prod_{j=1}^n \left\{ (2\pi)^{-3/2} \int_{\mathbb{R}^3} \alpha_j(\mathfrak{a}) \mathbf{U}_{\mathfrak{a}} \mathbf{B}_0 \mathbf{U}_{-\mathfrak{a}} d\mathfrak{a} \right\} \omega, \qquad n = 1, 2, \ldots$$

Proof. Obvious.

§ 3. CALCULATION OF THE PRE-WAVE OPERATOR

Let $\gamma_0 \in \mathscr{S}(\mathbb{R}^3)$ be multiplicative-generating and put $\mathbf{B}_0 := \mathbf{A}(h(p)\gamma_0(\mathfrak{p}))$. The next Proposition calculates the pre-wave operator (11).

PROPOSITION 6. - Let
$$\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathscr{S}(\mathbb{R}^3)$$
. Then
(17) $(e^{itH}Ke^{-itH^0})_n S_n(\hat{\alpha}_1\gamma_0 \otimes \ldots \otimes \hat{\alpha}_n\gamma_0)$

$$= \left(S_n \prod_{j=1}^n \left\{ (2\pi)^{-3/2} \int_{\mathbb{R}^3} f_j(t, \mathbf{x}) U_{\{-t, \mathbf{x}\}} B_0 U_{\{t, -x\}} d\mathbf{x} \right\} \right) \omega,$$

Vol. 40, nº 3-1984

where

$$f_j(t, \mathbf{x}) = (2\pi)^{-3/2} \int_{\mathbb{R}^3} e^{-it\mu(\mathbf{p}) + i(\mathbf{x}, \mathbf{p})} \hat{\alpha}_j(\mathbf{p}) d\mathbf{p},$$

i. e. $f_i(t, \mathbf{x})$ is the spatial inverse Fourier transform of $e^{-it\mu(\mathbf{p})}\hat{\alpha}_i(\mathbf{p})$, thus $f_i(t, \mathbf{x})$ is a so-called smooth solution of the Klein-Gordon equation with « negative » frequencies.

Proof. — According to Proposition 4 we have the assignment

$$e^{-it\mu(\mathfrak{p})}\hat{\alpha}_{j}(\mathfrak{p})\gamma_{0}(\mathfrak{p}) \mapsto (2\pi)^{-3/2} \int_{\mathbb{R}^{3}} f_{j}(t,\mathfrak{x}) U_{\mathfrak{x}} B_{0} U_{-\mathfrak{x}} d_{\mathfrak{x}} .$$

Furthermore,

$$e^{-it\sum_{j=1}^{n}\mu(\mathfrak{p}_{j})}\hat{\alpha}_{1}\gamma_{0}\otimes\ldots\otimes\hat{\alpha}_{n}\gamma_{0}$$
$$=\bigotimes_{j=1}^{n}e^{-it\mu(\mathfrak{p}_{j})}\hat{\alpha}_{j}(\mathfrak{p}_{j})\gamma_{0}(\mathfrak{p}_{j})=(e^{-itH^{0}})_{n}(\hat{\alpha}_{1}\gamma_{0}\otimes\ldots\otimes\hat{\alpha}_{n}\gamma_{0})$$

is valid, thus we obtain

 $(\mathrm{Ke}^{-\mathrm{i}t\mathrm{H}^{0}})_{n}\mathrm{S}_{n}(\hat{\alpha}_{1}\gamma_{0}\otimes\ldots\otimes\hat{\alpha}_{n}\gamma_{0})$ $= \left(\mathbf{S}_n \prod_{j=1}^n \left\{ (2\pi)^{-3/2} \int_{\mathbb{R}^3} f_j(t, \mathbf{x}_j) \mathbf{U}_{\mathbf{x}j} \mathbf{B}_0 \mathbf{U}_{-\mathbf{x}} \mathbf{d}_{\mathbf{x}j} \right\} \right) \omega.$ Therefore we finally obtain (17) for $\{ e^{itH} (\mathbf{K} e^{-itH^0}) \}_n \mathbf{S}_n(\hat{\alpha}_1 \gamma_0 \otimes \ldots \otimes \hat{\alpha}_n \gamma_0)$

because of $e^{itH} = U_{(-t,0)}$ and $U_{(t,0)}\omega = \omega$.

Proposition 6 gives a link between the pre-wave operator e^{itH}Ke^{-itH0} and the expressions (Haag-Ruelle approximants) used in the Haag-Ruelle scattering theory for Wightman fields. That is, Haag-Ruelle's theory appears as a special part of the abstract two-space scattering theory (see H. Baumgärtel and M. Wollenberg [4]). The basic concept of the abstract scattering theory is given by the pre-wave operator mentioned above. Note that the identification operator K in the field-theoretic case is unbounded and not closable but densely defined whereas the identification operators appearing usually (e. g. in the non-relativistic scattering theory) are bounded.

It should be mentioned that the characteristic *t*-dependence of the special field operators A($e^{it(p_0 - \mu(p))} f(p)$) occuring in the Haag-Ruelle approximants (see for example K. Hepp [5, p. 96]) suggests the introduction of a prewave operator, i. e. of an operator K. In fact, one obtains, in an intimate connection with Proposition 6, that

$$(e^{itH}Ke^{-itH_0})_n \left\{ S_n(h(p)\hat{\alpha}_1(\mathfrak{p}) \otimes \ldots \otimes h(p)\hat{\alpha}_n(\mathfrak{p})) \right\} \\ = \left\{ S_n \prod_{\rho=1}^n A(e^{it(p_0 - \mu(\mathfrak{p}))}h(p)\hat{\alpha}_\rho(\mathfrak{p})) \right\} \omega$$

Annales de l'Institut Henri Poincaré - Physique théorique

232

is valid (see for example [2, Lemma 6]). Proposition 6 shows explicitly that the pre-wave operator, i. e. also K, depends on a single field operator $A(h(p)\gamma_0(p))$ only.

Under the assumptions listed at the beginning of paragraph 1 the strong limits for $t \rightarrow \pm \infty$ of (11) exist and they turn out to be isometric (Haag-Ruelle). Because K is uniquely determined by B_0 the question arises, what properties of B_0 are decisive for the existence and isometry of the wave operators. Some authors (for example A. S. Schwartz [3]) have shown that the (sufficient) assumptions of Haag-Ruelle can be weakened. It would be nice to have some insights what properties of K resp. B_0 are necessary for the existence and isometry of the wave operators in order to attack the corresponding inverse problem.

REFERENCES

- [1] M. REED and B. SIMON, Scattering Theory (Methods of Modern Mathematical Physics III), Academic Press, New York, San Francisco, London, 1979.
- [2] H. BÄUMGARTEL, H. NEIDHARDT and J. REHBERG, On Identification Operators Between Free and Interacting Quantum Fields, Math. Nachr., to appear.
- [3] A. S. SCHWARZ, Mathematical Introduction into Quantum Field Theory, Atomizdat, Moscow 1975 (in Russian).
- [4] H. BAUMGÄRTEL and M. WOLLENBERG, Mathematical Scattering Theory, Akademie-Verlag, Berlin, 1983.
- [5] K. HEPP, On the Connection between the LSZ and Wightman Quantum Field Theory, Commun. Math. Phys., t. 1, 1965, p. 95-111.

(Manuscrit reçu le 18 Avril 1983) Version révisée reçue le 20 Août 1983