
ANNALES DE L’I. H. P., SECTION A

G. GALLAVOTTI

V. RIVASSEAU
Φ4 field theory in dimension 4 : a modern introduction
to its unsolved problems
Annales de l’I. H. P., section A, tome 40, no 2 (1984), p. 185-220
<http://www.numdam.org/item?id=AIHPA_1984__40_2_185_0>

© Gauthier-Villars, 1984, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1984__40_2_185_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


185

03A64 field theory in dimension 4 :
a modern introduction to its unsolved problems

G. GALLAVOTTI (*)

V. RIVASSEAU (**)

Institute for Mathematics and Applications (I. M. A.),
University of Minneapolis, Minneapolis, 55455 MN., U. S. A.

Institute for Advanced Study, Princeton, 08540 N. J., U. S. A.

Ann. Inst. Henri Poincare,

Vol. 40, n° 2, 1984 Physique theorique

ABSTRACT. - We introduce the notion of renormalization scheme for

regularized ~p4 theories in order to investigate the continuum limit. We point
out simple phenomena which suggest the interest of generalized cut-off
actions containing « antiferromagnetic » terms for the construction of
non trivial (non-gaussian) limits. Parts of this paper are expository and
may serve as an introduction to ~p4.

RESUME. - On introduit la notion de schema de renormalisation pour
des theories ~4 regularisees, afin d’etudier la limite continue. On signale
des phenomenes simples qui suggerent l’intérêt d’actions generalisees avec
cut-oNF contenant des termes antiferromagnetiques, pour la construction
de limites non triviales (non gaussiennes). Certaines parties de 1’article
sont didactiques et peuvent servir d’introduction a la theorie ~4.
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186 G. GALLAVOTTI AND V. RIVASSEAU

1. INTRODUCTION

Old arguments by Landau and al. [7] ] [2 ], followed by renormalization
group [3] ] and numerical analysis [4 ], suggest that the ultra-violet limit
of a regularized 03C644 or QED4 field theory should be « trivial », i. e. a gaussian
field or a generalized free field, or more vaguely just a theory whose depen-
dence on the renormalized couping constant has nothing to do with the
one foreseen by supposing that the renormalized perturbation series is

asymptotic to its Schwinger functions.
Although such arguments have generated a strongly held common belief

among physicists on the triviality of 03C644 and QED4, there are still a few
scientists who feel that there should be something behind perturbative
renormalization theory and advocate the importance of further study on
this issue.

Recently considerable progress has been made towards the clarification
of the nature of the problem. In the framework of lattice regularized 
ries with a nearest neighbor realization of the laplacian it has been shown [5]
[6 ], that a large class of interesting choices of the bare constants leads to
continuum limits which are trivial theories. Such results are more complete
in dimension of space-time d &#x3E; 5 but even in d = 4 they cover a rather

. wide class of bare coupling constants. Most of the specialists are convinced
that, sooner or later, the d = 4 case will be settled for the triviality in the
same generality in which the d z 5 case has been already settled, and we
shall not discuss the possibility that they might be wrong. In both cases,
however, the issue of existence of non-trivial continuum limits has not been
completely settled, to the best of our understanding, by the above major
contributions, in spite of the flood of light they throw on problems hitherto
reputed out of range of today’s mathematically rigorous techniques. It

is the aim of the present paper to explain what are in our opinion some
remaining important open questions and to hint some possible ways to
attack them. We shall first explore a naive approach based on perturbative
renormalization theory and built with the unpopular hope of obtaining
a non-trivial continuum limit asymptotic to the renormalized perturbative
series. We shall see that this approach leads naturally to consider a class
of cut-off theories wider than the ones studied in [5] ] [6 ]. In particular
we shall produce examples of cut-off ~p4 theories which are « antiferroma-
gnetic » (i. e. with negative wave function coupling constant) but which
have a perturbative expansion for the Schwinger functions which upon
removal of the cut-off converges term by term to the usual renormalized
series. In our opinion this remark (see [7 ]) compels one to consider, in the
triviality proofs, the antiferromagnetic case on equal footing with the
ferromagnetic one. The consideration of antiferromagnetic couplings leads
us also quite naturally to still more general regularized theories in which
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1871&#x3E;4 FIELD THEORY IN DIMENSION 4

the realization of the laplacian is not necessarily between nearest neighbors
and contains therefore several length scales. By displaying the greater
richness and flexibility of these theories we shall finally argue that they
may be better suited than the standard ones for the analysis of the ultra-
violet limit and the possibility of non triviality.
We shall also point out that the sign of the renormalized coupling constant

is not fixed by renormalization theory : this will be done by providing
examples of cut-off theories (having positive bare coupling constant) giving
rise to renormalized coupling constant of arbitrary sign. This might be
interesting since the theories with negative renormalized coupling constant
are asymptotically free (see [8] for a discussion of these theories).

In this paper we limit ourselves to two regularizations : the « Pauli-
Villars » because of its simplicity, and the lattice regularization, because
of its conceptual beauty, and mainly to make use of the results in [5] ] [6]
and show how they are compatible with our ideas. Sect. 2 is devoted to
some notations and is an introduction to ~p4 theories with « no prerequi-
sites »; it also contains a discussion of the notion of triviality. We introduce
what we call « renormalization schemes » and formulated some of our

simple results, which are proved in an Appendix. In Sect. 3, 4 we provide
some studies of the simplest « renormalization schemes », which unfor-
tunately do not lead to interesting theories. In Sect. 5, 6, 7 we discuss further
what the idea of antiferromagnetic field theories suggests towards the
possible construction of a non trivial ~p4 theory : in particular we show
that the presence of antiferromagnetic couplings and the « spreading »
of the laplacian on many sites can dramatically alter the features of the
theory without preventing it from having eventually a non trivial ultraviolet
limit. Finally in Sect. 8 we discuss briefly, and mainly for completeness,
some other non-standard approaches to the construction of ~p4 and the
corresponding triviality conjectures.

2 D1 FROM A CONSTRUCTIVE POINT OF VIEW

We discuss the case d = 4 only (though many of our comments apply
also to d &#x3E;_ 5 when, however, the theory is not renormalizable and Prop. 1
below is false). We shall also confine our attention to finite volume theories

choosing for simplicity this volume to be a torus T4 = [0, 27r]~.
Let Z4 denote the lattice of the points n E R4 with integer coordinates

and let aZ4 = {x x = an, n E Z4 }. We define the free field as the gaussian
measure P free on S’(T4) (the distributions on T4) whose covariance (free
propagator) is :

Vol. 40, n° 2-1984



188 G. GALLAVOTTI AND V. RIVASSEAU

where

The cut-off fields with cut-off of length a = 2 - N2~c, N = 0,1, ... , will be
of two types denoted PN with a = P V or a = (for « Pauli-Villars » or
« lattice »). The Pauli-Villars free field regularized at length 2rc2 - N will
be the gaussian measure on S’(T4) whose covariance is given by (2.1)
with C replaced by :

The 1-free field regularized at length a = 2 - N2~c will also be a gaussian pro-
bability measure on S’(T4) : it will give probability 1 to simple distributions ~
described by functions which are constant on the cubes of the pavement
of T4 consisting of the cubes with centers at the points x E aZ4 and side
size a. Of course the field is completely described by the values of ~p at
the centers of these cubes, hence we describe it completely by giving the
covariance function C(x, y) for x, y E aZ4 only. It will be given again by (2 .1 )
with C replaced by :

In general if P03B1 is a gaussian measure on some space of distributions we shall
denote : :a the Wick ordering operator acting on the polynomials of the
field..
Then a regularized 03C644-theory with bare couplings GN &#x3E; 0, MN, AN is

defined as the normalized measure on S’(T4) :

the a denoting the gradient if a = PV and denoting if a = l:

and the constant Z in (2. 5) being a normalization constant.
Clearly if a = l the field is defined by its values at a finite number of

points and (2. 5) can be written as a probability distribution for the values
(Jx), x E aZ4 n T4; a simple computation, recalling the definition of Wick
ordering, allows to write such a distribution more explicitly as :

cle Physique theorique
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where the sum and the product are taken over aZ4 n T4 and is
x x ~y

performed over the pairs of nearest neighbors in aZ4 n T4, hence such
that |I x ...,... y I = a. Furthermore:

and we have the following correspondence :

In (2 . 7) we adopt the notations of [6] for the purpose of later comparison.
The assumption

which we shall always make, and the fact that the product in (2. 7) is finite
show that for a = there is no problem in giving a meaning to (2 . 5).

If a = PV, the field qJx at the point X-E T4 is not a good random variable

and even less so is ~~px, because + 00: therefore a discussion

of the meaning of (2. 5) is necessary.
We shall give a meaning to (2. 5) with a = P V via a sequence of formal

identities transforming it into a meaningful. expression which is then taken
as the rigorous definition of the right hand side of (2. 5). In the procedure
which follows there are some arbitrary choices which we make with the
aim of obtaining a simple final form for 

Let pN = (22N - 1) -1 and note that the function in (2 . 3) can be written as :

We introduce also the function :

where 03C92 &#x3E; 0 is a free parameter, which we shall take equal to 1, and
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190 G. GALLAVOTTI AND V. RIVASSEAU

Then a simple calculation of formal nature aiming at including

into the gaussian measure, together with a term - (1/2)~ ~M~: added
to balance it if AN  - 1, leads to expressing (2. 5) in terms of the gaussian
measure whose covariance is given by (2.1) with C replaced by (2.11).
The result is :

where Z* is a suitable normalization constant and, using the « Wick reor-
dering » relations, one finds :

It is now possible to see that the exponential function in (2.13) is, if (2 . 9)
holds, in Lp(PN) for all p &#x3E; 0. This follows from the logarithmic nature
of the singularity that the distribution (2.11) as well as c1 itself have at
x = y. Therefore it is possible to apply Nelson’s theorem. It shows that

in any even dimension d the function exp - r : where P is a

polynomial of even order and positive leading coefficient, is in 4(/1), for

any p &#x3E; 0 and any gaussian measure /1 generated by a positive polynomial
of the laplace operator of degree d/2. Actually Nelson’s theorem is for-
mulated usually for d = 2 [9 ], but its proof clearly covers the above men-
tioned slight generalization. So (2.13) makes sense.

. 

With the above notations and conventions for P03B1N,int we introduce the
« Schwinger functions » : 

r

and we say :

DEFINITION 1. - An (ordinary) ~p4 theory (on T4) of type a is a pro-
bability measure P on S’(T4) which is the weak limit of a sequence of PaN,int,
hence whose Schwinger functions are the limits as N -~ 00 of sequences
(2.15) when GN, MN, AN are chosen such that these limits exist (a is fixed

Annales de l’Institut Henri Poincare - Physique theorique
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to be PV, l or a third value el (for « extended lattice ») introduced in (2.16)
below.

So the ~p4 theories may depend on a and the choice of the sequences
(GN, MN, AN), N = 1, ... oo. The (ordinary) triviality conjecture (or T. C.),
which we have the impression that many believe but which does not seem
to have been ever explicitly written down, is that all (ordinary) ~p4 theories
are gaussian processes on S’(T4). In Sect. 8 we introduce an other possible
definition of extended ~p4 theories, based on perturbation theory, and dis-
cuss briefly the corresponding triviality conjecture, which we call the
« strong triviality conjecture » or S. T. C. We do not think that to write
down these different definitions and conjectures is just an unnecessary
complication ; we hope that it might help to understand what are the mathe-
matical issues to clarify, and what rigorous meaning one might give to
the often-heard sentence « ~p4 is trivial ». Apart from Sect. 8, however,
we will only deal with the ordinary ~p4 theories as defined in Def. 1.

It should be stressed that the physical interpretation of any ~p4 field
requires other properties on P besides the ones following from Def. 1:

one wants the Schwinger functions associated to P to be the imaginary
time values of a family of Wightman functions, so that they really cor-
respond to a relativistic quantum field in Minkowski space. It is not very
clear in the literature whether the triviality is conjectured among the ~p4
fields which also admit this quantum field interpretation (for instance,
which satisfy some sufficient set of euclidean axioms, like Osterwalder-
Schrader’s). We can only remark that the various heuristic or rigorous
papers on triviality, besides some restrictive assumptions, do not discuss
this point in detail. In every case at least one of the properties coming from
the Wightman axioms is violated a priori by the regularization and it is
unclear how this affects the physical relevance of the results obtained
afterwards.

In our opinion, however, any triviality conjecture should mention this
point : we shall therefore speak of « physical triviality » if one restricts
the above triviality conjectures to the theories which admit a quantum
field interpretation.

In the context of our cutoffs the possible limits P fall short of verifying
the O. S. axioms because the euclidean invariance is a priori broken by
the lattice regularization, and the reflection positivity is broken in the P. V.
regularization. Actually it is also partly broken in the lattice regularization
if 1 + AN  0; in this case and for a cubic lattice, only the reflection posi-
tivity through the planes containing sites holds and the other one, through
the planes between the sites, is lost (to see this, use transformation (4.1)).
Since the first set of planes becomes dense as the lattice spacing goes to zero
there is however no reason to rule out the possibility that a continuum
limit of such antiferromagnetic theories verifies O. S. positivity.
Vol. 40, n° 2-1984



192 G. GALLAVOTTI AND V. RIVASSEAU

Before formulating the basic results of renormalization theory we wish
to go more deeply into a question which naturally arises from the above
discussion. How are the l and PV theories related ? One would like to say
that in the limit N ~ oo they yield the same class of theories. Unfortu-
nately this is unknown.
One can remark that there seems to be a basic difference between the

two regularizations : if one « discretizes » the free field PNY one obtains
a lattice field with, at least, nearest and next-nearest neighbor couplings,
which also have different signs; the wave function counter term then adds,

, after discretization, other contributions to the nearest neighbor coupling.
Therefore it might be interesting to extend the lattice regularization by
introducing instead of (2 . 5) the more general field :

where AN(n) is rotation symmetric (on the lattice) and bN &#x3E; 0 is arbitrary.
A natural restriction on bN could 0 as N ~ oo : this condition
on bN can be imposed to require that the field~ be formally local as N ~ oo.
The definition 1 can be immediately extended to allow the index a to take
the value el, letting GN, MN, AN arbitrary as N ~ oo in a way compa-
tible with (2.17).

This completes our description of the bare ~p4 theories and their diffe-
rent cutoffs. We now turn to the perturbative theory of renormalization.
Its basic result is formulated in term of a free parameter g called by universal
agreement the « renormalized coupling constant » and opposed to the
« bare » constants GN, MN, AN.
A formulation of the results of renormalization theory requires understan-

ding that a certain number of formal operations can be made on the measure
PN,int. In particular S( fl, ...,~,; N, x) can be written formally as

S(fi ~ ... ~ fn ~ N~ a) = S°(fi ~ ... ~ fn ~ N~ a)

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’
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of Wick ordered polynomials, S°( fl, ...,~,;N,(x) being the Schwinger
functions of the PN-field. They are obtained by simply expanding the
exponential in (2.13) or (2 .16) in powers of GN, MN, AN (in the case of (2.16)

one has to interpret m3 as a vector as well as AN and AN3 means AN3~°~(n)
with the product running on the n’s such that a ~ I n  bN). n

If we now suppose that GN, MN, AN are formal power series in a para-
meter g :

it is clear that by substituting (2.19) into (2.18) and by collecting equal
powers in g, we obtain a formal series :

where each of the coefficient of (2 . 20) is a finite combination of coefficients
of (2.18).

This construction permits the following definition :

DEFINITION 2. - Given the three formal power series (2.19), we call
the formal power series (2. 20) constructed above the « formal perturbation
theory » for ~p4 (of type (x), with formal couplings (2.19). For fixed a, we
say that a family of functions ... ,~,), ~ = 1, 2, ..., f 1, ... , fn E S(T4),
n = 1, 2, ... is a « formal perturbative ~p4 theory » (of type x) if there is a
sequence of formal power series of the form (2.19) whose formal power
series for the Schwinger functions has the property that the limits :

exist for all k, f 1, ... , fn .
Note that in order to define a formal perturbative ~p4 theory one does

not even need that the bare couplings (2.19) are given by convergent series.
The striking result of renormalization theory (see e. g. [70] ] and refe-

rences therein) is then :

PROPOSITION 1. - For any a = PV, l, or el, there exist three formal
power series

00 00 00

for N = 0, 1, 2, ..., such that the limits (2 . 21) exist. In other words there
exist formal ~p4 perturbative theories. In the case el the ~ and akl(N)
Vol. 40, n° 2-1984



194 G. GALLAVOTTI AND V. RIVASSEAU

are vector valued functions indexed by n E Z4, a ~ I n and lim bN = o.
Furthermore the above el theories yield formally the same results as

the l theories with same M~ and :

in the limit N --&#x3E; oo .

If two formal ~p4 perturbative theories of el or of l type are described
by bare constants Me; and by ~ constants such that (2 . 23) holds
we say that they are « corresponding » theories.
The above proposition is by no means obvious since its analogue in

dimension d &#x3E; 4 is simply false (this is the statement that ~p4 is renorma-
lizable, but ~pd is not renormalizable for d &#x3E; 4). The remarkable part
of Proposition 1 is that yk(N), Mk(N), ak(N) called respectively, for k &#x3E; 2,
« coupling », « mass », and « wave function » counterterms) are inde-
pendent of f1, ...,fn, n.
There are many formal power series like (2.22) enjoying the property

of producing a perturbative ~p4 field theory, for the following trivial reason :
suppose that there is one choice of the series (2 . 22) which produces a formal
~p4 theory, then let 00

and substitute this formal series in (2.22). Working out the algebra one
ends up with three new formal series which of course
still verify the necessary properties to define a formal ~p4 theory (of the
same type).
One can say that the group of the formal power series with lowest order g

« acts on the set of the formal perturbative ~p4 theories » in a natural way.
This just described action is called a « renormalization group action »
on the bare couplings of There are other transformations of the bare

couplings which leave invariant the set of the formal perturbative 
theories : they can be obtained from other operations on the measures
defining the fields like rescalings of the fields ~ (cpç) or of the length
scale on which the space coordinates x are measured ~ It is hard
to imagine other classes of transformations of the bare couplings which
could be added tb the ones just described and presumably there are no
other. Anyway, the full set of these transformations forms the « renorma-
lization group » of ~p4.
As we see the above ambiguities on the choice of the bare constants

. leading to a formal ~p4 theory are somewhat trivial. Very few explicit choices
have been in fact investigated in the literature and only one in real detail:
it is the B. P. H. Z. subtraction scheme in momentum space (see e. g. [70]

Annales de Henri Poincaré - Physique theorique
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[11 ], and references therein) for which there are not only qualitative, but
also some quantitative information available [77]. Among the possible
choices to define a formal ~p4 theory we decide therefore to select always
this B. P. H. Z. choice. We are aware that this choice is somewhat arbitrary
and that it would be interesting to analyze how much it can affect our study;
but this would be hard and we must therefore restrict ourselves to the

only case for which some detailed work has already been done.
Another remark on Proposition 1 is that it shows the formal equivalence

between the field theories of type l and el. It does not seem possible for the
time being that one could go beyond this formal equivalence and show
that the set of all the possible continuum limits of type coincide with that
of all the possible limits of el type. The reason why we have introduced
the el theories is that they may be easier to treat from a technical point of
view. In particular they allow much more flexibility in the study of cases
in which the convergence of the measures PN,int to a limit P is so singular
that 5’(/i,~~~) converges to a limit only in the sense of the
distributions but not pointwise (i. e. the kernel S(x, y;N,x) of S( fl, f2 ; N, oc)
does not converges as N ~ oo for fixed x and y but only as a distribution ;
this is precisely the situation that we can expect to meet when 1 + AN  0.
We shall later provide an explicit example of how a ~p4 theory of el type
can be constructed in this way (without verification of the physical axioms,
however)).
We now proceed to define in a more precise way the problem of the « cons-

truction of a ~p4 theory by perturbation theory ». By this we mean the
following : fix a formal ~p4 perturbation theory, i. e. a sequence of three
formal power series with the properties described in Definition 2 above;
then attempt to construct a one parameter family of random fields depen-
ding on a parameter g and with Schwinger functions admitting an asymp-
totic series at g = 0, defined in a right or a left neighborhood of the origin, 

_

with coefficients given by the formal ~p4 perturbative theory.
The construction problem can be formulated in terms of the new notion

of renormalization schemes which we define as follows :

DEFINITION 3. - Fix a = or el, 8 &#x3E; 0, and a perturbative ~
theory : a renormalization scheme on [0, s ] (or [ - s, 0 ]) is a sequence of
functions of a variable g which are holomorphic in a domain containing
[0,e] (or [-6,0]), MN(g), AN(g) and have power series at g = 0
given by

Vol. 40, n° 2-1984



196 G. GALLAVOTTI AND V. RIVASSEAU

such that 7~(N) = yk(N), ~(N) = mk(N), ak (N) - ak(N) for N &#x3E;_ Nk suf-
ficiently large (where y", are the coefficients of the formal power
series for the bare constants which lead to the chosen perturbative ~
theory, see Definition 2).

If for all g E [0, s] (or [ - E, 0 ]) and, given g, for all N large enough it
is true that

we say that the renormalization scheme is admissible.
The above definition can certainly be generalized (e. g. replacing « holo-

morphic » by C°°): however it already contains so much structure and inte-
resting open problems that we do not generalize it in this paper.
A typical renormalization scheme is what we call a « truncation scheme »

and lim = oo. We shall denote such schemes as LM, iA).
However the above definition allows quite a few subtleties and trivialities.

To give an idea of what we have in mind just pretend for a moment that.

for a = PV or l. Then a non truncation renormalization scheme could be,
on [- 8,0]:

This scheme would not be admissible : however the corresponding trun-
cation schemes would be admissible on [o, ~ ] and, if iG(N) is even, also
on [- E, 0].

If we change (2.29), replacing GN by GN defined by

we see 
" that the renormalization scheme " obtained 0 in this way is admissible

on [- ~,0].

, 

Annales de l’lnstitut Henri Poincaré - Physique " théorique "
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. 

As we shall see a case more realistic than the one in (2.28) is, for each
k = 1, 2, ... , and when N -~ oo :

Then if LG grows slowly enough with N (to + oo) and + oo as

N ~ oo (at any rate) the truncation scheme iA) is admissible
on [0, 1 ], say, and on [20141,0] also provided LG is even.
The possibility of manipulations of a renormalization scheme, like in

(2 . 30), tells us that most renormalization schemes are uninteresting :
this remark leads to the following definition :

DEFINITION 4. - An admissible renormalization scheme is called « per-
turbatively singular » if the lim PN,int = P~ exists for all g E [0, a] in the
sense that the Schwinger functions of the 1. h. s. converge to those of the
r. h. s. but their derivatives with respect to g at g = 0 do not converge
to those given by the renormalized perturbation theory. An admissible
renormalization scheme will be called « perturbatively » or « weakly »
trivial if P~ is a gaussian measure or if its Schwinger functions vanish at
non coinciding points. In both cases indeed P~ will not be an interesting
model for realistic interacting and propagating fields.
The triviality conjecture then implies that all the renormalization schemes

are weakly trivial. The existence of a non singular renormalization scheme
for the B. P. H. Z. choice of the bare constants would imply the falsity
of this triviality conjecture.
Avoiding the formulation of new conjectures but trying to see what

really happens did not lead us very far. We have been able to prove :

PROPOSITION 2. - Consider the B. P. H. Z. choice of the formal bare
constants and oc = PFor (x = ;

i ) There are three positive constants A, B, C, such that for any fixed
k ~ 2, one has :

ii) There are admissible renormalization schemes of the truncation type
for 03B1 = PV or 03B1-l, and for [0, ~] or [-8,0].

iii) Among the admissible truncation renormalization schemes, many
arc trivial (and can be explicitly described).

Vol. 40, n° 2-1984
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Statement ii) follows immediately from i ), which is proved in the Appen-
dix. Statement iii) is proved in some detail in Sect. 3 and Sect. 4. The results
on the case a = were communicated to us by Alan Sokal (see Sect. 4).

In all the instances in which we can prove admissibility of a truncation
scheme we find that :

The fact that GN &#x3E; 0 implies 1 -f- AN  0 in these cases might be a more
general property of many classes of renormalization schemes : if the triviality
conjectures for the ferromagnetic ~p4 models emerging from [5 ] [~] ] are
supposed to hold, it would be precisely a necessary condition for a non-
trivial ~p4 theory, generated by a renormalization scheme in the way we
propose, to satisfy GN &#x3E; 0 and 1 + AN  0. On the other hand GN and
- AN need not tend to + oo for any constructive reason ; they may rather
behave as the trivial resummed « examples » (2.29) suggest. These two
questions are quite interesting and in our opinion deserve further careful
investigation (see Sect. 5).
The behavior (2 . 3 3), whether or not GN &#x3E; 0 really implies, under rather

general conditions, 1 + AN  0, suggest that the antiferromagnetic cases
(AN  - 1 or {3  0, a = PFor a = ), should be considered at least on
equal footing as the corresponding ferromagnetic ones (which tend to
provide trivial theories, as shown in [5] [6]). It is not inconceivable that
consistency with renormalization theory 4) requires antiferromagne-
tic couplings (i. e. huge field strength renormalization). The super-renor-
malizable cases d  0 are not a reliable guide for this situation since they
do not need any field strength renormalization ( 1 ).

In Sect. 5 we try to make less absurd the throught that this might be a
possible mechanism for the construction of a non trivial ~p4 theory.

In Sect. 6 we pursue the analysis of the notion of renormalization scheme
by deriving another simple result.

PROPOSITION 3. - There exist non-trivial (singular), non ferromagnetic
renormalization schemes for ~p4 theories of type el.
The formal bare constants of the renormalization schemes found in the

proof do not correspond to a truncation of the B. P. H. Z. ones, and the ~p4
theory constructed by Prop. 3 does not admit a quantum field interpre-
tation. We regard the above Proposition therefore only as a sign of the
interest of the antiferromagnetic couplings and as a strong argument showing

( 1 ) It might be relevant to notice that the very word « field strength renormalization »
is misleading in the case of antiferromagnetic couplings. One uses this word because a
gradient term like A_(a~p)2 can be changed into the usual gradient term (a~p)2 by a rescaling
of the field ~p -~ But this rescaling is ill-defined precisely in the antiferromagnetic case
~ 0 ! -
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that it will not be easy to prove the triviality conjecture on ~p4 without
reference to perturbation theory or without the use of some kind of general
axiomatic arguments, independent of Lagrangian field theory, e. g. proving
inconsistency of 4-dimensional interacting scalar field theory (see Sect. 8
for a more complete discussion). In fact. Prop. 3 shows the falsity of the
(ordinary) triviality conjecture if one does not restrict it to the theories

which admit a quantum field interpretation (at least for theories of type el,
which are formally equivalent to the theories of type l, for which, however,
we cannot say much). In Sect. 7 we outline a project of constructive analysis
of 03C644 which, although probably not new to many, does not seem to have been
written down in a precise form. ,

Finally we stress that the bounds (2.32)-(2.34), which are our main
technical result, are well known in the physics literature as they say that
the leading divergence of the counterterms of order k is (AN)k -1; recalling
that N is the logarithm of the cutoff, this is nothing but the « leading-log »
behavior considered already in [7] ] and widely discussed thereafter. In
its simplest form, the « Landau argument » is just a summation of the power
series (2.22) in which according to (2.32), has been replaced by
(AN)k -1:

Indeed (AN)k-1 is the « leading-log » term found in the divergence of the
sum of the bare amplitudes at order k. From (2.36) Landau concluded
that lim g = 0, no matter how the bare coupling constant GN &#x3E; 0 varies

with N ; the vacuum polarization « screens » the interaction, and the resul-
ting theory is a free field. However the mass and field strength renormaliza-
tion have not been as extensively studied as the coupling constant renor-
malization and this may explain why the negative sign in (2 . 34) has not been
previously emphasized. In our opinion one cannot give credit to the Lan-
dau (or one-loop renormalization group) argument without worrying
about this negative sign which arises from the same approximation on
which these arguments are based, and is therefore independent of the
particular choice of the renormalization, exactly to the same extent as
they are.
The new derivation we give in the Appendix of this well-known « leading-

log » behavior has the following interesting features which justify our

including it :

i ) it is completely rigorous and original : we analyze « leading-log »
ultraviolet divergences graph by graph, by performing Hepp’s sector

splitting and the classification of forests according to the new methods
introduced in [77]. We extract the exact coefficient for any of the relevant
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contributions, then sum up all the contributions at a given order, weighted
by the exact symmetry factors of the corresponding graphs and show that
the result of this tedious computation is a nice geometric series. This « brute
force » method is technically more complicated but conceptually simpler
than the use of a renormalization group argument. We do not know of
such a completely rigorous analysis in the literature (if however it exists,
we apologize to its author); in particular the early graphical derivations
of leading log behavior by Landau et al. [7] ] [2] probably cannot be consi-
dered 100 % rigorous simply because there was no rigorous theory of
perturbative renormalization at that time.

ii) It is potentially more powerful and general than the derivations based
on a renormalization group analysis which retains only the first term in
the 03B2 function. Indeed it may yield reasonably accurate information on
the way the limit is approached in (2.32)-(2.34). This depends obviously
on finding rigorous bounds on all non-leading-log contributions to 
ak(N), mk(N). Although we did not try to find actually these bounds it
is quite clear that one can obtain them by using the full combinatoric
machinery developed in [11 ], which is able to provide reasonable bounds
on contributions associated to any graph, sector, and equivalence class
of renormalization forests. Up to now, it is the only method we know
of in order to get rigorous information on the precise possible rates of
truncation L(N) for the admissible schemes of truncation type introduced
in Prop. 2, ii) (see the end of the Appendix for more details).

3. EXAMPLES OF TRIVIALITY
IN THE FRAMEWORK OF THE PV REGULARIZATION

From Prop. 2, i ) one deduce that by choosing LA) ~ + oo very
slowly we can obtain in (2 . 27) +00

as:

and the ratios between any two of these three quantities can obviously
be made to tend to any of the three choices 0, positive constant, + oo,
for all g &#x3E; 0, by simply adjusting the integer-valued functions iM, 
We now look at (2.11) and note that the covariaQce C1 of qJx has the form

where
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Therefore it is natural to define

with o/x being a field on 
In terms of the field 0/, whose covariance is not too different from (3. 3)

and differs from it by a regular correction of order exp - ~/2~ (coming
from the sum in (3 . 2)) the measure (2.13) is rewritten :

with : : denoting the Wick ordering with respect to P 1 and :

and a simple calculation shows, from (2.14)

and

where c~, c~, c~’ are suitable constants and lim ~ = 0; actually Cro

is 03C9-independent. 
N~~

We now arrange the choice of GN, AN, MN so that G -~ 0, M -~ 0.

This will imply that the field ~ has a limit distribution as N ~ oo which
is gaussian, hence the field 03C8 will be trivial.

This can be inferred from the fact that we can, in principle, perform the
whole constructive theory of the (superrenormalizable « »): 
interaction and conclude that if G -~ 0, M ~ 0 its mass gap is uniform.
Taking into account the speed at which pN approaches zero and 03BEN infinity
and the relation (3.4), this immediately implies that the field ~p has all its
Schwinger functions going to zero as N -~ oo (i. e. PNYnt converges in
this case to the Dirac measure on the null field).

It seems likely that all the other choices of the truncations which lead
to GN  +00, MN --~ +00, ~ -~ 2014oo yield a trivial theory. We do
not, however, analyze this point in further detail (the discussion would
involve developing in detail the theory of the 03C8-field with : 03C84x: and 
interaction with singular coupling constants; a task that might be hard
in full generality). As we shall see in the next section the analogous dis-
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cussion in the lattice regularization is easier (elementary in fact) and can
be carried out completely.
As a final remark on this section we note that it is possible to modify MN

so that the constant M described in (3.8) goes to zero as N -~ oo while
converges to a positive limit : G -~ B ’ ~ ’ ~. To achieve this, however,

one has to abandon the frame of the truncation schemes (in fact Cro 7~ 0
implies that MN cannot be a truncation of a series like (2. 22) if GN, AN
are of truncation type as above and if one whishes lim MN = 0).
Then using the fact that the field has a : ~r4 : theory which is super-

renormalizable it is quite clear that 03C8 will have a limit distribution as N ~ 00
which is non gaussian and not analytic in g (though analytic in g-1 for g
large). Since the is obtained by suitable scalings from the 03C6-field
we can interpret this as saying that in the frame of the Pauli-Villars regu-
larization it is possible to construct an interaction of fourth order in the
field and introduce suitable counterterms so that the field admits a non
trivial ultraviolet limit. It is however clear that this ultraviolet limit does
not admit a quantum field interpretation (since it is a perturbation of a
field with covariance given by a high order polynomial in the Laplace
operator and therefore does not verify the Kallen-Lehmann represen-
tation, for instance).
However this remark tells us that the triviality conjecture in the form in

which we first stated it cannot hold for the PV-theories. Nothing however
can be said from the above analysis about the « physical » triviality conjec-
ture (see also the entire Sect. 6 for related discussions).
We finally note that the PV-regularization is intrinsically « antiferro-

magnetic » as it appears from its discretized versions on the lattice and
this seems essential in producing the construction discussed above.

4. EXAMPLES OF TRIVIALITY
IN THE LATTICE REGULARIZATION

We shall rewrite the regularized measure (2. 5) in the form (2. 7).
Suppose that GN(g), MN(g), AN(g) are given and constitute an admissible

renormalization scheme with GN  +00, +00, ~ -~ 2014oo.
Then we perform the following change of coordinates :

t2014 1

This well known change of coordinates produces a field / whose dis-
tribution is the same as (2.7) but with 03B2 replaced by - 03B2. So, since

03B2 = a2(1 + AN)  0, the field 03C8 is ferromagnetic and we can apply to
it the inequalities (7) and ( 12) of reference [6 ]. Transferring such inequalities
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back into relations involving the field ~p we find that the infrared inequa-
lity (7) of Ref. [6] becomes, if one keeps the notations of [6 ] :

where ~) = ! ~3a-2 ~ = 2014 (1 + AN) (the antiferromagnetic coupling comes
in via the crucial + sign in front of the cosine in (4. 2)) (2).

Clearly a2~(a)-1 goes to zero when N ~ oo and (4 . 2) tells us that ~p
goes to zero in the sense of distributions at least on the test functions f
whose Fourier transform excludes a vicinity of the origin. Since this pro-
perty is false in all the known perturbative ~p4 (e. g. in the B. P. H. Z. theory)
we conclude that the above remark can be used to show the weak triviality
of all the renormalization schemes with AN ~ - 00 or even

In particular, all the truncation schemes associated with the B. P. H. Z.
theory which were discussed in the preceding sections (hence those with
the slowly growing secondary cutoffs La, iA) are shown in this way to
be weakly trivial.

5. SOME PROPERTIES
THAT A NON TRIVIAL RENORMALIZATION

SCHEME SHOULD HAVE

We pursue the analysis in the frame of the lattice regularization.
The discussion of Sect. 4 and of Ref. [6] shows that the only possibility

for having a non trivial ~p4 theory of l-type (i. e. as a limit of a lattice regu-
larized theory with ~p4 interaction and nearest neighbor coupling) is that
~3a - 2 = ~(a) &#x3E; 0 does not tend to zero as N -~ oo in the ferromagnetic
case (see [6 ], page 286), or that ~(a)a- 2 does not tend to + oo in the anti-
ferromagnetic case.

Since the analysis of [5 ] [6] gives hope to exclude all the ferromagnetic
cases, one is led to consider the antiferromagnetic cases (with {3  0) in which

(2) It is interesting to notice that there is no analogue of transformation (4.1) if the

lattice is not a regular cubic lattice. In more complicated cases, which we never consider
in this paper, the full complexity of frustation effects due to antiferromagnetism arises
and it becomes very difficult to relate these theories to any of the triviality results of [5] ] [6].
In particular it is not known whether (5.1) has to be satisfied to keep open the possibi-
lity of a non trivial continuum limit. This is just another open problem among the many
listed in this paper which might attract the courageous reader...
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as the most interesting for the possibility of a non trivial ultraviolet limit.
It is not known if admissible renormalization schemes exist in which (5.1)

holds. Assuming so, one can ask whether they would fall under the wrath
of the triviality theorems as time goes on. This seems unlikely. We are going
to give some qualitative argument to support this assertion.
The triviality, results for /~ &#x3E; 0 proceed from the basic assumptions :
1 ) The spontaneous magnetization of the oo -volume lattice vanishes.
2) The value of ( is, for each xee.g.{x~0~!}, uni-

formly bounded as a  0 (or N -~ oo).
The assumption 2) is reasonable if ~3  0 because in this case one expects

from various correlations inequalities  to be a positive, mono-
tonically decreasing (3) function of x and its convergence towards the
continuum two-point function to be a smooth, pointwise convergence
(see e. g. [72] and references therein). However if /3  0 the field tends to
oscillate wildly and probably it has to be thought close to a white noise.
If we therefore supposed 2) also in this antiferromagnetic case then triviality
would easily follow from the basic inequality ( 12) of [6] (i. e. this inequality,
which remains true in the antiferromagnetic case as well because of the
exact transformation (4.1), combined with 2) and (5.1), forces u~4’ to go
to zero, and the resulting theory would be gaussian).
However the limit of the Schwinger functions might well be approached

only in the sense of the distributions and through unbounded oscillations
(violating assumption 2)), as suggested in [7], and nothing in [5 ] [6] seems
against such a possibility.
Although this mechanism of convergence may appear at first sight unusual

and strange, we have been unable so far to find any argument against it :
in some sense the strongest argument for our belief that it should deserve
attention (particularly if all the ferromagnetic theories turn out to be trivial)
is that it looks more compatible with perturbation theory, as the results
of [5] ] [6] seem also to suggest.

6. A TRIVIAL EXAMPLE
OF HOW ANTIFERROMAGNETISM CAN LEAD

TO NON TRIVIALITY

In this section we show that among the theories of el type (i. e. with
lattice regularization and non nearest neighbor coupling) there are some

e) The rigorous statements on monotonicity of the two point function follow from the
Schrader and the Messager Miracle-Sole inequalities; for an exact formulation, see [12]
and references therein.
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- 

non trivial renormalization schemes. Clearly this is not a very exciting
result because the renormalization schemes that we exhibit are singular
in the sense of Def. 4. Their existence, however, shows that it will be quite
hard to prove the physical triviality of the ~p4 theories of el type (although
to show that, conversely, they are not always trivial is also probably very
hard !).
The model is very simple and inspired directly by the lattice discretization

of the Pauli-Villars free field. We choose AN and MN so that the measure

(2.16) can be written :

where PN is a gaussian measure with covariance C"(x, y) given by (2 .1 )
with C replaced by :

and the denominator in the r. h. s. of (6 . 2) converges 0 to 1 +p2(1 +pz).
For instance we choose:

and AN(n) = 0 for I n &#x3E; 2. Note that if we look at the formally corres-

ponding theory of type l (according to the rule (2.23)) we find that the

corresponding AN is 0, hence there is no field strength renormalization and
the continuum limit is therefore ill-defined. This shows that one should

be careful in using the notion of corresponding theories ; it does not dis-

tinguish between theories which have the same quadratic momentum
behavior in their covariance.
To continue we fix any formal renormalization theory, i. e. three formal

power series for GN, MN, AN producing a perturbative for instance

the B. P. H. Z. series. Then we set (quite arbitrarily) :
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It is then easy to check that the measure (6.1) converges to the 
theory with free field described by the gaussian measure with covariance C °*
given by (2 .1 ) in which C has been replaced by :

provided ~ +00 slowly enough.
This theory is superrenormalizable (in the same sense as : P( cp)2 :) and

its Schwinger functions should admit an asymptotic series which, however,
will turn out different from the perturbative series associated with the formal
power series used for GN, MN, AN. This means that the renormalization
scheme that we built in (6. 4) are singular in the sense of Def. 4. Clearly this
is not too surprising because the scheme we used has been « manipulated »
in such a way that it has nothing to do any more with the original coeffi-
cients y/N), In particular it is not a scheme of truncation type.
Unfortunately we do not know any examples of a non trivial renormaliza-
tion scheme of truncation type, which would be more likely to be non
singular, and therefore to verify the axioms.

7. SOME PROPOSALS FOR FURTHER INVESTIGATION

If one believes that the renormalization counterterms can have the

effect of changing the field from ferromagnetic into antiferromagnetic
or mixed one should try to exploit this fact appropriately in the construc-
tion of a (non trivial) 
The antiferromagnetic couplings will tend to force the field to oscillate

very strongly on the scale of the cutoff: therefore we may expect that what
shall converge to a limit will not be the field itself but, rather, some average
of it (convergence in the sense of distributions).

Let b = a2B, B integer, be a new length scale and define for x E bZ4:
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The fields and are very close in distribution with respect to the
measure if N ~ oo, b -~ 0 (no matter which value is taken by
the ratio however this needs not be the case any more when the fields’

distribution is altered by the interaction. If the interaction turns the field ({J
into an antiferromagnetic field we may imagine that 03C8 and ({J have very
different interacting distributions and 03C8 will be smaller and smoother

than 03C6. The difference between the interacting ({J and 03C8 and the difference
in scale between b and a can be used, perhaps, to take into account simul-
taneously the field strength and the coupling constant renormalizations.
We imagine extending the notion of ({J1 theory further by considering

the measure :

with AN(n) = 0 for a ~ I n &#x3E; b (see (2.16)).
We call the 03C8 distribution in the measure (7.2) and we shall

extend the notion of ~p4 theory as meaning also any limit P*, as N ~ oc.
of a sequence of measures of the form PN.

First we observe that if then the Schwinger
functions of the field ~ with respect to the measure and those of the

field with respect to the measure coincide in the limit N  J

provided lim b = 0.

Secondly one notes that there are three formal power series

such that if b -~ OasN - oo, the formal power series in g for the Schwinger
functions for the 03C8-fields distributed as in (7.2) converge, order by order,
as N ~ 00; furthermore the coefficients in (7 . 3) can be suitably chosen
to obtain that the 03C8-fields Schwinger functions converge as formal power
series to the 03C644-theory Schwinger functions prescribed by the B. P. H. Z.
choice of the counterterms. To obtain this it suffices to choose y(N),
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+ n) = as in the B. P. H. Z. theory for ~
of type l.
This result is quite simple to obtain and it follows from the above men-

tioned fact that with respect to the free field measure the fields ~p
and 03C8 are essentially equally distributed. But in perturbation theory what
counts is precisely the free distribution of the field under examination
and therefore it is not surprising that one cannot distinguish between ~p

from a perturbative point of view.
So we think that it would be reasonable to call the limits as N -~ 00 of

the measures by the name of ~p4 theories; to distinguish them from
the ones of type l, el, PValready considered we shall call them of type a = sl
(« special lattice »). The notion of renormalization scheme, perturbative
triviality or singularity are extended to this new case in the obvious way.

Imagine to have fixed a sequence b -~ 0, b = a2B, and a renormalization
. scheme : to study the actual convergence as N ~ 00 of we can

think of considering as given by :

where the measure is obtained by associating the quadratic counter-
terms in ~p with the measure in (7.2) and then integrating over ~p
at fixed The properties of the 03C8-field in the distribution may
be radically different from those of the same field in the distribution 
as already noted. In particular can be much less than and this
could be thought as a new way of taking the coupling constant renor-
malization into account (if ~ ~, then the bare coupling constant
can be thought as being g~4 where b depends on the quadratic counter-
terms, hence on g and N). We may also hope, particularly if we believe
that the field ~p is strongly oscillating, that the field is more regular,
i. e. that it has a covariance of the form (2.1) with C replaced by a lattice
approximation to :

for large N, where is some unknown function such that ~g(p) -~ + oc
as I p I ~ oo not too slowly, e. g. in such a way that :

If this were true we could probably construct the corresponding t/J1
field approximated by (7.4) because that theory is « logarithmically »
asymptotically free.
The construction would however be, in the end, dependent on the
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arbitrary function one should then determine fg so that the theory
admits a quantum field interpretation. This last step seems obscure to us :
we hope to understand more about it by studying the problem of cons-
tructing the field (7 . 4) with given by (7 . 5) (7 . 6). A clear understan-
ding of the latter problem seems important to us as, in any event, it would
show that one really has in his hands the techniques to deal constructively
with a renormalizable (not superrenormalizable) « logarithmically » asymp-
totically free theory. 

’

If one takes the above discussion literally one should first investigate
whether 03C8-fields with covariance given by (7 . 5) (7. 6) can be realized from
03C6-fields of the form (7.2) with M’N, AN ~ 0 and suitable b. If this is not
true one could, nevertheless, pursue the program of determining fg so
that the field (7.4) has a limit as as N -~ oo which verifies enough pro-
perties to admit a quantum field interpretation.
Another problem that should be analyzed is whether there is a formal

power series for with coefficients which converge as N ~ oo and
which leads to Schwinger functions for 03C8 expressed as formal power series
in g termwise convergent to a limit coinciding with the B. P. H. Z. renor-
malized formal power series for perturbative ~p4.

8. IS DESTRUCTIVE FIELD THEORY POSSIBLE?

In this section with a slightly provocative title we would like to include,
mainly for completeness, a general discussion on the precise mathematical
content one can give to the notion of triviality of ~p4. We decided to include
it, not because it presents any new idea, but because we have not found
it in existing papers. In the previous sections we discussed what are the
open problems concerning the « ordinary » 03C644-theories as defined in Sect. 2,
Def. 1. Here we want to take a different, still more general, point of view.
What could be called, in the broadest possible sense, a physical ~p4 euclidean
field theory ? It has to be a 4-dimensional purely scalar theory, and to
verify some axioms like Osterwalder-Schrader’s or Nelson’s axioms [13]
which ensure the existence of a corresponding Wightman theory in Min-
kowski space. Clearly this is not enough because one wants a ~p~ theory
to correspond at least in some sense to a ~p4 lagrangian. Considering the
historical and experimental importance of perturbation theory in field
theories like QED4 one would like a non trivial 03C644 to be at least asymptotic
to the renormalized perturbation series computed according to a given
prescription (B. P. H. Z., analytic renormalization, dimensional renor-
malization, or any other). Therefore we propose the following definition :

DEFINITION 5. 2014 An (extended) euclidean field theory is a one-
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parameter family of theories, with g E [0, c] or g E [20148,0], satisfying eucli-
dean axioms, and such that their Schwinger functions are at 

with the renormalized perturbation series (2. 20) as Taylor series at g = 0.
Such theories are obviously non gaussian for small g; therefore with

respect to this definition the sentence « ~p4 is trivial » means :

Strong triviality conjecture (or S. T. C.)

There does not exist any theory in the sense of Def. 5 (4).
Note that although the S. T. C. seems stronger than the (ordinary)

triviality conjecture (T. C.) formulated in Sec. 2 after Def. 1, we have neither
S. T. C. =&#x3E; T. C. nor T. C. =&#x3E; S. T. C.

We are not convinced that very strong arguments support the S. T. C.
at present. Even after the works [7]-[d] and [12 ], we do not see how one
could try to attack the proof of the S. T. C. with any idea or method existing
today. Indeed there is a basic difference between constructive and des-

tructive field theory (in the sense of [12 ]) which is to the advantage of the
first one : namely in constructive field theory one has only to exhibit a
particular construction with a particular cutoff, a particular bare action etc.,
which works for a given model. In contrast it is the burden of « destructive
field theory » that in order to prove a negative statement like the S. T. C.
it has to study in principle all possible ways to go to the continuum, inclu-
ding all possible regularizations, all possible bare actions etc., or to find
an argument which works directly in the continuum. Since the first possi-
bility sounds like an infinite and therefore impossible program let us

discard it and examine the second. If we are to work directly in the conti-
nuum we cannot rely on the special form of the ~p4 lagrangian, since it is
ill defined without the help of a cutoff. Therefore we do not know how
to use the condition on asymptoticity in Def. 5 and the only possibility
we see to prove in this way the S. T. C. is to prove something still stronger,
namely the following :

Super-strong Triviality Conjecture (or S. S. T. C...).

There does not exist any 4-dimensional self-interacting purely scalar
field theory.

If one uses the elegant version of euclidean axioms due to Nelson [13]
the S. S. T. C. would imply that there is no non-gaussian covariant. Markov

(4) Since there is always an infinite number of families of functions asymptotic to any
given family of power series like (2 . 20), the S. T. C. simply states that in the case of the power
series (2.20) none of these families satisfy, say. Osterwalder-Schrader’s axioms.
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process of Nelson’s type on S’(R4), a statement which is very general and
apparently so far from any argument based on power counting, renor-
malizability of and the fact that 03C644 is not asymptotically free, that
we do not see at the moment any compelling reason to believe it at all.
It is however an important question for mathematicians as well as physi-
cists, and therefore one should expect that research will probably continue
on this issue until a definitive proof or disproof of the S. S. T. C. has been
found, even if the interest of most particle physicists has shifted in the
last decade towards non abelian four dimensional gauge theory. It is clearly
a very difficult problem (the existence of non-gaussian Markov processes
satisfying Nelson’s axioms on S’ in dimensions lower than 4 has been proved
only for some simple models like the sine-gordon model, and the global
Markov property has not yet been verified for ~p2 and although these
theories have been shown to exist and to satisfy Osterwalder-Schrader’s
axioms). However serious attempts have been already made in the frame-
work of the structural program (see [7~] ] for a recent review) to obtain
general theorems on quantum field theory which are independent of any
particular Lagrangian formulation ; they may yield in the future to such
results as the S. S. T. C. (or its disproof).

Finally we would like to mention that there are other possible non-
standard approaches to the construction of a non trivial ~p4 beside the
ones based on the idea of « antiferromagnetism » that we have advocated
in this paper. Even if one agrees to restrict the search for ~p4 theories to
continuum limits of lattice theories with, say, nearest neighbor interaction,
there is no overwhelming reason to use only bare actions of the ~p4 type
as in (2 . 5). As pointed out in [1,5 ], lattice lagrangians are not always related
in an obvious manner to their continuum limit counterparts. In the case
of ~p4 one may believe that the triviality one seems to encounter in the
standard approach of [5] ] [6 is related to the Landau argument (5). In its
modern version [77] ] [18] this argument says that there should be singu-
larities, called « renormalons », on the positive real axis for the analytic
continuation of the Borel transform of the perturbative 03C644-series (this
Borel transform is a well defined object at least near the origin [77]).
If this is true, it destroys Borel summability in the ordinary sense, and
one can expect a non trivial ~p4 to be only « weakly » asymptotic to its per-
turbative series. But this suggests also that if there is a way to remove these
ultraviolet « renormalons » which preserves the basic axioms like o. S.

(5) A proof of this, i. e. a rigorous connection between the Landau or the renormaliza-
tion group arguments on triviality and the methods of Ref. [5] ] [6] would of course be
extremely interesting. It might require the proof of new correlation inequalities based
on the special form of the field equations [16 ], such as the ones which were conjectured
in [12 ].
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positivity, this might very well be the clue to the construction of a non
trivial ~p4, and perhaps a big step forwards for the construction of non
renormalizable field theories like ~p 5 as well. In fact Parisi has proposed [18]
to remove the « renormalons » precisely via the introduction of local
operators of higher degree (like ~p6) in the bare lagrangian, with coefficients
which are exponentially small in g as g ~ 0. Therefore they should not
show up in perturbation theory preserving the possibility for the final
continuum theory to be asymptotic to the usual ~p4 perturbative series.
Their role might however be crucial in permitting the cancellation of the
ultraviolet « renormalons ». We simply remark that the triviality arguments
in [5] ] [6] are limited to theories with a purely ~p4 bare action and therefore
do not cover these kind of actions. In our opinion they are certainly as good
candidates as the ones we proposed in the last sections for the construction
of a non trivial ~p4. Progress in this direction might require a rigorous proof
of existence and a better understanding of the structure of the « renor-
malon » singularities ; we notice that this program has recently been carried
out in the simpler context of « infrared renormalons » for the non-linear
03C3-model in 2 dimensions [19 ].
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APPENDIX

Throughout this appendix, we assume the reader’s familiarity with perturbative renor-
malization techniques in a-parametric space ([11] [20] [27]). Most of the time the results
and notations of Ref. [77] will be used without any further explanation. We fix the regu-
larization to be Pauli-Villars and we will come back briefly to the lattice regularization
at the end of the appendix. A graph will always mean an unlabeled graph. A graph with
labeled vertices will always be called a diagram.
Our aim is to prove Proposition 2 in Sect. 2. We should therefore study the dependence

on the cutoff N of the counterterms used to build the power series (2. 22). These counter-
terms are themselves built from contributions associated to proper (one-particle irredu-
cible) superficially divergent graphs. More precisely one may write, if k(G) is the number
of internal vertices:

where the sum is performed over proper « quadrupeds » in the first line and over proper
« bipeds » in the second and third lines.

In the B. P. H. Z. subtraction scheme at 0 external momenta, these counterterms are defined

by integrals in the a-parametric space. If we define Zc=cjcp [ - VG(p, a)/ UG(a) ], the usual

a-parametric integrand associated to G, and 
the cutoff measure in a-space, we have : li

The sums in (A. 2)-(A. 4) are performed on the proper divergent forests F which do not
contain G. Note that if G is a biped, it is quadratically divergent and we may write iG = i~+ r~,
where ’Cg is the Taylor operator which retains only the first term in the appropriate Taylor
series defined in [11 ], and iG retains only the second one. These operators are the ones
which appear in formulae (A. 3) and (A. 4) and they are defined in [11 ]. The minus sign in
front of (A . 2)-(A . 4) compensates the minus sign in front of GN in (2 . 5). As in Ref. [77] we
may get rid of non-essential subtractions associated to « open quadrupeds ». We use the111H-J - va aavaa -

following formulae:
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where F is an open quadruped and F* is its closure. (A. 5) is proved in [77] and (A. 6) is
easy to prove and left as an exercise to the reader. Therefore in (A. 2) and (A. 3) the sum-
mations can be performed only on the closed divergent forests. The mass renormaliza-
tion (A. 4) will be studied separately. Apparently there are contributions from non closed
graphs, but a careful study reveals that they disappear also since we used Wick ordered
polynomials in the fields in the definition (2.5) of the interacting measure of our theory.
As in [77] we perform the Hepp’s sectors splitting to obtain :

where :

In (A. 7) and (A. 8) the sum is performed over sectors Q and closed divergent forests which
are skeleton forests for oB

The divergence of (A. 9) or (A. 10) when N -~ oo comes obviously from which

replaces the operator (l2014r~) in the corresponding formulae for renormalized ampli-
tudes ([77]). Since the integrand ZG has the FINE property [22 ], we may write (A. 9) and
(A. 10) as :

with cvi(G, r, F) and ccy(G, y, F) integers, and Z03C3,FG and regular functions of the /3’s
with a finite non zero limit at ~i - 0. The divergence of these integrals when N -+ oo is
therefore related to the existence of negative 

LEMMA A .1. - For any i, G, 7, F, 7, F) &#x3E; - 1 and 7, F) &#x3E; - 1.

Proof - We go back to the proof of Lemma III. 8 in [77]. The only difference here is
that we obtain 03C9i ~ i + ~i (resp. i + ~1i) where i + ~i (resp. i + ~1i) is defined by
the right hand side of equation (111.60) in [77], but with G missing in the third sum, over
elements of Q’ (resp. with the factor 2 associated to G in the second sum, over elements
of B’, replaced by a factor 1). Since it was proved in [11] ] that the right hand side of (III. 60)
was a positive integer, one gets Lemma A.I.

Let us call k(G, cr, F), (resp. y, F)) the number of factors ~, F) (resp. 7, F))
which take the value -1 in (A. 12) (resp. (A. 13)). Then :
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LEMMA A. 2. - When N -~ oo, cG(6, F) and F) behave asymptotically at most
like and respectively.

Proof- Since is regular and independent of N, a simple inductive argument proves
the statement. One could also use a more sophisticated Mellin transform argument [22 ].
To find the graphs with most divergent behavior as N ~ oo we have to introduce the

notion of a « parquet graph », related to the « parquet approximation » of Landau et al. [1],
which is nothing but the sum of the amplitudes associated to such graphs.

DEFINITION A. 3. - A parquet quadruped (resp. biped) G with k vertices is a quadruped
(resp. biped) such that there exists a closed divergent forest F == { Fi = G, F2, ....~-i }
with k -1 elements. Any such forest is called a complete forest of G.

It is not hard to see that by « minimality » of the graphs Go and Gi in Fig. 1 among diver-
gent graphs, for 2 ~ i  k - 1, FJF is isomorphic to Go, and if G is a quadruped, (resp.
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a biped) F1/F is isomorphic to Go (resp. to G1). Therefore one can generate all the parquet
quadrupeds at order k by replacing any arbitrary vertex in any parquet quadruped of
order k -1 by the full graph Go, in all possible ways. Up to order 4, the graphs one obtains
are pictured in Fig. 2, with the corresponding combinatoric factors. The parquet bipeds
at order k are obtained by pasting together two external lines of the parquet quadrupeds
of order k.

At a given order k the total number of graphs is roughly (const.)kk!. But the parquet
graphs are only a few compared to all others. Indeed :

LEMMA A. 4. - The total number of parquet graphs at order k (counted with their
right combinatoric factors) is bounded by (const.)k.

Proof - This is just a trivial consequence of the more general Theorem II in [11].
From now on, we shall often restrict ourselves to the case of quadrupeds when the cor-

responding statements for the bipeds are obtained by the trivial substitutions d~,
cvi(G, 7, F) -&#x3E; 7, F), parquet quadruped -~ parquet biped, etc...

LEMMA A . 5. - For any G, ~(G, r, F)  k(G) - 1; moreover, if ~(G, (7, F) = k(G) -1,
G is a parquet quadruped and F u { G } is a complete forest of G.

Proof. - Using inequality (111.59) in [77] one verifies that 7, F) cannot be -1
unless Gi/F = G/ F, and unless for any F E F, G~ n F/ F = 4&#x3E; or G~ n F/ F = F/ F ; therefore
if cvi(G, (1, F)= -1, Ga is the union of G/F and a certain number of F/F, F E F. Since the
family G~ is completely ordered by inclusion, this proves that k(G, (1, F) : 1 + j F j, where
! F is the number of elements of F. By Definition A. 3 this shows the Lemma.

DEFINITION A. 6. - Given a parquet graph G with k vertices and F a complete forest
of G, we say that a sector cr is compatible with F if and only if:

a) There exists a numbering 7: [1, /c-l] ] -~ F of the forest F, such that if we note FI
the graph Q(i ) :

b) F - { (7 } is a skeleton forest for 6.

Remark. - i ) If G is a biped, equation (A .14) has to be replaced by 1= U Fi/ F.
ii) Condition b) implies that Fl = G, and that isomorphic to Go. This

is trivial if one remembers carefully the definition of skeleton forests in [77], Sect. III. 1.

LEMMA A. 7. - For a parquet graph G and a complete forest F, we have :

F-{ G} skeleton for 6 and k( G, 7, F) = k(G) -1 p 6 compatible with F.

Proof - Suppose F-{ G})=~(G)-1, and G is a quadruped. We repeat the
argument in the proof of Lemma A. 5. For any i such that cvi(G, 7, F) = -1, G~ has to be

the union ~F/F over a certain subset S(i) of F of reduced graphs of F. Since any F/ F
FeS(i)

is isomorphic to Go which has two lines, has to be even. Since there are exactly k -1 even
indices between 1 and I = 2k - 2, F) has to be -1 for any 1 ~~ ~ k -1. Defining

= S(2p) - S(2p - 2) we see that (A .14) is satisfied.

Conversely, let Q be compatible with F. Let us number the lines of G so that
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Since = U-2G and = we have in a parametric space :

Therefore formula (A. 12) simplifies to :

which proves that k(G, cr, F - { G }) = k - 1.

The generalization to the biped case is slightly different. We have to number the lines

The analogous of (A .14) is :

There is one extra factor ( -1) in (A .17) due to the derivation of exp t20142014201420142014t m
the action of 03C41F1 = tb on ZG. The analogous of (A 16) is therefore : 

An important consequence of this proof of Lemma A. 7 is that the contributions C(F
and depend only on k(G), not on the particular structure of G, 7, F. Moreover from
formulae (A 16) and (A .18) one can easily deduce that ck and dk behave really like N~’~
at large N ; more precisely :

In the next Lemma, we evaluate these constants ck and the computation of the leading-
log behavior of yk(N) and ak(N) will therefore be reduced to a pure combinatoric pro-
blem. First let us remark that by an elementary analysis :

where b(N) and b’(N) are bounded as N -+ oo. Then we claim:

LEMMA A. 8. -
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Proof - Let us prove only (A. 22) since the proof of (A. 23) is similar. By (A .15), we
have for G parquet quadruped and F complete forest :

But if we develop the left hand side of (A. 24) in Hepp’s sectors, we can analyze its leading-
log behavior as N -+ oo in the same way as we did for an ordinary graph, and conclude
that it is a sum over all sectors satisfying condition a) in Definition A. 6 of terms attached
to these sectors; furthermore any of these terms is equal to ck. Since there are 2k-1(k - 1) !
sectors verifying (A. 14) and since the leading-log behavior in the right hand side of (A. 24)
is obviously equation (A. 22) must hold.
Now the proof of formulae (2.32) and (2.33) is reduced to a combinatoric problem

which is solved by one further Lemma. It is easy to verify that putting together formula (A .1)
and Lemmas A.1 to A. 9 leads indeed to (2 . 32) and (2 . 33).

LEMMA A. 9. - There exists three positive constants b, c, d, such that :

where the left hand side of (A. 25) is the number of triplets made of a parquet quadruped
with k, vertices, counted with its right multiplicity factor, a complete forest F of G and a
sector 7 compatible with F (in (A. 26) G is a biped instead of a quadruped).

Proof - We prove only (A. 25), by induction on k, since the proof of (A. 26) is almost
identical. We return to diagrams, which are directly associated to Wick contractions
and therefore easier to count without mistakes; since there are k ! diagrams associated
to a graph G, we have to show, for k &#x3E; 3: .

But by Remark ii) at the end of Definition (A. 6) there is a natural mapping f from
{ (r, F, r) ~4,k into { (r, F, o-) ~4,k-1: f indeed associates to (r, F, r) the triplet (r’, F’, o-’)
with r’ = F’ = { }, o-’ = o- restricted to r’. It is not hard to verify that if F
is skeleton for cr, with this definition of f, F’ is skeleton for o-’. To specify completely the
set of Wick contractions which determine r’, we have also to fix the numbering of the vertices
of r’ and of every half-line attached to them. Suppose the two vertices of in r have
indices i and j &#x3E; i; the half-lines attached to i (resp. to j) are numbered as i 1, i 2, i 3, i 4 (resp.
asj1,j2,j3,j4). Since is isomorphic to Go, we have two half-lines, say i 2 and i 4, attached
to respectively j3 and j2 for instance. Then we number the vertex in r’ corresponding to
the reduction of as i ; and we number its half-lines in the following way : the lines i 1
and i 3 need not to be changed and keep their initial numbers; the other ones, which are i 2
and i 4 in the example chosen, contract to this half-line which in r contracted to j4 and to j 1;
this choice corresponds in fact to associate disjoint ordered pairs of {~l,~2,y3,y4, } in the
unique way which respects relative ordering. Finally the vertices of r’ constructed in this
way have indices running from 1 to k with one missing value; we renumber them from 1
to k - 1, preserving the order. This ends the complete specification of r’. It is easy to

verify that f is onto; moreover for any (f, F’, Q’), we will show that { F’, 6’) ~
has exactly 72. k(k - 1) elements. Indeed to construct r from r’, we can choose any pair
of indices i and j between 1 and k (there are k (k - 1)/2 possible choices). The lowest one,
say i, tells us where to insert Go = in r’; the second one, what number we should
assign to the second vertex of in r. It is not difficult now to verify that there are exactly
72 ways to number the half-lines of i andy in r so that the reverse process described above
gives back the initial numbering of the half-lines of i in r’, therefore so that f(r) = r’. Please
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note that F is uniquely determined by F’, and that there are exactly two possible corres-

ponding to (1’. This ends the proof.
Taking together Lemma A. 8 and A. 9 we conclude that the constant A which tells the

leading-log behavior in (2 . 32) and (2 . 33) is exactly [3~/2 ]. 4 !, where a is defined by (A. 20).
We can get rid of the 4 ! by using the reduced coupling constant g’ = 4 ! g. Then the relevant
combinatoric factor which exponentiates is just 3/2. This is shown in detail up to fourth
order in Fig. 2 where the different parquet quadrupeds with their multiplicities are pic-
tured. It is striking to see that the number of parquet graphs itself does not seem to obey
any simple recursive relation, in contrast with the number of triplets (r, F, (1), which is
the right combinatoric quantity for the leading-log behavior.
The reader already familiar with this behavior may find our derivation of it quite lengthy

and cumbersome, but we did not know of any such proof in the existing literature, with a
detailed description of the contributions of each particular graph and a precise solution
of the couting problem. However we are not going to reproduce this painful computation
for the coefficient mk(N) in equation (2 . 34); it is easy to convince oneself that this computation
involves parquet bipeds and is almost similar to the one for with the two remarkable

changes that a divergent factor 22N is present in (but not in mk(N), according to (A .1))
and that the sign is different, being now positive as for yk.

Still another problem would be to verify the results of this Appendix when the lattice
regularization is used instead of the Pauli-Villars. But since the computation of yk, mk

involve only sums over finitely many graphs with a bounded number of propagators, and
since the lattice and the Pauli-Villars propagator converge uniformly to the continuum

propagator as the cutoff is removed, the answer has to be the same in both cases.
A more interesting and final remark is that it should be possible to prove reasonable

upper bounds on all non-leading-log contributions to the counterterms by using the full
machinery of Ref. [77]. We conjecture that for instance the terms in 03B3k which are propor-
tional to  k - 1, are absolutely bounded by (k - p) ! (const.)k. Np, where the constant
might however be quite large (bigger than A) for technical reasons in the evaluations. If
true, this conjecture would prove admissibility of the truncations schemes which verify:

a rather strong condition however, if one remembers that N is already the log of the cutoff.
If the conjecture of Parisi [18] that the « renormalon » singularity dominates the « instan-
ton » singularity in the Borel plane of 03C644 is correct, a weaker condition should be sufficient
in order to have admissibility, namely :

However to prove the Parisi conjecture requires a finer analysis than the one available
in [77] and is in our opinion a very difficult program, although probably not out of reach.
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Note added

After completion of this paper we learned from J. Frohlich that one can
use the lattice Kallen-Lehman representation to show that the continuum
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limit of the two-point function for a lattice model with nearest-neighbor
antiferromagnetic interaction of the type considered in Sect. 5 is generally
a Dirac function, the resulting theory is therefore uninteresting (white noise).
This argument does not extend to the other cases considered in this paper,
for which the mechanism of convergence through unbounded oscillations
considered in Sect. 5 might be relevant. We thank J. Frohlich for commu-
nicating to us this result.
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