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ABSTRACT. - Under fairly general conditions on the interactions we
prove holomorphy of the Dirac resolvent around its nonrelativistic limit.
As a consequence, perturbation theory in terms of resolvents (instead of
Hamiltonians) yields holomorphy of Dirac eigenvalues and eigenfunc-
tions with respect to c-1 and a new method of calculating relativistic cor-
rections to bound state energies. Due to a formulation in an abstract
setting our method is applicable in many different concrete situations.
In particular our approach covers the case of the relativistic hydrogen
atom in external electromagnetic fields.

RESUME. - Sous des hypotheses assez generales sur les interactions,
on demontre l’holomorphie de la resolvante de l’opérateur de Dirac au
voisinage de sa limite non relativiste. En consequence, la theorie des

perturbations en termes des resolvantes (au lieu des hamiltoniens), fournit
l’holomorphie par rapport a c-1 des valeurs propres et des fonctions propres
de l’opérateur de Dirac, et une nouvelle methode de calcul des corrections
relativistes aux energies de liaison. Grace a sa formulation dans un cadre

(*) Supported by Fonds zur Forderung der wissenschaftlichen Forschung in Oesterreich,
project no. 4778.

l’Institut Poincaré - Physique theorique - Vol. 40, 0246-0211
84/02/ 159/ 16/$ 3,60 cg Gauthier-Villars



160 F. GESZTESY, H. GROSSE AND B. THALLER

abstrait, notre met 0 e s’applique a un grand nombre de situations
concretes differentes. En particulier elle couvre Ie cas de l’atome d’hydro-
gene relativiste dans des champs electromagnetiques externes.

1. INTRODUCTION

The aim of this paper is to discuss the family of abstract Dirac opera-
tors H(c), ce[RB{0}, (cf. eq. (2.10)) in a neighbourhood of c -1 - 0. In
applications c is the velocity of light and H(c) describes the behaviour
of spin-1/2 particles in external electromagnetic fields. There exist formal
schemes trying to expand the concrete Dirac operator HD(c) (eq. (3.15))
into powers of and showing that the nonrelativistic limit c -1 - 0
is formally given by the Pauli operator H ~ (cf. eq. (3.16)) [4] ] [7~]. In spite
of the fact that HD( c) as a function of c-1 is not holomorphic around c-1= 0
one has obtained relativistic perturbations ofHin form of a power series
in c - 2. These corrections are, however, very singular. Adding the c - 2-
perturbation already destroys all spectral properties of Hoo, lower semi-
boundedness turns into upper semiboundedness, and the discrete eigen-
values dissolve into a continuous spectrum in the interval (201400, mc2/2 ].
Higher order corrections make the situation even worse. Nevertheless,
the results on the relativistic corrections of the eigenvalues calculated by
means of formally applied perturbation theory can be interpreted in terms
of spectral concentration [5] [6] ] and yield reasonable numerical results [7.? ].
This approach is not quite satisfactory for the following reasons :

i ) It seems to be difficult if not impossible to justify the formal mani-
pulations of [~], and ii) it is well-known that the Dirac operator e. g. in
the hydrogen case has eigenvalues which are holomorphic functions with
respect to c - 2. Therefore, since bound states are turned into resonances,
the addition of relativistic « perturbations » to H ~ qualitatively does not
reproduce the actual properties of the Dirac operator HD(c).

In the following we present an alternative method of investigating the
dependence of eigenvalues and eigenfunctions of H(c) on the parameter c-1.
Our approach is based on an extension of the results of Veselic [2~] and
Hunziker [77] ] concerning the holomorphy of the Dirac resolvent

(H(c) - mc2 - with respect to under certain conditions on the
external fields. In section 2 we prove holomorphy of the Dirac resolvent
and of related quantities for a wide class of interactions including e. g.
Coulomb-like potentials. It turns out that the Dirac resolvent converges
in norm to the Pauli resolvent times a projector (cf. eq. (2 .17)). After deriving
the explicit expansion of the Dirac resolvent around its non-relativistic
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161RELATIVISTIC CORRECTIONS OF BOUND STATE ENERGIES

limit and reformulating perturbation theory in terms of resolvents we
are able to obtain relativistic correction formulas (2.30), (2.32) for the
eigenvalues of the Pauli operator. We conclude section 2 by sketching
the derivation of estimates on the convergence radius of the expansion
of the resolvent into powers of c -1.

Since all calculations of section 2 are performed in the abstract repre-
sentation introduced in refs. [11] ] [2] ] our results are applicable for a
great variety of situations including Dirac operators over Riemannian
manifolds [2 ]. In section 3 we discuss applications to concrete realizations
of the abstract Dirac operator H(c) and investigate the relations to the
conventional approach of refs. [4] ] [13 ]. A short outline of these results
already appeared in ref. [ 7 ].
We finally mention some related work. Strong convergence of the unitary

groups associated with the Klein-Gordon and Dirac theory has been derived
by Cirincione and Chernoff [2 ]. Schone [7~] ] investigated solutions of
the Klein-Gordon and Dirac equations in the nonrelativistic limit by
means of different methods. An investigation of scattering theory as c -1 -+ 0
can be found in refs. [2~] ] [26 ]. Quite recently Veselic [2~] gave a detailed
description of the Klein-Gordon case. The nonrelativistic limit of proper-
time quantum-mechanics has been treated by Horwitz and Totbart [10 ],
Steinmann [20] ] discussed a c-1-expansion of bound state energies in
quantum-electrodynamics which partly motivated our work.

2. THE ABSTRACT APPROACH

Following Hunziker [11] and Cirincione and Chernoff [2] we introduce
an abstract setting for the Dirac operator.

Let a and 03B2 be self-adjoint operators in some (complex) Hilbert space H
and assume

(i. e. (3 E ~(~f) and the commutation relation

D ue to eq. (2 .1 ) P+ defined by

obey
and we introduce

As a consequence ofself-adjointness and (2.1)-(2.4) a and 03B2 can be written
with respect to the decomposition (2. 5)
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162 F. GESZTESY, H. GROSSE AND B. THALLER

where A is a densely defined closed operator from Jf + into ~_ . Next
we define

and

where V± denote self-adjoint operators in ;ýf::i: (note that obviously V
commutes with J9). If in addition we assume relative boundedness of V+
(resp. V-) with respect to A (resp. A*) i. e.

then the abstract Dirac operator H(c) defined as

is self-adjoint for I large enough.
Finally we also introduce

and the pair of abstract Pauli operators

Due to assumption (2 . 9) V+ (resp. V_ ) is infinitesimally bounded with
respect to H~ (resp. H~) and hence H~ are self-adjoint. Clearly 
has the spectral gap ( - + and by (2 . 9) one can prove that for I c I
large enough also H(c) has a spectral gap containing zero (cf. [2 ]).
Now we state some commutation formulas proved by Deift [3] which

are needed several times later : .

for all

The bounded operators on the right hand side of (2.14) are just the closures
of the densely defined operators on the left hand side. In the following
we freely use such densely defined operators instead of their bounded
closures if no confusions arise.
Now we are prepared to state

THEOREM 2.1. - Let H(c) be defined as in eq. (2.10) and assume
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163RELATIVISTIC CORRECTIONS OF BOUND STATE ENERGIES

Then (H(c) - mc2 - z) -1 is holomorphic with respect to c -1
around c - 1 = 0, and

From (2.14) one infers

and thus

Since for| Im z large enough

(2.16) implies eq. (2.15) for I large enough. Note that all matrix

elements in (2.15) have bounded closures, e. g.

and

since ~(H+)=~(A*A) and ~«AA *)1/2) = ~(A *). Finally holomorphic
continuation of both sides in (2.15) with respect to removes

the restriction on Consequently (2.15) proves holomorphy of
(H(c) - mc2 - z) -1 in c -1 1 around c -1 = 0 (in a z-dependent neighbour-
hood of = 0) for z E 

Since the nonrelativistic limit c ~ oo is of particular interest we state

COROLLARY 2.1. - As c ~ oo the Dirac operator (rest energy sub-
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tracted) H(c) - mc2 converges in norm resolvent sense to the Pauli o p e-rator H + times the projector onto ~f+

In particular ~,o E 7(H+) (resp. if and only if there exists a sequence
~,(c) E (resp. which converges to ~,o as c ~ oo.

Proof. 2014 Eq. (2 .17) results from (2 .15). Taking -Z0&#x3E;0 large enough
then for I c I large enough and convergence
of the spectrum (as well as the essential spectrum) follows from norm
convergence of self-adjoint operators ([76, p. 289 ], [25, p. 272 ]). Q

Expanding the right hand side of (2.15) yields

Theorem 2.1 and Corollary 2.1 describe the Dirac resolvent and its non-
relativistic limit. To treat relativistic bound state energies we need some
additional results. Following Hunziker [77] we first give

LEMMA 2.1. - Let

then under the conditions of Theorem 2.1, 
is holomorphic with respect to c - 2 around c - 2 = 0 for fixed z E 

Proof 2014 Eq. (2.15) implies

Annales de l’Institut Henri Physique - theorique .
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From

one infers

and eqs. (2.14). D
First order expansion of (2.19) yields

Our approach to calculate relativistic eigenvalue corrections is based

on the idea to use perturbation theory of the Dirac resolvent (instead of
the Dirac operator) since it is holomorphic in whereas the Dirac Hamil-

tonian is not. While this procedure is possible in principle we prefer to
use instead of (H(c) - mc2 - z) -1 since it

directly leads to relativistic bound state corrections in terms instead

of c -1. Thus we need the spectral properties of the « unperturbed » ope-
rator Ro(z) of (2.20).

LEMMA 2. 2. - Assume the conditions of Theorem 2.1. Then

Vol. 40, n° 2-1984
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In addition 0 E with geometric multiplicity equal to dim ~_ , and

Moreover,

implies

Conversely,

implies

In particular all discrete eigenvalues ~,o of (H + - z) -1 are semisimple
eigenvalues of Ro(z) i. e. algebraic and geometric multiplicity of ~,o as an
eigenvalue of Ro(z) coincide.

proves (2 . 21 ). Eqs. (2 . 22)-(2 . 26) follow by direct computation. That
discrete eigenvalues ~,o of (H + - z) -1 are semisimple eigenvalues of Ro(z)
follows from (2 . 27) since due to normality of (H + - z) -1, [(H + - z) - 1 -, ]-1
has precisely a first order pole at , = ~,o (cf. [12 ], ch. 1.5.4]).

REMARK 2.1. - In concrete applications (cf. section 3) 
and thus 0 is an infinitely degenerate eigenvalue of Ro(z). Of course

z) -1 ) (and then z) 1 )) if and only if H + is

unbounded [17, p. 109 ].
After these preliminaries we obtain the following characterization of

relativistic bound state, energies : .

THEOREM 2.2. - Assume the conditions of Theorem 2.1.

a) Let be an isolated nondegenerate eigenvalue of H +
and assume H+fo = E0f0, f0~D(H+), ~f0~ = 1. Then, for c - 2 small

enough there is a unique (simple) eigenvalue with

E(0) = Eo which is holomorphic with respect to c- 2 at c- 2 = 0. Moreover,
there are eigenvectors f± (c-2)~H± holomorphic at c - 2 = 0 such that

Annales de l’Institut Henri Physique theorique "
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and

Writing

one obtains

b) If E o E is a discrete eigenvalue of H + with multiplicity 2

then, for c- 2 small enough, H(c) - mc2 has precisely So eigenvalues (counting
multiplicity) near c’~=0. All eigenvalues 1 ~’ so, are holo-

morphic in c -1 and m,

Moreover, if E~.(c -1 ) is an eigenvalue then also E/- C - 1) is an eigenvalue
of H(c)-mc2.

Proof. Uniqueness and holomorphy of E(c - 2), f ± (c - 2) etc. follows
from Lemmas 2 .1 and 2 . 2 and nondegenerate perturbation theory [1] [12]
[17 ]. Insertion of (2 . 29) into the left hand side of the following first order

perturbation formula v ~ ~ w

where o 0 represents the eigenvector of to the simple eigenvalue

(Eo - z) -1, proves (2 . 30). That all of part b) are holomorphic
near = 0 follows from Theorem 2.1 and normality 
[12, p. 71 ]. Since by Lemma 2 . 2 is a semisimple eigenvalue of
Ro(z) one gets by the reduction process described
in [7] ] [12 ]. The last statement finally follows from

REMARK 2 . 2. 2014 For simplicity we only derived E 1 in Theorem 2 . 2 a).
A straightforward computation taking into account all spectral properties
of Ro(z) (in particular the point 0 E e. g. yields for the second
coefficient E2 in (2.29)

where R~-(Eo) denotes the reduced resolvent

We note that under stronger assumptions on the interaction holomorphy
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of the Dirac resolvent and relativistic eigenvalues with respect to c -1
using pseudo-resolvent techniques has been proved by Veselic [22 ].
Holomorphy of the Dirac resolvent, eq. (2.18), Ro(z) in (2.20), and (2.28)
of Theorem 2 . 2 have been derived by Hunziker [77] using somewhat
different methods and relative compactness assumptions. Within this
abstract approach eqs. (2.15), (2.19), and particularly (2.30) are new.
Strong continuity of the Dirac resolvent (cf. (2.17)) and the corresponding
unitary group in the nonrelativistic limit under assumptions (2 . 8) and (2. 9)
is a result of Cirincione and Chernoff [2 ].

REMARK 2.3. - Of course all results of this section have direct ana-
logues if one adds the rest energy mc2 to H(c). E. g. eq. (2.17) has to be
replaced by

Finally we sketch how to obtain norm estimates of various quantities which
in particular imply an estimate of the convergence radius of the expansion
(2.19). For simplicity assume A = A* and V+ = V_ = V. Then (2.19) may
be written as

where

Assuming Re z = 0 we immediately get from (cf. assumption (2. 9))

and

that

Annales de Henri Physique ’ theorique ’
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and consequently

implying

From

we infer

Summing up we obtain

Thus the expansion (2 . 34) (resp. (2.19)) converges in norm if ~03B1(z)~  

3. CONCRETE REALIZATIONS

As shown in [2] the abstract approach of section 2 is general enough
to cover Dirac operators over Riemannian manifolds. Here we restrict
ourselves to the Dirac operator in flat space and first discuss the case of

vanishing external vector potentials and spherically symmetric electro-
static potentials V(r).
We define

and

Let denote the closure of and

Next assume

Vol. 40, n° 2-1984
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where VI is locally uniformly square integrable, i. e. for all A ¿ 0

and

Then the radial Dirac operator hDK(c) in L~((0,oo))(x)C~ defined by

is self-adjoint for I large enough (cf. section 2), and the radial Pauli
operators h ± ,~,K in L2((o, oo )) are given as the Friedrichs extension of

Lemma 1 ].) The full Dirac operator HD(c) in L2(~3) (8) (:2 @ (:2 and the
full Pauli operator H in L~tR~) 0 (:2 are then defined as direct sums
over hDK(c) Since under conditions (3 . 4)-(3 .’6) discrete eigenvalues
of are simple ( [14, p. 13 3 ]), Theorem 2 . 2 a) applies and we obtain.

COROLLARY 3.1. - Let be a discrete eigenvalue of /!+ 

~ ~ f~~°~ ~ ~ = 1 then, for c - 2 small enough, there is precisely one (simple)
eigenvalue of hDK(c) - mc2 near c- 2 = 0 which is holomorphic
in c- 2 with ’

Using different methods, employing in particular holomorphy of eigenfunc-
tions of with respect to c - 2, Titchmarsh [27] ] derived the
result (3.9).
Next we discuss non-spherically symmetric interactions, Let

and assume [7J] ]

where

Annales de l’Institut Henri Poincare - Physique . theorique
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and V2 is a finite sum of Coulomb potentials

With

where 6k, 1  k  3, denote the usual Pauli matrices [7~] we define the
Dirac operator

HD(c) is self-adjoint for Ie large enough (cf. section 2). The Pauli Hamil-
tonian H~ = H 00 then reads

Thus Theorem 2.2 implies

COROLLARY 3.2. - a) Assume Eo to be a discrete, simple eigenvalue
of H Then, for c - 2 small enough,
there is a unique (simple) eigenvalue E(c - 2) of HD(c)-mc2 near c - 2 = 0
which is holomorphic in c - 2 with

b) If Eo E is a discrete eigenvalue of H ~ with multiplicity So ~ 2
then, for c - 2 small enough, H(c) - mc2 has precisely So eigenvalues (counting
multiplicity) near c’~=0. All eigenvalues 1 y ~ so, are holo-

morphic in with 
00

If is an eigenvalue then also E_,.( - is an eigenvalue of H(c) - mc2.
In the special case of vanishing external vector potentials A=0 eq. (3.17)

has been derived by Sewell [79] ] using formal expansions of wave func-
tions in powers of c- 2..
At this point it is interesting to remark that in the physical literature

relativistic corrections to bound state energies are usually obtained by
completely different means. Following the procedure of Foldy and Wout-
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huysen [4] one adds a first order relativistic correction to the Pauli ope-
rator H ~ to get ,

where for simplicity we assume

Relativistic corrections to bound state energies of the Pauli operator H ~
are then obtained formally from (3.19) by means of perturbation theory
[4] [13].
Under conditions (3 . 20) H(c) is self-adjoint and (cf. [5] ] [6 ])

but

(Of course these conditions can be relaxed regarding smoothness and
their behaviour at infinity but Coulomb-type interactions ! I:! 1- 1 near

the origin are certainly excluded due to the term (AV) in (3.19).) Thus
(in contrast to Hoo) certainly has no negative discrete eigenvalues.

Nevertheless one can prove first order spectral concentration of 
at the negative eigenvalues ofHoo in the nonrelativistic limit. More explicitly
we have ([5] ] [6 ]).

PROPOSITION 3.1. - Under conditions (3.20) in addition to that of
Corollary (3.2 a) there is a first order pseudo-eigenvalue E(c-2) of 

In particular E 1 coincides with E 1 of Corollary 3 . 2 a).

Proof 2014 Eq. (3 . 23) has been proved in [6 ]. Using in E1
of (3.17) and calculating various commutators shows E 1 = E 1. D
Thus in the presence of smooth electromagnetic potentials A, V (excluding

the important case of hydrogen-type systems) both approaches yield the
same relativistic bound state energy corrections to first order in c- 2.
But obviously there are important differences from a conceptual point
of view : The method described in Corollary 3 . 2 starts from a discrete

eigenvalue Eo of the nonrelativistic Pauli operator and proves that eigen-
values E(c - 2) of the Dirac Hamiltonian (rest energy subtracted) are holo-
morphic around their nonrelativistic limit c ~ oo. The Foldy-Wouthuysen
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method also starts from a discrete eigenvalue Eo of the Pauli operator
and then shows the existence of first order pseudo-eigenvalues of some
appropriately relativistically corrected Hamiltonian. These pseudo-eigen-
values are not discrete eigenvalues but intuitively they correspond to
resonances whose width become arbitrarily small as c -~ oo.

We finally note that our concept of expanding the Dirac resolvent
around its nonrelativistic limit not only includes a description of Coulomb-
type interactions but trivially generalizes to nonlocal interactions V (cf.
the example in [7 ]) and also allows a discussion of anomalous electric
(resp. magnetic) moments 5 (resp. ,u) of a charged particle in external vector
potentials A, V. In this case the Dirac Hamiltonian reads

where

and V, Ak, (V A A)k, 1  ~ ~ 3 are assumed to be infinitesimally
bounded with respect I (e. g. each operator acts by a function in

+ L°°(~3), p &#x3E; 3 [15 ]). Since a detailed treatment of anomalous
moment interactions including hydrogen-type systems will appear else-
where [9] we only note that in the nonrelativistic limit c ~ 00
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