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About the adiabatic stability of resonant states

Pierre LOCHAK

Centre de Mathématiques de l’École Normale Supérieure,
45, rue 75230 Paris Cedex 05

Vol. XXXIX, nO 2, 1983,

Section A :

Physique

ABSTRACT. 2014 The aim of this paper is to generalize the adiabatic theorem
(we recall below the usual statement of the theorem) to « résonant states &#x3E;&#x3E;,
i. e. eigenvectors of dilation analytic hamiltonians, for non real eigenvalues.
We therefore look at a time-dependant approach of the Balslev-Combes-
Simon theory, leading to a non autonomous, non self-adjoint équation,
which enables us to prove an asymptotic and a perturbative version of
the adiabatic theorem (with the proviso of an extra hypothesis), thus empha-
sizing the physical character of these states, some features of which we
have described.

RÉSUMÉ. - Le but de cet article est d’étendre le théorème adiabatique
(dont on rappelle l’énoncé usuel) à des états résonants, c’est-à-dire à des
vecteurs propres de hamiltoniens analytiques par dilatation, pour des
valeurs propres non réelles. On considère une approche dépendant du
temps de la théorie de Balslev-Combes-Simon, menant à une équation
non autonome non auto-adjointe, et qui permet de démontrer une version
asymptotique et perturbative du théorème adiabatique (sous une hypo-
thèse supplémentaire). Cela met en évidence le sens physique de ces états,
dont on décrit quelques propriétés.

1) INTRODUCTION

Although the « phenomenology » of the résonances in scattering expe-
riments is now well known and their mathematical description by means
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120 P. LOCHAK

of « proper differentials )&#x3E;, spectral concentration, and above all dilation
analyticity techniques is already quite sophisticated, it can be advocated
that the corresponding states cannot fit properly in the usual quantum
scheme; indeed, the very enunciation of the « rules )) of quantum mecha-
nics requires the existence of stationary states, that is, isolated eigen values,
and however powerful such things as the Fermi Golden Rule may be,
they ignore the fact that we lack a theory of quantum transitions; in fact,
it is even difficult to speak about quantum « jumps » inside a continuous
spectrum, even if one can compute « transition probabilities )).

These physical motivations are carefully analysed in the références [1],
where a critérium for the generalization of the « stationary states » is also
proposed; and this is adiabatic invariance. Unfortunately, the existing
statement of the adiabatic theorem (which we recall below) also requires
the existence of an isolated eigenvalue, i. e. a proper stationary state;
however, a first generalization was worked out in [2], namely in the case
where the hamiltonians dépend periodically on time.
The purpose of the présent paper is now to investigate a kind of « struc-

tural stability » of this theorem; to be précise, the rules of quantization,
such as they were already formulated by Schrödinger (see [1] for more
détails about these physical problems) apply properly only to perfect
potentials, leading to discrète spectra. Nature however, provides us only
with non perfect « potentials wells » which would often eventually lead
to completely continuous spectra (because of tunnel effects) in which the
usual stationnary states (discrète eigenvalues) would be replaced by such
phenomena as resonnances and spectral concentrations (we again refer
to [1] for a physical discussion and examples). It is certainly essential to
investigate the significance of the quantum scheme in these non idéal, real
cases. In this paper, we carry out this programme in the case of dilation

analytic potentials, by extending the adiabatic theorem to the resonant
states. One can venture to suppose that the understanding of such phe-
nomena is not only interesting from a mathematical point of view, but
might also lead, as is suggested in [1] to a certain insight in the obscure
question of quantum transitions; the paper is divided into four parts,
which are organized as follows:

(1) Introduction.
(2) Hère we introduce the necessary apparatus and prove a theorem

which describe the behaviour of certain important semi-groups. This part
is preparatory and purely mathematical, and since the meaning of the
statements is clear whereas the proofs are rather involved, they can be
skipped without impairing further understanding.

(3) The physical states we will be concerned with in the adiabatic theo-
rem are introduced and four properties are given which show that they
share some characteristics of the stationnary states. The end of that part
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121ABOUT THE ADIABATIC STABILITY 0F RESONANT STATES

deals with a necessary theorem for the existence of the solutions of a cer-

tain equation; again, its validity can be taken as granted if one wishes to.
(4) After having recalled the usual version, the adiabatic theorem is

stated and proved (two versions) and some remarks added about its signi-
ficance.

2) DILATION ANALYTIC POTENTIALS
AND THE SEMIGROUPS GENERATED

BY THE DILATED HAMILTONIANS

For the saké of convenience, I shall make free use of the notations and
definitions of [3], which I shall quote thereafter as M. M. M. P. whith chapter
and paragraph (for instance as regards this part, see especially XII, 5 and
XIII, 10). We let: 

.

be the hamiltonian of an N-body quantum system, with two-body 0394-compact
interactions, that is, H is an operator on L2([R3N) and ~)
where r~ E [R3 is 03B2-compact as an operator on We suppose that

H E e. that the are dilation analytic in the strip

explicitely, we introduce the unitary group of dilation operators

and we denote by A the generator of this group (the so-called « progress
operator &#x3E;&#x3E;) with spectral resolution 

Letting V() == the assumption on the is that admits
an analytic continuation into an analytic family of 0394-bounded (and conse-
quently 0394-compact) operators on Sa. We let H in L2(R3(N-1)) be H with
the center of mass removed (see M. M. M. P. XI, 5 for a discussion of this
opération) and for 0 real, H() == Then, H() can be continued
to Sa and the Balslev-Combes theorem ([4]) gives the structure of

o~) == for We notice that the theory does not allow one to
include external fields, but these can be recovered by letting the mass k
of one of the particules (which can be viewed as a nucleus) tend to infinity.
We want to view  |Im 0 I  ex; especially 0 == i03B2 with 0 ’ 03B2  ex)

Vol. XXXIX, nO 2-1983.



122 P. LOCHAK

as an unbounded change of représentation on L 2([R3(N + 1)), so that
we can later study the dynamics in this new représentation; we therefore
state an important preparatory theorem in which we also include a few
well-known statements, thus obtaining a rather complète description of
the semi-groups generated by the dilated hamiltonians:

THEOREM. - We denote by D the - - subset of the analytic vec-
tors for A, by set of 03C6 E H, such that u(03B8)03C6 exists for 11m 03B8I  a and
by D(u(03B8)) the domain of u(03B8); then, for H~l03B1:

i) The semigroups e-it H03B8 (t  0, 0  1m 0  ex) and can be continued

family of semigroups for complex values of t such that

ii) e-itH03B8 is analytic with respect to () for 0  Im ()  ex and strongly
continuous Im () == o.

iii) Let /? be such that 0  /?  fJ.; positive constant M

such that:

Besides, the semigroups e-itH03B8 (t 0; 0  Im03B8  o:) are of type zéro.
~) The following intertwining relation takes place:

and

Proof. - i) This first statement is known (M. M. M. P. XII, 5) usmg thé

Hille-Philips-Yosida theorem; to apply this theorem, one needs to evaluate:

We do this in the case of a two-body problem with 0 = i03B2 (/? &#x3E; 0); the

generalization is straightforward. One has:

An easy interpolation lemma (see M. M. M. P. XII, 5; in Simon words
it shows that l03B1 C his class of dilation analytic potentials for qua-
dratic forms) now proves that being 0394-compact (hence ~-0394-bounded

generates an ~-0394-bounded quadratic form i. e.:

taking 8  sin 203B2 finishes the évaluation needed to apply the Hille-Phil-
lips- Y osida theorem and also demonstrates the existence of the analytic
continuation.

Annales de l’Institut henri Poincaré-Section A
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ii) The new and important thing here is the behaviour of e-itH03B8 when 0

goes down to the real axis. First e-itH03B8 admits the following représenta-
tion, as a contour integral:

where 03B2 == 1m () &#x3E; 0 and rp is pictured on figure I. 03C3(03B8) is included in the
shaded strip; because the generate ~-0394-bounded quadratic forms,
the image of  can be included in a sector S with arbitrary small
opening angle, containing this strip. Lastly the two straight lines of rp

Vol. XXXIX, nO 2-1983.
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going to infinity both diverge from S. The convergence of the intégral
in (6) is now plain from the estimation :

which is a conséquence of the location of the image of ( ~ &#x3E;.
This représentation gives an explicit expression of that can be
continued for the complex fs described in (f). Then, since the path rp
can be used in a small neighbourhood of 0, because of the divergence of
the two lines, it proves the analiticity of e-itH03B8 with respect to {},noting
that (03BB - H03B8)-1 is analytic on the subset of C  S03B1 where this resolvent
exists, because Hø is an analytic family in the sensé of Kato.
The hard part will now be to prove the strong continuity of e-itH03B8 along

1m 0 == 0 - this is the problem of studying the boundary values of an
analytic function. With no loss of generality we put {} = i03B2 and we let 03B2
tend to zéro. We write Vp, Hp etc... instead of Vi03B2, Hi03B2 etc... We first need a
lemma which says: 

’

LEMMA. 2014 V03B2  03B1 ~e-itH03B2~ is bounded for 0  03B2  03B2  o:.

We return to this later and prove the strong continuity assertion:

where, because of the lemma, we restrict ourselves to 03C6~K2, the domain
of H, which is also the Sobolev space of rank 2.
~~  -0 we have :

2014 IS arbitrarily small, provided 1] is small enough (independantly of 03B2).
- We write (II) and (III) as contour intégrais on the paths rn and 0393III

pictured on figure 2.

Then, V1] &#x3E; 0, V8 &#x3E; 0, ~~o such that (II)  8 for ~8  ~ because the
resolvents converge uniformly on compact sets.

Again, because of the lemma, we need only to estimate 
we suppose rIll has been taken such that 0 lies inside:

Poincaré-Section A



125ABOUT THE ADIABATIC STABILITY 0F RESONANT STATES

Then:

We know that s - lim Hp == H and thus is bounded for 03B2 close to zer
moreover; 

Then, substracting zero to the previous equality, we get:

To finish the estimation of (III), i. e. to show that:

we need a uniform estimate W. r. t. 03B2) of the résolvent - H03B2) - E rIll.

Vol. XXXIX, n° 2-1983.
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Since the two branches give rise to similar calculations, we do this only
for the upper branch; moreover, we restrict ourselves to the two-body case,
the generalization to the N-body case leading only to minor changes.
We are thus almost reduced to a computation in [5] and, with a little more
care in the évaluations, one gets:

This suffices to conclude the proof, with the proviso of the lemma.
s

In fact, take 110 small enough such that (I)  - 3 for ~  110; then, - reducing 110
if necessary, (III) will be smaller than - 3 for 03B2  03B20; 110 being chosen, there

exists 03B21  03B20 such that (II)  - for 03B2  03B21. Combining the three esti-
mates yields: 

3

We now return to the boundedness of of course,
we are concerned only with the behaviour near ~8=0. We could not find
any straightforward démonstration of this fact, which should, however,
be easy, considering we will get much more précise informations out of it.
We treat again the two-body case, the N-body case being an easy conse-
quence of the démonstration:

We shall apply the Hille- Phillips- Y osida theorem again, but with a
better évaluation of the quadratic form Re 03C8, - ). In fact, we will
prove:

with W an ~-0394-bounded potential. Inserting this évaluation in the inequa-
lity:

proves the lemma, which is equivalent to the boundedness of Re 03C8, - 
when 03B2 goes to zéro.
To obtain the estimate (12) which is technical and the proof of which

can be skipped if one wants to take it as granted, we need the characteriza-
tion of dilation analytic potentials, as worked out in [6]. It is easier, for
this purpose, to change the dilation group into a multiplicative group,
putting:

and simultaneously changing the strip S~ into the sector:

Poincaré-Section A
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We consider as a function (again denoted by V):

where ~ is the unit sphere in ~3 (change to spherical coordinates). Then,
if V is a dilation analytic potential, it is the restriction of an analytic
function V from S~ to L2(L) and Vz == ~(~V~~/ is simply the restriction
ofV to the ray { pz; 03C1  0 } viewed as a function from R+ to L2(03A3):

And one needs to impose estimâtes on these functions to ensure that Vz
is 0394-compact. To this end, we make use of the following proposition,
specific of the dimension 3 :

PROPOSITION. - Let V ~ Hloc ~ L2loc(R3) considered as a multiplication
operator on Jf; the three following statements are

i) V is bounded from H2 == H.

n) V is ~-0394-bounded.

m) sup ~V|B(x,1)~L2  ~ where B(x,1) is the ball with center x and radius I.
’

V is 0394-compact if and only ïf lim ~ V 1) 
== O.

This enables the authors in [6] to give necessary and sufficient condi-
tions for V to be a dilation analytic potential. Consider first thé case where V
is central; then, it is extended to an analytic function from Sa to C, and the
growth condition reads:

We carry out the estimation of |Im V03B2 I in this case; this amounts to

studying 11m I and we are concerned only with large Finally,
we can restrict ourselves to the case where, for some strictly positive B:

~ 
rJ. 

Then, one can write (since V (p) is real for real /?):

Vol. XXXIX, nO 2-1983.



128 P. LOCHAK

But, upon integrating V’ on the dise A of center z == and radius

p sin 03B1 2 (see figure 3) :

Combining the two yields:

which proves our contention (12), because of the growth condition on V.

Annales de l’Institut Henri Poincaré-Section A
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The case of a non central potential is messier but can be handled similarly; ,
however, one needs a slight improvement of the characterization given
in [6]; in fact, one can prove that the following estimate always holds:

with (as in [6]):

We will not prove this, which is done again by means of contour inte-
grals; neither shall we go into the proof of the lemma in the non central
case, which is rather easy, but gives rise to a very cumbersome notation.
The idea is that of the central case.

Thus, the proof of assertion (n) of the theorem is completed.
First, the semi-groups are of type zéro, i. e.:

This is obtained readily from the représentation by the contour inte-
gral (6); one has |e-it03BB|  e~t on the part of rp in the upper half plane and

1 on the part in the lower half plane. Together with (6 this
proves (16), because 11 is arbitrary. Alternatively, (16) reflects the fact that
the spectrum of He lies below the real axis, which imply that has 0
spectral radius. 

’"

We now corne to the main point. Let 03B2 be an arbitrary positive number
o - /?  a and consider the function:

with

o- IS holomorphic on the strip 0  1m ()  03B2 and continuous on the
boundary (this is the assertion of (ff) for the line 1m () == 0). Moreover:

because of the relation :

then, by the Hadamard three line theorem, we conclude:

Im0

and, since 03C6 and 03C8 were arbitrary:~e-itH03B8~  ~e-itH~.
That there exists b() such that ~e-itH~  eb()t is easy to prove (in

Vol. XXXIX, nO 2-1983.
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fact, the very existence of the semigroup already entails it). Letting
M == ~8’~ .b(~), we get the inequality as written in (m).

It is worth noting that the above démonstration applies also to non local
potentials (magnetic fields for instance) as soon as one can prove the
assertion about the strong continuity along 1m () == 0, and gives probably
the best possible bound in the general case.

?)

by analytic continuation from 1m 8 == O. What we want to show is that
if ~e~ and We let again 0 = ~ (0  ~  a)

and take any 03C8 in D03B1; then, the relation above reads:

This extends to ~ E ~(~(ï~S)) because Çþ:x is dense in ~(~(~)) endowed
with the graph norm of (this is easy, using the abstract form

== exp (~SA)); what this says is:

but this finishes the proof, because == ~~ is self-adjoint. This fact
may be deeper than it looks; for instance, we leave it to the reader to trans-
late the fact that u(i03B2) is closed : one is lead to a Phragmen-Lindelöf type
interpolation lemma, which is already non trivial.
We have thus completed the proof of the theorem, and we now turn

our interest towards the states we will need for the proof of an adiabatical
theorem.

3) THE RESONANT STATES CHARACTERIZATIONS

We put again 0 == i03B2, except in a few places, and drop the i from the
r

notation as before. Let E == i  be a resonance, that is, an eigenvalue

of H03B2 with Er E [R and r &#x3E; 0 (of necessity, E is finitely degenerate). Recall
that E is also an eigenvalue of Hy for 03B2   (J. and the eigenvectors cor-
respond under u(i(-03B2)). A simple and important remark is that given 03C60
an eigenvector of H03B2 for E, 03C60 does not lie in Ran because, if we had
03C60 == u(i03B2)03C61, 03C61 would be an eigenvector of H for the eigenvalue E,
which is impossible, since E is non real.
Now, we can make the « change of representation &#x3E;&#x3E; given by the ope-

rators If 0 and 03C8 E H, u(03B8) is unitary and:

Poincaré-Section A
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For a complex 6 = ~ and ~E~(~(ï~)) at time r == 0, we still have:

because that is exactly what in the theorem of part 2 says. Bearing
in mind the fact that we want to consider the eigenvectors for complex
eigenvalues, which are not in Ran we extend this équation to

2014 = - the propagator of which, of course isjust the semigroup

So far, we have done nothing new, from a purely mathematical point
of view, but it seems fruitful, as we shall shortly see, to consider 
as an intertwining operator, as is done in of the theorem of part 2.
In particular, if we consider the two body problem, we have:

and, when j8 increases from 03B2 = 0 to 03B2 = 03C0 4 (SUPPOSing V E l03B1, ;x &#x3E; 03C0 4),
one can see that we have a continuous path from the time réversible Schro-
dinger équation to a diffusive équation (the operator H1t/4 is not really
accretive because of V1t/4, but at least, it looks like the heat operator). In
fact, as soon as 03B2 &#x3E; 0, the évolution becomes irreversible, which is a trans-
lation of the fact that is a semi-group. For further évidences of this
irreversibility, see below and [7].
We now turn to the définition of résonant states, which we first moti-

vate: the opération of changing représentation via is very much
reminiscent of the strategy of the « nested Hilbert spaces &#x3E;&#x3E;, that is, for
instance, by changing the weight factor of the measure which defines the
square integrable functions, one can manage to recover new functions,
in particular, one can include the plane waves in a new Hilbert space. In
a little more general way, this trick enables to consider the « eigenstates »
corresponding to « eigenvalues » of the continuous spectrum, to use more
physical expressions. Similarly, u(i03B2) makes it possible to look at new
interesting states, namely the eigenstates of H03B2 for résonance eigenvalus,
thus « completing &#x3E;&#x3E;, so to speak the Hilbert space. Coming back to the old
representation, we can define states that are close to these new states,
exactly as the nested Hilbert space would make it possible to define « nearly
plane waves &#x3E;&#x3E;.

Hence the definition:

DEFINITION. - L~ He~,~!X,E=E~2014f2014~ w~

suppose, is simple, for simplicity), and 03C60 in the eigenspace for E:

Vol. XXXIX, n~ 2-1983.
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Then, for a positive ~, ’ say that 03C8 E _J f5 if:

We first note that ~ can be taken arbitrary small, because is dense (exactly
as there are square integrable functions arbitrarily close to plane waves,
even if this sentance does not mean anything inside L2([R3)). We now describe
these states more precisely, giving four specific properties; the first two
are taken from [7].

f) Letting P(t) == 1 t/1, I be the probability of remaining in the
state 03C8 at time t, it is shown in [7] that:

This shows that a résonant state is something like a stationary state,
displaying an « exponential decay » (this property cornes back to the oldest
ideas about résonances, life times, etc.)

n) Let H(0153) == Ho + wV be a family of Hamiltonians, with 
V E % and 0153 real close to zéro. Suppose Ho has a simple isolated eigen-
value E. Then will have a résonance near E (independently of 03B2
and for suitable 0153):

The following is proven in [7]:

THEOREM (Simon). - 7/ == - 03932n03C92n + the spectrum
of H(03C9) is concentrated at precisely order (2n - 1) E.

We refer to M. M. M. P. XII, 5 for the définition of spectral concentra-
tion. Thus, the existence of a résonance imply a concentration in the spec-
trum, a notion which has an asymptotic meaning only - that is, one needs
to consider one-parameter families of operators. However, this again
connects résonances with old and physical ideas, like the construction of
eigenstates corresponding to « eigenvalues of the continuous spectrum »
(see also (m) below for the connection with « pseudo-eigenvectors &#x3E;&#x3E;).
m) Hère, we explicitly build-up résonant states. In conformity with (n),

they will be vectors with a narrow « spectral band », i. e. a narrow support
in the spectral resolution of H. The construction itself adapts similar consi-
derations in [7]. r
We do not suppose any more that E :=: i 0393 2 is simple and let 03C6 be

such that == dE;. dénotes the spectral resolution of A (the pro-
gress operator) and that of H. Put:

’ ’ Poincaré-Section A
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where the end-points n == 03C3inf(n) are arbitrary cut-off,
with the conditions that:

If 03B20 is the lowest value of 03B2 for which E remains an eigenvalue of H03B2
(i. e. E is swept off by the essential spectrum at 03B2 == 03B20), and if we denote
by d 03BB the spectral measure d  E03BB03C6, 03C6 ), the integral:

exists for (03B20 - 03B2)  t  (0: - 03B2); this suggests that:

~~~(~o)~ ~~o, and }~&#x3E;&#x3E; 0

a guess we will make (because unfortunately, d 03BB seems out of reach;
most of the characterizations we have, including (i), are still somewhat
non rigorous). Then:

that is, is arbitrarily résonant when ~ increases. To study with respect
to the résolution take (~, b) a small interval round E; we want to
compute :

Thatis:

using == ~ and  ~(-~,, ~ ) == II !!~.
The suggestive result is:

which shows how things behave when r gets smaller. To prove this equality,
weuse:

Vol. XXXIX, nO 2-1983.
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and

which is an other form of the évaluation (6 in the second part (see also
6g. 4). These properties show that in the computation of  ~, 
the first term on the r. h. s. dominâtes the second, as ""’ over ~~".

So, the more n increases, the more résonant will be, and the more it
is concentrated with respect to the spectral measure ofH, provided r is small.

If one considers a one-parameter family H(0153) of hamiltonians, like
in (ff), the same construction yields vectors 03A0[a(03C9),b(03C9)]03C8n(03C9). One can then
show that, by adequately choosing a, b, n (namely such as they satisfy
(b(0153) - ~(0153)) - 0153~’(0  8  1), which garantees that the r. h. s. of (5)
goes to I as 0153 goes to 0), the construction furnishes a pseudo-eigenvector
(see M. M. M. P. for the définition) for the family H(~), thus connecting
résonant states and spectral concentration again (*).

iv) Let again E be simple, with unitary eigenvector 03C60 for H03B2’ Then,
when the semi-group e-itH03B2 is applied, we get == and the

square of the norm decreases like Let now 03C8 be resonant, and decom-
pose it with respect to 

tþ satisfies thé Schrödinger équation, hence, if d t03BB ~ d II E(03BB)03C8(t) 112 :

New, if ~ u(i03B2)03C8(0) - 03C60 II 8, we have:

where C can be evaluated, using the theorem of part 2; thus:

or

o mat, although 0 and t have the same mass, they behave differently,
when integrating the functions ~’~~(0  ~  a) and everything looks
like if the mass were translating at speed 0393/203B2, measuring the « dissolution »

These are thé four characteristic properties we have, to describe the

(*) I am grateful to the référée for pointing out a possible connection between resonant
states and pseudo-eigenvectors.
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specificity of the résonant states; of course, the last one will be their adia-
batic invariance. Now, we need to consider a family of Hamiltonians

in and the equation:

We first want to demonstrate the existence ofa propagator ~ ~o)
under mild hypothèses on the regularity of H(t). This is done by applying
a theorem of M. M. M. P. (X, 12), which we recall, rephrasing the hypo-
thèses in a more concise, but equivalent form:

THEOREM. - Let X be a Banach space, I an open interval in R; for t ~ I,
let A(t) be the generator of a contraction semigroup such
tible for every t~I and:

ï) The A(t) have a common domain qþ.

ff) The map A from (I x X, 03C6) ~ A(t)03C6 is cø 1 with

respect to the graph norm on D (which is well defined because A(t)A-1(s) is
bounded on D).

exists a propagator u(t, s), L e. if 03C8 E qþ,

moreover

This readily applies to our case if we put:
A(f) == K + K &#x3E; 0 large enough, where

and the are cø 1 for r E R. We can find K large enough to apply the
theorem on I ::) [0,1] and then iterate to get t1) for general t1)
(~ ~ ~o)’ We now look for a bound on == ~); remember that 
in the theorem of part 2 says that: 

’"

b(03B2) is obtained in the following way; for the two-body case:

and since Vp is ~-0394-bounded as a quadratic form:

then b(~) == b~ for some chosen 8  sin 2/3. In the N-body case, just add
Vol. XXXIX, nO 2-1983.
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1 "-

the results with 8  2014sin2~ (taking care of the masses if necessary).

Hère, b() will also dépend on t and putting

one readily obtains the bound:

PROPOSITION. - ~03B2, 0  03B2   (1, 0, ~S03B2(t)~  eM.03B2.t showing
the dependence with respect to t and 03B2.

This is where we strongly needed an estimate of ~e-itH03B2~ for short inter-
vals of time, and not only the fact that they are semigroups of type zéro.
We now turn to the statement and proof of the adiabatical theorem.

4) THE ADIABATIC INVARIANCE
OF THE RESONANT STATES

Before stating our theorem, we recall briefly the content of the usual
adiabatic theorem, as it was demonstrated by Kato in [8] (although many
« non rigorous » dérivations were given before - and after).

Let (s E [0,1 ]) be .a family of self-adjoint operators in a Hilbert
space H, such that there is an eigenvalue 03BB(s) of isolated and finitely
degenerate for every s, with spectral projection II(s). We suppose that 03BB(s)
and are of class l2 (of necessity, dim Ran is a constant) and
consider the equation:

We refer to the last paragraph as for the existence of a propagator for
this équation. 1" is a positive number which plays the role of a characte-
ristic time, that is dimensionelss and TS is the time variable; we leave
it to the reader to convince himself that letting T tend to infinity is the same
thing as looking to the Schrödinger équation, between times t == 0 and f=T,
with a parameter more and more slowly varying, as 1" gets larger:

ADIABATIC THEOREM. - Let 03C80 E Ran II(O) and 03C803C4(s) satisfying

That is, for a slowly varying parameter, and starting from an eigen-
vector for 03BB(0), the solution of the Schrödinger équation « follows » the
eigenspace Ran I1(s). Our ultimate goal is to generalize this theorem to
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résonant states (obeying the Schrödinger equation), to this end, we consi-
der a family of Hamiltonians in l03B1, obeying the conditions stated
in the existence theorem of the last paragraphe and the equation :

with a propagator S~(~) between 0 and S, satisfying:

for some constant M (independent of T as is easily seen).
We make the further hypothesis, analogous to that of the usual theo-

rem, that for some 03B20 (hence for any 03B2E there exists a resonance

E(s) = E.(s) - f 20142014, isolated in the spectrum of for every s E [0,1 ],

and of 2014 constant - multiplicity n. As one can see on figure 4:

where is the nearest threshold; as we will shortly see, we will need to
have r == sup ~~ ~80 very small, i. e. an acute résonance not to close
to a treshold, two conditions that do not look unphysical.
The situation is best described by the following diagram:

.Vol. XXXIX, n° 2-1983.
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which depicts our stategy: we are concerned with proving the adiabatic
stability of the résonant states, which are physical states, evolving according
to the Schrödinger Equation (S. E.). However, to this end, we shall in fact
demonstrate the adiabatic stability of the eigenvectors for the résonance E(s),
which evolve according to (*) and are much casier to dealt with mathema-
tically speaking, but cannot be studied, using the Schrödinger équation,
since they are ~ in Ran Once this is donc, the following conclusions
can be drawn:

- Start with a résonant state i. e. a vector in ~ (a &#x3E; j8) such that
II - ~o II  8 for some small 8.

- Go down the left vertical arrow and study the time évolution of
~o == ~(0) under (*).
- The adiabatic theorem proven below tells you that if the Hamil-

tonian has slowly varying parameters, you end up at time T with a vector ø(l)
(recall t == close to 03C61, the eigenvector of H03B2(1), for the résonance E(l).
- dénotes the évolution operator of (*), evolves in 

and stays in Ran as shows the part of the theorem in the second part.
In fact S03B2u(i03B2)03C8 == where 03C8(s) satisfies the Schrödinger equation;
now:

the second quantity on the r. h. s. is small by the adiabatic theorem for 03C6
and the first is small if ~ S03B2~ is not too large. Unfortunately, our estimation
on ~ S03B2~ is not sharp enough to make sure that this holds in the general case.
Hence, with this proviso, which cannot be avoided, although it is very likely
to hold in almost all cases of interest, this shows that 03C8(1) is a resonant

state, and so that résonant states can be claimed to be adiabatically invariant.
We now return to the statement of the theorem:

THEOREM (A). - L~ (*) be ~~ 

d03C8 = - (03B2 &#x3E; 03B20 will stay fixed in the following)~5

wtih an isolated resonance E(s) of constant multiplicity n, and associated
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L~ ~~ £ (*) ~~ ~~ ’ T ~ ~~ 
(B1’1"); 

where J(03C603C4(1), 03A003B2(1)) denotes the distance of 03C603C4(1) to the subspace 03A003B2(1)
(from now on, we make no notational distinction between a projector and

his range, when the context is clear), an Ao and Ai are two constants to
be computed below.

Before we prove anything, we make a few remarks about what this
formula really means:

f) We look only at what happens at time! (s == 1) because this is really
no loss of generality.

n) We need nearly orthogonal projections (p small) and small Ao and Ai
for this inequality to be really what we want it to be; this will be achieved
in particular in the perturbative version to be stated below; generally
speaking, there cannot be « universal constants », just like for instance,
the convergence of a Fourier séries.

m) The adiabatical stability will take place for values of 03C4 which are
« large », but still, much smaller than the « lifetime &#x3E;&#x3E; r - 1, after which the
considered résonant states are dissolved. This is precisely what you expect,
and does not pose any special problem to the physicist; in actual expe-
riments, « infinitely slowly » can mean « within 10- 5 s &#x3E;&#x3E;, so, different
scales of time will take place (perhaps all this could be rephrased, using
non-standard analysis !). As a good illustration of this, look at the func-
tion e039303C4. 03C4-1 for small r (see figure 5, this function will be characteristic
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in the following formulas), one keeps track of the phenomenon until
something like the lifetime, and then, it gets out of control.

We now turn to the proof of (5). First, one can suppose that == 0,
because this amounts to multiplying the solutions of (*) by

this is not, however, a completely innocent operation, because ~03C8(s)~2

is multiphed by exp [, ÎS 
exp ru and so, we denote by 03B2,03C4,

the propagator of: L Jo J

and will put the phase factor again at the end. Next, we drop the subscript 03B2,
which is a fixed number (~o  ~  Ct) throughout.
New, let W be the solution of:

(the star dénotes the adjoint operator).
. ~n*

One can check that W == TI*W, because using TI* - TI* == 0, it is

easy to prove that in fact, W == IT*Z with: ~

Of course, W does not dépend on T and we can write:

which shows that:

as for thé relationship o between fx and 0 p, we use thé

LEMMA. 2014 Let II ’ with n-dimensional range, and let
== 1 + 
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Proof of the lemma. - First, we take n=1, then, there exist 03C60 and 03C61
such that:

writing M == 03C60 
- we have:

Hence:

For arbitrary ~ write:

orthonormal and == 1, Vf. Then:

The result follows from the one dimensional case, observing that

We now compute:

-- dW dW
Moreover: S * - == S*(D - I1*) - because I1* - == O.

~~ d~ ~s
But we can write : (D - TI*) == -- H*R == RH* for some bounded operator R;

this is because H (or H*, or H*) is a spectral operator with an isolated
eigenvalue E(.s) (alternatively, 0 is isolated in the spectrum of H). From
this, we deduce:

with the estimate: II s~) exp ( M03B2 + ~ r }s == exp 
integrating by parts, we get:
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Hence, if 4&#x3E;(0) E 11(0)’ II 4&#x3E;0 II == 1. the following inequality holds:

where Ai stands for sup (R 20142014 (this is the very expression onesE[O,I] MS B ~ /
cornes across when proving the usual theorem) and does not dépend on T.
We now estimate the distance between ~(1) == S~(1)~Q and TI(l); the
same estimate will hold for ~~(1), which is proportional and shorter.
Obviously: 

’

the lemma gives an estimate of the second term on the f. h. s. ; as for the first :

as a test vector, we take we

obtain, by the évaluations (8) and (11):

which proves the évaluation of the theorem. II
The last thing we want to do is to give a perturbative version of this.

To this end, we consider a family H(0153, ~) of Hamiltonians, all in such
that H(o, s) is an analytic family in the sensé of Kato for any fixed s (one
can think of H(0153, s) == + where V may be a sum of interacting
potentials). We suppose further that Ho(s) == H(O, s) has an eigenvalue Eo(.s)
embedded in the continuum. Then s) exists and will possess a reso-
nance for sufficiently small 0153:

As an example, one can think of the helium atom without interaction
between the two électrons for H0 - co would then be the coupling constant.
We again suppose that the multiplicity is constant (no bifurcation)

and we add the letter o to all the previous notations to emphasize the
dépendance on this parameter.

THEOREM (B). - L~ (*) b~ f~ 

and we suppose the following is fulfilled:
2014 There exists :r such that for 03B2 and OJ small enough, the propagator

S03B2,03C9,03C4(s) is a contraction operator for 03C4  T.
Then: B/17 &#x3E; 0, TO, 1"1) that 0  T  1"0  L1 and the following

Henri Poincaré-Section A
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This is really the sort of things you expect and which is easy to show,
using the estimate of theorem (A) which yields, using the extra hypothesis:

where of course: r(w) == sup r(0153, ~), ~ == p(~ 0153).

Notice that s), associated to s) is analytic with respect to 03B2
and 0153, and nQ(0, s) is orthogonal for every s rto(0, == 1); so, chose

1

first ~g so that p(~ 0) == sup s) 112 - 1)2 is small enough and then,
s

chose ~ such that both p(~, 0153) and r(w) are again small. This can be done
for arbitrary 1], and yields the inequality (15).
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