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Conservation laws

and string-like matter distributions (*)

A. JADCZYK (**)
Institut fur Theoretische Physik der Universitat Gottingen,

Bunsenstrasse 9, D 3400 Gottingen

Ann. Henri Poincaré,

Vol. XXXVIII, n° 2-1983,

Section A :

Physique theorique.

SUMMARY. Equations of motion for singular distributions of matter,
like point particles, strings, membranes and bags are derived by Souriau
method. Interactions with metric tensor, non-Abelian gauge fields and
G-structures are taken into account. Particles carrying spinorial charges
in super-gravity field are also examined.

RESUME. - On obtient par la methode de Souriau des equations de
mouvement pour des distributions singulieres de matiere, telles que des
particules ponctuelles, des cordes, des membranes et des sacs. On incor-
pore des interactions avec Ie tenseur metrique, avec des champs de jauge
non abeliens et des G-structures. On examine aussi Ie cas de particules
portant des charges spinorielles dans un champ de supergravite.

1. INTRODUCTION

It is well known that the geodesic principle of general relativity can be
derived from energy-momentum conservation, the latter being in turn
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100 A. JADCZYK

a consequence of general covariance of the theory. Some authors (see
e. g. [7] ] [2 ]) claim that also the equations of motion of the Nambu string
can be derived by this method. We study singular distributions of matter,
like point particles, strings, membranes, bags, etc. in a field of geometrical
objects like metric tensor, gauge fields, G-structures. Instead of deriving
relevant equations from conservation laws we follow a much simpler
method of Souriau [3] ] which allows us to proceed directly from inva-
riance to equations of motion. Nevertheless we have found it more conve-
nient to change philosophy and appeal to Aristotel’s Golden Rule of
Mechanics rather than to « general covariance ». After formulation of a
general framework in Sec. 2 we proceed to consider motions of charged
singular distributions of matter in gravitational and non-Abelian gauge
fields. For 1-dimensional distributions we get equations of Kerner and
Wong [4] ] [5] ] [~] ] [7], and for 2-dimensional ones our equations contain
those derived by Nielsen [8] from an action principle. In fact, as is dis-
cussed in Sec. 3 and 4, Nielsen’s equations are stronger than ours since
they specify internal energy-momentum tensor of the string in terms of
its geometry and its current. Our analysis is to be compared with that
given in [7] ] [2] where (apart of the fact that we include gauge fields not
discussed there) the authors overlooked the fact that conservation laws
do not determine string’s dynamics unless its internal dynamics is specified
so that Cauchy data’s constraints become explicit and an appropriate
phase space can be defined.

In Sec. 6 we discuss a wide class of theories where geometry is described
in terms of a G-structure. It is found that a possibility of deriving a full
dynamics from conservation laws, even for point particles, depends on the
group G. Orthogonal groups are the best in this respect what distinguishes
field theories based on multi-dimensional Riemannian geometries (endowed
with any set of covariant constraints like e. g. Kaluza-Klein theories).
Supergravity [9 ], considered as a constrained Lorentz structure on super-
manifold, seems to have too poor a structure group to give deterministic
equations of motion for a point particle endowed with mass and spinorial
charge. Much better in this respect is metric supergravity [7~] [77 ] although
it may cause some other problems [12 ].

2. THE GOLDEN RULE

Let R be a space of geometries of certain kind and let Ri be the tangent
space to R at  E Vectors 03B4 E correspond to possible displacements
of ~ in ~, and linear forms on correspond to possible matter distributions.
Usually each ~ is constrained to represent geometry of a fixed manifold ~
so that can be identified with an appropriate space of geometrical objects

Annales de Henri Poincaré-Section A



101CONSERVATION LAWS AND STRING-LIKE MATTER DISTRIBUTIONS

on Automorphisms of P induce motions in R and those displacements
ði which are induced by infinitesimal automorphisms form a subspace

Vectors from ~ may be called virtual displacements compatible with
constraints. The Golden Rule states that in a state of static equilibrium
of ~ with respect to a given action ff E ~* of matter one has

Infinitesimal automorphisms of form a Lie subalgebra T of the algebra
of all vector fields on When R is identified with some space of geo-
metrical objects on P then

where LX denotes Lie derivative.
Matter can be distributed on P smoothly, or it can be concentrated on a

submanifold Jf of The latter case is more general (since we can take
in particular for Jf an open subset of ~), and assuming that matter is
regularly distributed on Jf (2.1) can be written as

where ~ is some field of densities of geometrical objects (dual to those
in defined on Jf. To avoid inconsistencies we shall always assume
that T and Jf are in such a relation that the integral (2.2) makes sense.
In some cases vector fields from T can be assumed to have compact sup-
ports, and in other cases the restrictions of X E T to ~’ will have either
compact supports or vanish at infinity sufficiently fast.

3. GAUGE GEOMETRIES

Let (f!JJ, ~c, B, G) be a principal bundle over B with structural Lie group G
and projection 03C0 : P ~ B. With the bundle structure fixed (constraints)
a geometry  of P is assumed to consist of a pair (g, where g is a metric
tensor on B and co is a principal connection on In order to be in agreement
with the general framework of Sec. 2 we should lift g to an invariant horizon-
tal tensor on However, since final results happen to be expressible in
terms of K == only, we shall simplify our reasoning from the very
beginning and assume that matter is distributed regularly on a subma-
nifold K of B.

Let b be the space of all principal connections on If co, co’ then
03B403C9 = co’ - cu is a horizontal 1-form on P (i. e. vanishes on vertical

vectors) of type Ad (i. e. = Ad (a- for p E E G). Therefore ~,

Vol. XXXVIII, n° 2-1983.



102 A. JADCZYK

can be identified with the space of 1-forms on B with values in the asso-
ciated bundle P x G C5, where g is the Lie algebra of G.

Let ~ denote the space of all Riemann metrics on B. If g, g’ EA then
~ = ~ " ~ is a symmetric tensor of type (0,2). Therefore an element
~ E 0 (~g)* regularly distributed on K can be identified
with a pair (~, ~), where ~ _ is a density on K with values in sym-
metric tensors of type (2, 0), is a density vector field on K
with values in the associated bundle ~ x G ~ * so that

where = 1, ..., n) and ti(i = 1, ..., m) are coordinate systems on B
and K respectively.
An infinitesimal automorphism of P is an invariant vector field X on P

(i. e. [X, Zh = 0 for all where Zh is a fundamental vector field gene-
rated by h E ~). If X is invariant, then is well defined and the Golden
Rule (2 .1 ) reads

where T is the Lie algebra of all invariant vector fields X such that 03C0 (supp X)
is compact.
To investigate consequences of (3.2) we observe that T = 

where Tv (resp. TH) is the space of all vertical (resp. horizontal) vector
fields from T. If X E Ty then ~*X = 0 and X can be identified with a sec-
tion X of P x so that X(p) = where p. hp = x( p). With such
an identification one has

where Du denotes the covariant derivative with respect to Replacing x
by ocx, where a is any function on B vanishing on K, we get from (3.2)
and (3 . 3) (see [3 ]) :

and taking into account arbitrariness of x and a we deduce that the vec-
tor is tangent to K so that there exists a vector density~ - such that

where x i = From (3.3-3.5) we have

for all X. ~i( x ~ ) - ~ X ~, and owing to the
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103CONSERVATION LAWS AND STRING-LIKE MATTER DISTRIBUTIONS

arbitrariness of X on the boundary aK of K we deduce that j on aK is

tangent to ~K. On the other hand, since X is arbitrary in the interior of K.
we conclude that

It remains to consider (3 . 2) for X E TH. Every such X is a horizontal lift ~
of a vector field ( == on B. Since (L~)(~) = S2(~, 0, where Q = Dcc~
is the curvature 2-form, and since = + it follows that

Replacing’ by 03B103B6 as above and taking into account symmetry of b 03BD we

deduce that there exists a symmetric tensor density ~i’ on K such that

The term in (3.7) can be now transformed into + 

and, since ( is arbitrary on aK, it follows that on aK is tangent to ~K.

On the other hand arbitrariness of ( in the interior of K leads to

Let gi~ = be the induced metric on K. The Levi-Civita connection

of gi~ can be easily found to be

After contracting (3.9) with we find

where 03A9 03BDx ix03BDj is the restriction of to K and OL is the Levi-Civita
connection of (K, It follows that and ji can be interpreted as internal
energy-momentum tensor and current densities on K.
To summarize our discussion: the following conditions i) and ii) are

necessary for matter regularty distributed on a submanifold K of B to be
in equilibrium with geometry represented by (g, 

i) there exists a symmetric tensor density ~‘’ and a density ~i with vatues
isn K x G ~* such that 

r _, .~. « , , ~

in particular,

ii) ifK has a boundary 3K then tij and ji are tangent to aK on ~K.

Rema.rks. - 1 ) To make it easier to compare our results with those

obtained by different methods we give some explicit expressions. IJet

Vol. XXXVIII, n° 2-1983.



104 A. JADCZYK

== 1, ...,p) be a basis in g and let e03B2] == C03B303B103B2e03B3, C03B303B103B2 being the
structure constants for g. We also fix a section 7 of P (gauge) to introduce
Au = = - 03C3*03C9 , F 03BD == F03B1 03BDe03B1 = - 03C3*03A9 03BD, and let ji == ji03B1e*03B1, where e*03B1
is the dual basis in ~ *. Then

and

2) When we talk about densities we always mean densities with respect
to coordinate systems on K i. e.

3) When K has a boundary ~K and a local coordinate system (ti) on K
is chosen in such a way that t1 = const represents points on aK, then ii)
means that ~ 1 == 0 and ~1I = 0, i = 1, ..., m, on aK.

4) When dim K = 1 we put m = t11 and q = j1. One can always choose
a parameter t1 - s on K in such a way that g11 == 1 (proper time parame-
trization). Then (3.13) implies that ~ = const and (3.11), (3.12) read

which are known as Wong’s equations [4] ] [7 ].
5) When dim K = 2, and assuming tij to have determinant -1, one

can always choose coordinates (r, o-) on K such that tij = is constant

and diagonal e. g. = diag (27C, 27r). Then with = 

~ = and J = the equations (3.11) and (3.12) become

These equations coincide formally with those given by Nielsen [8] ] but
this coincidence is not exact, since although J necessarily vanishes on a

boundary 6 == const, we get no endpoint condition == 0 and no Cauchy
data’s constraints.

6) If == 0 then X may be called a Killing vector field for ~. In our

case X = (ç, X) is such a field if and only if

Every Killing vector field o (ç, X) determines a conserved quantity (see [3] ]
where " point particles are 

" discussed). Suppose " K is parametrized o by

Annales de Henri Poincaré-Section A



105CONSERVATION LAWS AND STRING-LIKE MATTER DISTRIBUTIONS

(’r, t2, ..., tm) in such a way that sections r = const are bounded. Given
a Killing vector field X = (~, X) define for each r

Then PX is independent of r and may be called a momentum of K in X
direction.
For an Abelian gauge field every constant X defines a Killing vector so

that ~ 1 is conserved, and, on the other hand, i ) and ii) imply that

= = 0. Every such ç determines a unique (up to an additive
constant) x such that (~, X) is a Killing vector field for (g, cu).

4. COMPARISON WITH KALUZA-KLEIN APPROACH

N. K. Nielsen has derived his equations for a charged string via a Kaluza-
Klein theory [8 ]. In that framework one considers Jf to be a submanifold
of P and starts with an action

where ~ _ ~ det hi~ being a metric on Jf induced by metric

To define gAB it is convenient to choose an orthonormal frame (em)m = 1,...,n
on B, and a Lie algebra basis == 1, ...,~) in ~, to form a vielbein ~
on P defined (A being the horizontal lift) and ex = Then

gAB is defined by gmn = ~mn (diagonal and constant), g03B103B2 being an invariant
scalar product in g (assumed to exist), and 0. One gets then for Jf
the simple equation

D ~: dz’ = 0, 
~ 

(4 . 2)
where ¿ : Jf -)- ~ is the canonical injection : z’(p) = p for The *
denotes Hodge dual operator for f equipped with induced metric

ht~ and D stands for exterior covariant derivative with respect
to an affine connection on We observe that ~, which maps every vec-
tor tangent to Jf into itself but considered as tangent to f!JJ, may be inter-
preted as a 1-form on Jf with values in the associated bundle TP |k.

Equation (4. 2) makes sense for any affine connection on f!JJ, but the spe-
cific action (4 .1 ) singles out the Levi-Civita connection of If

coordinates on Jf, and x~ is defined by ~i = then (4. 2)
becomes

Vol. XXXV1H, n° 2-1983.



106 A. JADCZYK

where V; stands for Levi-Civita connection for ~) and r~c are given

by Levi-Civita connection for 

2 ~ma ~ r ~ = 2 Ca~ - the structure constants of G.
For A = K (4. 3) gives

where

and for A = m we get

Equations (4 . 4)-(4 . 6) have a form similar to (3 .11 )-(3 .12) but the meaning
of symbols is different. The current /’ is a vector density on K = 
with values in ~ x G ~ * while Jx is a vector on % with values in cg*. The
« in (3 .11 ) refers to a covariant derivative with respect to OJ whereas p~
in (4.4) is the Levi-Civita connection. However it is enough to consider Jf
as a section 6 : K -~ Jf and put

to make (4 . 4) and (3 .11 ) exactly to coincide. Similarly, with

(3 .12) and (4.6) coincide. We note that it follows by the very definition that

and also that

where 5 is a unique flat connection with respect to which Jf is parallel.
It follows that Niclsen’s equations (4.2) constitute a very special case of
more general formulas (3.11)-(3.12) characterized by the fact that there
exists a current J such that

where hij is given by (4.8) and 03C3 is some section over K which is parallel
with respect to 5. One can check then energy-momentum conservation
formula (3.13) by explicit calculation from (4.10 ii), (4. 8), (4.4). The end-
point condition for follows also from (4.8). On the other hand it

follows from (4.10 i) that a conserved fluxoid characterizing the bundle
exists for a closed string (see [8 ]).

Annales de l’Institut Henri Poincaré-Section A



107CONSERVATION LAWS AND STRING-LIKE MATTER DISTRIBUTIONS

5. G-STRUCTURES

Our definition of a G-structure differs slightly from a conventional one

(see e. g. [13 ]) but such a modification seems to be necessary if methods
of Sec. 2 are to be applied. The following definition works also quite well
when one wants to describe interaction of a gravitational field with spi-
norial matter consistently.

Let G be a Lie group and let p be a homomorphism of G into GL(N).
Let P be an N-dimensional manifold and suppose that a principal bundle 2
over P with structural group G is fixed. By a G-structuration on P we
mean a bundle homomorphism ~ from ~ into the bundle of linear frames
over such that

denotes the space of all such homomorphisms. If ~, ~’ then

~’(q) == ~(q)A(q), where A : ~ -~ GL(N) satisfies

It follows that Rr can be identified with the space of sections of the associated
bundle 2 x corresponding to the representation Adp of g in 

Every automorphism C of 2 induces a map 03C6 of R by

where C denotes the induced map To describe infinitesimal automor-

phisms and their action on R it is convenient to fix a section 6 of 2 and
introduce vielbein eA(p) _ ~(6(p))A, A = 1, ..., N. Then ~ can be identified
with space of functions A : ~ Infinitesimal automorphisms of f2
form a Lie algebra T of invariant vector fields on 2. If X is such a field then
ç == is well defined, and there exists a unique invariant vector field Y
such that Y(r(~)) == (6*~)~6(p)). (In other words Y is a horizontal projection
of X with respect to the flat connection induced by 6). Therefore one can
split T into T = Tv EB TH (This splitting is not a natural one and depends
on 6), and it is easy to see that (5.1) implies that ~ consists of of two

types

where p’ is the derived representation of g in GL(N), and ç is a vector
field on Both v and ç will be assumed to have compact supports. It is
clear from (5 . 2) that we can restrict ourselves to a case when G = p(G)
is a subgroup of GL(N) without loosing generality.

Vol. XXXVIII, n° 2-1983.
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Let f be an m-dimensional submanifold of .?fJ and assume that matter
is regularly distributed on f and is represented by a density

Then the Golden Rule states that in equilibrium of matter % and G-struc-
ture  (represented by A) we have

From (5.2 i) one gets immediately

and ii) implies that there exists vector density on Jf such that ~~ = xB 
where xB is the component of a vector ai, tangent to the coordinate line ti,
with respect to en. We also find that

where EAB are defined by

SPECIAL CASES.

1 ) Orthogonal structures.

Suppose G is a group of all linear transformations preserving nondege-
nerate symmetric matrix The condition (5 . 4) gives then 
where FAB = FAC~CB, and it follows that there exists a symmetric tensor
density ~i’ on Jf such that

~i’ being tangent to a~ on Let .rc be the coefficients of the 
Civita connection for (f!JJ, Since r has no torsion we have

and owing to (5.4) we get

so that (5.5) becomes

1
It is convenient to introduce tensor where hij = ~ABxAixBj iS
the induced metric on Jf. Then (5.7) reads

Annales de l’Institut Henri Poincaré-Section A



109CONSERVATION LAWS AND STRING-LIKE MATTER DISTRIBUTIONS

where V, is the Levi-Civita connection for By contraction with x~A
it follows from (5.8) that

and a particular, natural, solution of (5. 9) is Ti’ = In such a case (5 . 8)
coincides with (4. 3) (we note that (5 . 8) remains true when vielbein indices
A, B, C,... are replaced with indices corresponding to a coordinate system
on It is only for dim K = 1 that (5 . 8) determines dynamics of Jf
completely (geodesic principle). When dim K &#x3E; 1 one has to specify
in addition an internal dynamics of Jf i. e. to single out a particular,
conserved, energy-momentum tensor Tij on Jf.

2) Supergravity.

Supergravity has been formulated [9] as a constrained Lorentz structure
on superspace. The relevant group G can be described here as follows :

let ym = (ymv) be a fixed set of real y-matrices (m, n = 0, 1, 2, 3, ,u, v =1, 2, 3, 4)
satisfying {03B3m, 03B3n} = = diag (-1, + 1, + 1, + 1), and let 
be a fixed charge conjugation matrix, so that Cym are symmetric; then G
consists of all pairs of real 4 x 4 matrices (A, A) satisfying

It is evident that G is isomorphic to SL(2, C), and for its Lie algebra we have

where

is now a supermanifold of dimension (4 . 4) (see [14 ] for relevant defi-
nitions), and G is considered to be a subgroup ofGL(4,4). Applying methods
developed in this section to the case of a point particle we find that a 1-dimen-
sional distribution Jf in has to satisfy

where A = (m, ,u), ~A is an even density defined on Jf, and r’AB and TAB are,
respectively, coefficients of a G-connection and its torsion. We remark

that now the order of factors is relevant in (5.12). The relations (5 .12 b)
can be easily solved owing to (5.10) so that one gets

Vol. XXXVIII, n° 2-1983.
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Since C03A3mn and C03B3503A3mn are symmetric = 0, a particular
solution of (b’) can be written as

in which case both sides vanish separately. Here are arbitraryfunctions of the parameter t, with values in the even part of a Banach-
Grassmann algebra [14 ]. One can adjust parameter t by demanding the
number part of M to be constant. In case of a super-symmetric super-
space [14] one can use a local coordinate system Ox) such that the
vielbein { becomes

Then (S .12 a) reads

where

The equations (5.13) give conservation of momentum pa and spinorial
charge qa

The two conservation laws can be also deduced by a reasoning similar to
that of Remark 5, Section 3, the momentum conservation being a conse-
quence of translational invariance while spinorial charge conservation
follows from invariance under supertranslation. The resulting equations
contain those obtained in [7~] from a Lagrangian based on a line element.
It is not clear whether other solutions of (5.12 b’) can be of physical interest.
It is also to be observed that the coefficient a and b need not be constant
along the trajectory.
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