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Soliton Equations and Hyperbolic Maps

Luke HODGKIN

King s College, London

Ann. Inst, Henri Poincaré,

Vol. XXXVIII, n° 1, 1983,

Section A :

Physique théorique. ’

ABSTRACT. - A solution of the AKNS scattering equation [6 ] asso-
ciated to a non-linear evolution equation determines an isometry from
(1R2, g) to the hyperbolic plane H, where g is the metric of curvature -1
defined by the scattering equation. This correspondence is (locally) 2-1 from
solutions to isometries. For the modified Kd V and sin-Gordon equations,
the scattering equation can be seen as a flow on the space of constant-
speed curves in H, with a simply-described curvature function. A geome-
trical interpretation of the Bäcklund transformation is given, together
with a « soliton » example.

RESUME. - Une solution de 1’equation de diffusion AKNS [*)] associée
a une equation d’evolution non-lineaire donne une isometrie de ( ~2, g)
dans Ie plan hyperbolique H, g etant la metrique de courbure -1 que
definit 1’equation de diffusion; cette correspondance des solutions aux iso-
metries est (localement) 2-1. Pour les equations KdV modifiee et sinus-
Gordon, 1’equation de diffusion sera alors un flot sur l’espace des courbes
a vitesse constante dans H, et la formule pour la courbure est simple. On
donne une interpretation geometrique de la transformation de Bäcklund,
ainsi qu’un exemple de type « soliton ».

1. INTRODUCTION

It has been recognized for some time that the non-linear partial diffe-
rential equations which admit « soliton » type solutions are closely related
to the group SL(2, IR) and its geometry (see in particular [1 ]- [4 ]); going
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50 L. HODGKIN

somewhat further, Sasaki and Bullough [5] described an explicit relation
between the AKNS scattering scheme and metrics of constant curvature -1 1
on [R2. It turns out that an even simpler way of looking at the theory arises
when we bring in the standard space of curvature -1, i. e., the upper half

plane H = SL(2, with the hyperbolic metric. We find

(1) that solutions of the scattering equations correspond almost exactly
to isometries from [R2 (with the metric of [5 ]) to H;

(2) that other features such as Bäcklund transformations have geome-
trical descriptions in terms of such isometries ;

(3) that for the sin-Gordon and modified Kd V equations the basic
functions are natural geometrical ones.
The idea (which I shall only use as a suggestion here) is the following.

A scattering scheme defines an SL(2, [R) connection on [R2 which is inte-
grable iff the associated non-linear equation is satisfied [4 ]. Its integra-
bility means that [R2 can be isometrically « developed » on H, and such
a development is the isometry we are looking for.

This note is concerned only with the general theory and not with the
(multi) soliton solutions; but they also seem likely to correspond to objects
with a geometrical meaning.

2. THE CORRESPONDENCE

We begin with the scattering equations themselves, in a formalism which
is a mixture of [4] and [~1 adapted for the present purposes. Let 61, 62,
co be 1-forms on [R2, defining a metric of constant curvature -1,

via the structure equations

Then if Q is the SL(2, R)-valued 1-form on [R2

solution of the scattering equation is a map G: [R2 ---+ SL(2, [R) such that

where 03C9i (i = 1, 2, 3) are Maurer-Cartan forms corresponding to the basis
of the Lie algebra defined by (3).

Annalës de Henri Poincaré-Section A



51SOLITON EQUATIONS AND HYPERBOLIC MAPS

Locally such solutions exist provided that Q satisfies the integrability
condition

which in particular cases defines the non-linear equation in question.
And if G, G’ are two solutions defined on the same (connected) subset
of they are related by G’(~)=Q-G(~~ where is
constant.

Note that our way of writing the scattering equation (4) is that of [4 ],
although the basis of forms is different. The forms 61, 0-2, cc~ are essentially
those of [5 ], given that the equation dr = Q~ has been replaced by its
adj oint our Q is therefore ot in the more usual formalism.

~ be the canonical projection :

Write ~ ~ for the coordinates on H. We choose for H the metric defined

by the 1-forms 03C31H == -dç, 1 03C32H == 1 nd~, % == -dç; 1

Our first observation is that if G is a solution of (4), then f = G is an
isometry from (~2, (H, gH).

In fact, because SL(2, [R) acts by isometries on H, is a left inva-
riant symmetric 2-form on SL(2, [R); by looking at the derivative of 03C0 at
the identity this can be identified with (vl)2 + (c.~2)2. Hence

Similarly,/* takes the standard volume form 6H n 6H = ^ d~ on H

to 61 n ~2 on [R2. Hence f is orientation preserving from the orientation
of [R2 defined by ~1 n o-2 (which may or may not be the standard one) to H.

In (one version of) the explicit AKNS scattering scheme we have [6 ]

(Recall that our Q corresponds to the usual To keep everything in
SL(2, [?), we specify that A (= - i~) is a real constant, q, r are real-valued
functions of x, t, and A, B, C are expressions involving ~, and q, r and their
derivatives, also real. (There is a corresponding theory for complex Q and
maps into SL(2, C), which is certainly important - e. g., when )B, is complex -
but which we shall not deal with here.)
Vol. XXXVIII, n° 1-1983.



52 L. HODGKIN

From (3) and (8) we have

The « volume » form 61 /B 62 is 2(A( q + r) - + C))dxdt. Where
it vanishes 2014 in general a 1-dimensional subset of fR2 the map f is sin-

gular. For example, in the sin-Gordon case [6], we can 

so 61 /B 03C32 = - sin udxdt. The orientation is determined

by the sign of sin u, while f is singular on the subset sin u = 0.

3. THE INVERSE CORRESPONDENCE :
LIFTING ISOMETRIES

We have seen that a solution G of (4) determines an isometry

(The « isometry » ceases to be a genuine isometry precisely when g ceases
to be a proper metric on [R2, i. e., becomes indefinite.) Suppose now that
we are given a map f : [R2 ~ H satisfying

that is, an oriented isometry in the general sense. By topological consi-
derations, f has a number of lifts to maps G : [R2 -~ SL(2, [R) such that
~ ~ G = f It is a remarkable fact that we can specify geometrically those
lifts which are solutions of the scattering problem and that they are all
but unique.
We can do this by looking at the tangents to x-parameter curves in H.

From the formula

we find that if f = G and G satis, fies (4),

Here ’ + x C, and o G(x, t) acts as an iso-

metry on H and o so also o on its tangent vectors. The effect of isometries
on tangent vectors at i E H is not complicated : we find that if

Annales de Henri Poincaré-Section A



53SOLITON EQUATIONS AND HYPERBOLIC MAPS

Hence except in the « special» singular case where both 61 and 62 vanish

on a x t we can find both ----=--- and. 1 
from f by (12). This case

is explicitly excluded for sin-Gordon, where À =/::. 0, but could give trouble
elsewhere. )
By a simple calculation, these two complex numbers determine

up to a factor + 1 which is the most we could hope for, given that -1
acts trivially on H. Now if f is any isometry satisfying ( 10), define
G: 1R2 -+ SL(2, IR) by ( 12) (we also, of course require G to be continuous).
Then G is unique up to + 1; we call the two maps the canonical lifts of/
with respect to Q. The essential fact is that the canonical lifts of an isometry
are solutions of the scattering equation (4). To see this we first check from (12)
that when G is a canonical lift, t ) = t )) for i = 1, 2 ; and
then use the fact that

(since f is an isometry and G is a lift of f ) to show that and ~i also
agree on ~t for i = 1, 2. Now G*(03C93) = 03C9 follows from (2) and the Maurer-
Cartan equations.

Schematically therefore we have a 2-1 correspondence

Note 1. 2014 If G were taken as mapping into the group of isometries of H,
the projective group PL(2,[R) = 1), we’d have a 1 - 1 cor-

respondence ; but it would be no easier to write down, so it seems best to
stay in SL(2, tR).

Note 2. 2014 We can in fact define a canonical lift except where ~ 1, ~.2
are identically zero. For if they are zero on 3~ but not on at we can replace
the procedure above by one involving the t-curves ; the same argument
works.

4. SPEED AND CURVATURE

We now specialize to the case where Q is defined by (8) and ~+r==0;
this will work for the sin-Gordon equation

Vol. XXXVIII, n° 1-1983.



54 L. HODGKIN

and for the modified KdV equation in the form

(See [6]). Then = 0 and = 2~. So the x-parameter curves
in ([R2, g) have constant speed ~ ~2~ I - and hence so also do their images
under f the x-parameter curves in H. The scattering equation can therefore
be regarded as a flow on the space of curves of speed 2~. ~ in H.

Next, we have a very simple description of the canonical lift, from ( 12).
In fact ( Bc d/ E SL(2, IR) takes the standard tangent vector (f, f) E T~(H)

to 2014201420142014~ ). Hence iff: [R2 --+ H is an isometry, the canonical+ d (cf + )
lift G(x, t ) is the unique (up to I 1 ) isometry of H which takes (i, i ) to

1 203BBdf(~x(x,t)) = Note that this definition
ZA 

.f ( x(x, t )) B (x, t ), 1 203BBfx(x,t)/ )

works precisely when 03BB ~ 0, which corresponds to the non-singular case.
Geometrically, G(x, t ) maps the standard unit tangent vector (i, i ) to

the unit vector along the x-curve in H (backwards)
positive (negative).

The function q in its turn is described in terms of curvature. To see this,
consider the standard basis vector fields _e 1, _e2 corresponding to
the forms 61, 03C32 [5 ], 

- -

From co = 2qdx + (B - C)dt we deduce

In other words, 2q is the covariant « rate an x-para-
meter curve. To find the geodesic curvature ’ Kg of the curve we compute 

’

Since (e1, e2) are positively oriented this gives ;11 general xg = 

Again, since f is an isometry, the same is true for the x-parameter curves
in H.
To make clear what is meant by describing 2q as the covariant rate of

change of angle, suppose q derived from a potential function u by the formula

(This is standard for the sin-Gordon equation, of course.) Define the vector
fields by

Annales de l’Institut Henri Poincaré-Section A
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A simple calculation then shows that v is parallel along the x-parameter
curves; while u is the clockwise angle of rotation from e2 to ~. Hence the
anticlockwise angle from v to ax is - u (for 03BB &#x3E; 0) and 03C0 - u (for 03BB  0);
its rate of change is = 2q.

5. THE SIN-GORDON EQUATION

Here the situation is particularly simple corresponding to the classical
geometrical problem which the equation describes [7 ]. The equation is

given by (13), and we have [6] ] [8 ].

whence using ( 15), (18),

It follows that the t-curves have constant speed 20142014 and that a is parallelp 
I 

r p

along the x-curves ; u is the clockwise angle of rotation from ax to ~t whatever
the sign of ~,. We can state :
A solution of the scattering problem for sin-Gordon with given func-

tion u(x, t) and parameter ~~ is (the canonical lift of) a -+ H such
that in H

i ) the x-curves have constant speed 2~ ~ and the t-curves have constant
speed 1/j~j.

ii) the clockwise angle from fx(x, t) to t) is u(x, t).

6. BACKLUND TRANSFORMATIONS

Crampin in [4] gives a nice geometric description of a BT which cor-
responds to the « usual » one for particular choices of gauge. We shall
investigate this only in the sin-Gordon case; unfortunately here as he
points out his Q differs from that of AKNS (and so from ours) by a gauge
transformation. But this in itself deserves attention.

cos u/4 - sin M/4B
Let P(x, t) be the matrix . u/4 cos ’ E SL(2, [R). Then t)

leaves i E H fixed and induces a rotation through - u/2 on Hence
if G is the canonical lift off, GP : [R2 -+ SL(2, [R) where

Vol. XXXVIII, n° 1-1983.
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is another lift of f related by a gauge transformation; and

Comparing with Crampin’s formula we see that his G is our GP, and his
form ~ is given by (22). 

, _ 1
The geometric meaning of this is as follows. G maps (i, i) to 2~. df (ax(x, t));

P rotates t )/ 2. Since the angle from 1 d f ( a x) to 
2~,

is - u, GP maps (i, i) to the unit bisector of the angle between the two. And
it is this lift that gives rise to the form O of [4] for scattering in the sin-
Gordon equation.

The relations between u, u’ etc. for ~, &#x3E; 0.

Annales de l’Institut Henri Poincaré-Section A
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Write GP = G’; the method of [4] ] is to write

where T is upper triangular and R is rotation. Then if R is rotation through
u’/2, u’ is a BT of u, and the equations can be derived in their standard form.
(Note that there is an error in the matrix representation of R in [4 ],

which should, like P, contain quarter angles to give the BT as we shall see.)
Now T (a dilation + translation) does not change angles in the tangent

1
space. So if w(x, t) is the unit bisector of the angle between 2014 

and

u’/2 is just the clockwise rotation frorn the vertical (the direction
of (i, i)) to w(~, t). The diagram will perhaps make this relation clearer,
as well as the geometrical nature of the angle u’.
Now we derive the formula for the BT in essentially the same way as [4] ]

(not surprisingly). We have

where

and we require that

should be upper triangular. The lower left corner of (25) is

giving, when the values of 61, 0-2 are substituted in,

which is a standard form of the BT.

Conversely, let u’ be a function satisfying (27). Then if R’ is defined by (25),
it is easy to see that GR’ == ST, where T is upper triangular and S is constant.
Hence, u’ is a function which has the above geometric description for the
solution of the scattering equation. So all Backlund transforms of u
can be obtained geometrically; and the group of isometries of H acts on
them (in a rather complicated way).
Vol. XXXVIII, n° 1-1983.
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To end with a very simple example, set

It is easy to check that the x and t curves in H described by (28) have

speed 1, so can be related to a sin-Gordon scattering problem with Å = -.
To find u(x, t ), we have 

2

So the clockwise angle u is given by

From this we can deduce that u is a simple soliton, u(x, t) = 4 tan-1 ex+1.
The singular locus is sin u = 0, which is simply x + t = 0 if we take
0u2~.

It is immediate from (29) that fx and ft are symmetrical with respect
to the imaginary axis in H. Hence the corresponding BT u’, using the geo-
metrical definition, is trivial: u’/2 is (2n + and

However, non-trivial BT’s can be obtained by applying an isometry to (28)
and evaluating the corresponding angle ~’.
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