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Generic properties of classical n-body systems,
in one dimension, and crystal theory

M. DUNEAU A. KATZ

Centre de Physique Theorique de 1’Ecole Polytechnique, Plateau de Palaiseau,
91128 Palaiseau Cedex, France

Ann. Inst. Henri Poincaré,

Vol. XXXVII, n° 3, 1982,

Section A :

Physique théorique.

ABSTRACT. - We investigate generic properties of classical n-body
systems interacting through two-body potentials. First we prove that for
almost all choice of the potential (in the Baire sense), the corresponding
n-body energies are simultaneously Morse functions on the configuration
spaces. Then this result is used to prove the stability of a certain symmetry
property of equilibriums, namely, the existence of a center of symmetry,
in the sense that it is preserved under small but arbitrary variations of the
potential. Finally, a large class of realistic interactions is proved to give
rise to such symmetric equilibriums for any number of particles.

RESUME. - On etudie les propriétés génériques des systemes classiques
à n corps interagissant par des potentiels a deux corps. On montre d’abord
que pour presque tout potentiel (au sens de Baire), les energies corps
sont simultanément des fonctions de Morse sur les espaces de configuration.
On utilise ensuite ce résultat pour prouver la stabilité d’une certaine pro-
priete des positions d’équilibre, a savoir l’existence d’un centre de symétrie,
dans le sens qu’elle est préservée sous des variations petites mais arbitraires
du potentiel. Enfin, on montre qu’une large classe d’interactions réalistes
donne lieu a de tels équilibres symétriques pour un nombre quelconque
de particules.

I. INTRODUCTION

The classical theory of crystals, which is still uncompleted, has been
mainly approached from the following point of view : one chooses a realistic
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250 M. DUNEAU

interaction potential and one studies the structure of the minimal energy
configurations for the corresponding n-body problem [3 ]- [8 ].

However, unless the potentials are completely specified by the physical
theory, as in the Coulomb case, one usually takes more or less phenomeno-
logical expressions for them. In such a situation, the relevance of the
conclusions depends on their stability with respect to physically allowed
variation of these potentials.
Concerning the classical theory of crystal, since various elements yield

the same lattice structure, it seems that only qualitative properties of the
potential are involved in its ability to produce this symmetry.

Thus, we are led to consider the problem from an opposite point of
view: namely, to stress on the study of these qualitative properties of
potentials, using the language and methods of functional analysis.

In this work, we prove that, for « almost all » two-body interaction, the
corresponding n-body potential energies are simultaneously Morse
functions: for any n, the equilibrium configurations are non degenerate
critical points of the energies, i. e., the corresponding Hessians are of
maximal rank. Such a property implies in particular the non existence of
soft phonons and allows the study of the trajectory of an equilibrium under
an arbitrary variation of the potential.

Using this result, we show that a certain symmetry property, namely
the existence of a center of symmetry, is stable with respect to variations
of the potential: if a given equilibrium presents this symmetry, then any
neighbouring interaction gives rise to a perturbed equilibrium with the
same symmetry. In this way is achieved the first step towards the proof of

. 

the generic existence of cristal structures.
Finally, we consider a class of hard-core potentials which are attractive

at large distances and satisfy a certain convexity property. We prove that
for any potential in this class, there exists for any n a unique equilibrium,
and that this equilibrium presents a center of symmetry. Moreover, this
class is an open subset of the space of potentials with respect to the Whitney
topology.

II. NOTATIONS AND TOPOLOGIES
OF THE POTENTIALS

Let us consider a translation and reflection invariant two body interaction,
described by a potential § E C ~ ( ]a, oo [), where a &#x3E;__ 0 is the diameter of a
possible hard core.
The configuration space of n + 1 particles (n &#x3E;_ 1 ) is :

Annales de I’Institut Henri Poincaré-Section A



251GENERIC PROPERTIES OF CLASSICAL n-BODY SYSTEMS

The translation invariance is taken into account by reducing the confi-
guration space to :

where and x(n) are open sub-manifolds of 
and respectively.
The potentiel energy for the n + 1 particles interacting via the given ~,

belongs to C~ (x(n)) and is given by :

where xI = x; and where the summation involves all the intervals I

K=I I

in the set { 1, ..., n ~ .
The Hamiltonian flow on the cotangent bundle T* Q(n + 1 ) is complete

only if lim ~(x) = + oo .
x-a+

However, this restriction will not be assumed in the following, since
it has no effect on the existence and the local properties of equilibriums
lying in Q(n+ 1 ), all the distances between particles beeing strictly larger
than the hard core diameter.
A configuration described by corresponds to an equilibrium

if and only if all the partial derivatives of ~(~) vanish at x; i. e. if and only
if x is a critical point for 

..., ~ } be the canonical dual basis of ~n. It follows from ( 1)
that the differential d~(n) can be written:

where:

Let be the tangent space to x(n) at x. then:

where :

Vol. XXXVII, n° 3-1982.



252 M. DUNEAU

If x E corresponds to an equilibrium for the stability properties
of this equilibrium are described by the Hessian of at x:

A critical point x for is called non degenerate if and only if the rank
of is maximal. If D is any subset of X~n~, is said to be a Morse
function on D iff each critical point of ~~n~ lying in D is non degenerate.
The expression (3) defines a coordinate-free symmetric bilinear form

only if d~~n~(x) = 0. However, we shall consider such a formula in the
following at regular points of ~~n~.
Our purpose is to investigate the perturbation of an equilibrium, cor-

responding to a variation of the two body interaction. Now, it is clear
that such a variation steps in only by the values it takes in the neighbour-
hoods of the distances actually realized in the given configuration. Thus,
it appears that the set of all configurations splits into classes, which are
described by means of equalities of distances between particles. So we are
led to set the following definition:
For any x E X~n~, we define the stratum S(x) as the subset of given by :

Thus we get a partition of the configuration space X~n~, and one easily
checks the following properties:

1) The closure of the strata are intersections ofx(n) with vector subspaces
of ~.

2) The equations for their tangent spaces are

which is the vector subspace spanned by S(x}.
3) The following boundary property holds:

4) There exists a largest and a smallest stratum, defined by :
- for the largest: ~ =~ x J J.
- for the smallest (periodic): xi = X2 ... = xn.
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253GENERIC PROPERTIES OF CLASSICAL n-BODY SYSTEMS

On the other hand, the relations defining a stratum S(x) imply restrictions
on the differential of the energy and eventually on its Hessian, which
can be written in the general form:

where the coefficients b = { bI } et c = 
.. 

{ cI } ( I running over the n(n + 1) 2
non empty intervals of {I, ... , n }), are elements of the following subspace

nn + i&#x3E;

B(x) of R ~ : :

In the sequel, it will be useful to consider the canonical mapping from
n(n + 1)

[?" into ~ 2 defined by:

One can easily check that, for any stratum S, and for any one has :

B / B Á / -’

n(n + 1)

where B is the subspace of R 2 associated with S by the definition (7).
It will be equally useful to introduce the homomorphism 5 from

n(n + 1 )

[R 2 into the dual of defined by :

the kernel of which has the dimension n~~ - 1 ) . .
2

Topologies on the potential space C~ ( ] a, 00 [).

The existence, and symmetry properties of the equilibrium configurations,
depend only on the two body interaction potential ~.
Whenever ~ is not completely specified by physical requirements,

the stability of these properties with respect to admissible variation of
the potential must be questionned. Then, one must give a precise definition
of what is meant by « small variation » of in other words, one must
define a topology on the potential space.
Vol. XXXVII, n° 3-1982.



254 M. DUNEAU

Let us briefly recall the definitions and fundamental properties of the
weak and strong topologies on where X is a paracompact mani-
fold ([7]):
- Weak (or compact-open) topology: A sequence { ~n converges

to ø if and only if, for any compact set K of X, the restrictions of ljJn to K
converge to the restriction of ~, together with the derivatives of all orders,
the convergence being uniform on K.
- Strong (or Whitney) topology : A sequence { ~n converges to

cjJ if and only if there exists a compact set K such that, on one hand, the
restrictions of r~n to K converge to the restriction of cjJ as in the weak topo-
logy case and, on the other hand, for n large enough, all cjJn are equal to fjJ
out of K.

These two topologies are equal if X is compact, otherwise the Whitney
topology is strictly stronger than the weak topology.
Equipped with either topology, C~(X) is a Baire space, i. e. residual

sets (countable intersections of dense open sets) are dense.
We now consider these topologies from the point of view of the stability

of critical points and of the Morse property in C~(X). Recall that cjJ E COO(X)
is a Morse function if all of the critical points of cjJ are nondegenerate,
i. e. the corresponding Hessians are of maximal rank.

Let cjJ E C~(X), and x be a nondegenerate critical point 

dcjJ(x) = 0, dim X.

Then we have :

1 ) Let U be any open set in X such that x E U. Then there exists a weak
(and consequently strong) open neighbourhood such that E 

~r admits a non-degenerate critical point y in U.
’ 

This property corresponds to the stability of non degenerate critical
points.

2) If fjJ E is a Morse function, there exists a neighbourhood 
in the strong topology containing only Morse functions. If X is non compact,
there does not exist any weak neighbourhood with this property.

3) The set of Morse functions is dense in C~(X) for the strong (and
consequently, for the weak) topology. However, although in the strong
topology the set of Morse functions is open, one can see that, in the weak
topology, this set is of empty interior, if X is non compact.
From the point of view of the physicist, two potentials should be

considered close to each other if the physical quantities of the corresponding
system are close to each other. More specially, to a « small » variation of
the potentiel, must be associated a « small » variation of the equilibriums.
Thus we see that weak and strong topologies are relevant to situations
respectively corresponding to local and global properties of ~.

Annales de l’Institut Henri Poincaré-Section A



255GENERIC PROPERTIES OF CLASSICAL n-BODY SYSTEMS

Morse functions and transversality.

We recall without demonstration (cf. [1 ] [2 ]), the equivalence between
the Morse property for a function ~ E and a certain transversality
property for the one-jet R)), where

(x, 1J(x), d1J(x)).
Let U be any subset in X. One can prove (cf. [1 ]), that the two following

properties are equivalent: 
.

- 1J E COO(X) is a Morse function on U,
E C~(X, R)) is transverse on U to the submanifold

N = { (x, a, 0), x E X, a E of R), i. e. d1J(x) = 0 implies :

Txj103C6(TxX) + R).

III. GENERICITY OF THE MORSE PROPERTY

In this section, we prove that the set A of potentials ø such that, for
all n &#x3E;_ 1, c~~n~ is a Morse function on X~n~, is a residual set in + CfJ [)
for both weak and strong topologies.

This result is achieved in two steps:
1) Let n be fixed, S a stratum of x(n) and let U be a relatively compact

open set in S. Then the set U) of 03C6 such that the restriction of

1J(n) to S is a Morse function on U, is a dense open set in oo [) for
both weak and strong topologies.
However, it is clear that this property does not imply that ~~n~ is a Morse

function on U, for the Hessian can be degenerate in directions transverse
to the stratum. 

_

2) Under the same assumptions, the set U) of 1J such that 
is a Morse function on U is a dense open set of ]a, ~o [), for both weak
and strong topologies.
Then the claimed residuality follows from countable intersection of

U), relatively to n, to the strata of Xn, and to countable coverings of
each stratum by relatively compact open sets.

Coverings of the strata

Let S be any stratum of X~n~. Now we define a covering of S by relatively
compact open sets in the following way:

n(n + 1)

Let x ~ S and i(x) = {xI } ~ R 2 . Then there exist finite collections
Vol. XXXVII, n° 3-1982. 



256 M. DUNEAU

{ VI }, { and { WI } of relatively compact open sets in ]a, + cxJ [, labelled
by the set of intervals I in {1, ..., n }, such that:

The intersections (in S) of the pull-backs VI }, { Wj }, by means
of the mappings x - xi, are relatively compact open sets U, V, W, such
that x E U, U c V, V c W.

Carrying out this construction for all x, one can, since S is paracompact,
take out a countable covering of the stratum by a collection { U« ~ corres-
ponding to a certain sequence { x03B1 }. With this sequence are also associated
the collections { and { Wx ~, in such a way that, for all a, one has :

xx E Ua, U« c V~ and V~ c W~.

Density of V~) with respect to the strong topology.

For any stratum S of x(n) and for any point xa of the sequence { x~ ~,
let be the set of ø such that the restriction is a Morse function
in V«. - 

.

We prove that Va) is dense in ]a, 00 [) with respect to the strong
topology, and consequently also with respect to the weak topology. We use
a method which consists in constructing locally affine perturbations 8

in such a way that (~ + 8)fs) is a Morse function on Va.

Locally affine perturbation.

Let us the open sets of ]a, oo [ associated to
xx. For each pair { Vi, one can take an Urysohn function 03C1I on ]a, + ~ [
such that :

where Wf is the complement of Wj.
n(n + 1)

Let B the subspace corresponding to S and defined by (7).
The above construction allows us to associate to any b E B the variation

defined by :

(n)where the summation 
¿ 

runs as before, over all non empty intervals

I
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257GENERIC PROPERTIES OF CLASSICAL n-BODY SYSTEMS

of ~ 1, ..., n }, and where mI is the number of J such that = This
definition is justified by the following property of Ebn):
For x E Vx :

.

In other words, is an affine function on V~. Moreover, one can check
that since the compact support of Eb is independant of b, the mapping
b - £~ from B to Cf) [) is continuous for the strong topology,
i. e. Gb tends to 0 when b tends to 0.

LEMMA 1. - cxJ [), and for almost all b E B, (4) + 
is a Morse function en V«.

Proof - Let F : V~ x B ~ J 1 (S, !R) be the mapping defined by :

so that if one identifies J~(S, R) with:

Considering (13), we have for all 

Let N be the closed submanifold of J1(S, R) given by:

It follows from a general theorem [7 ] that, if F is transverse to N, then
for almost all b E B, the partial mappings : x -~ F(x, b) are also transverse
to N. But one can immediately check that such a property for a certain b
is equivalent to the property: + is a Morse function on Vx. Thus
it is sufficient to prove the transversality of F. The point is then to verify
that, if F(x, b) E N, i. e. d(~ + = 0, we have :

But, with the identification [?) = T~S x R x T~S, we have:

Vol. XXXVII, n° 3-1982.



258 M. DUNEAU

and

So, it is sufficient, for F to be transverse to N, that 5(B) should be « large
enough », more precisely that:

Now if ç belongs to the kernel of 5(B) in TxS, take ~3 = i(ç). Then
’ (n)

~(~g).~ 0 implies ~ = 0, which completes the demonstration.
I Q. E. D.

Openness of with respect to the weak topology.

Let UJ be the set of ø such that the restriction is a Morse
function on Ua, and let js be the [) ~ 4&#x3E;fs) E COO(S),
which is continuous in the weak topology, as one can easily check. Then

U«) is the pull-back with respect to js of M(S, UJ, the subset ofC"(S)
of the functions which are Morse on Ua. It follows from a general theo-
rem ([2]) that this set is a (dense) open set. Thus we can conclude that

UJ is a weak (and consequently strong) open set in + 00 D.

PROPOSITION 1. - For any n, any stratum S in and any open set Ua
in the covering of S, the set At(S, UJ such that 4&#x3E;(8) is a Morse function
on Ua, is a weak and strong dense open set in + oo [).

Proof - Since U03B1 c Va, we have N(S, Vx) c Lemma 1

implies that UJ is weakly and strongly dense. The openness follows
from the previous remarks. Q. E. D.

Density of (n ~, U~).
Let S be any stratum in and U~ any open set in its covering. We

prove that the set U~) such that ~(n) is a Morse function on
1~, is dense in + oo [) with respect to the strong (and consequently
to the weak) topology.

Let 4&#x3E;0 + ~ [) and be any strong neighbourhood of
4&#x3E;0’ It follows from proposition 1 that there exists 1J E r( cI&#x3E;0) such that

is a Morse function on Ux.
We now prove that a local quadratic perturbation is sufficient to remove

the possible partial degeneracy of the critical points in Ux, in directions
transverse to S. 

_

Since 4&#x3E;fs) has a finite number, say k, of critical points in Ux, there exists
a neighbourhood ~Yl ~( ~) in Ux) n in which we can vary 4&#x3E;
without increasing the number of critical points in Ux.
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259GENERIC PROPERTIES OF CLASSICAL n-BODY SYSTEMS

Local quadratic perturbations.

To any x E U, we associate the following fonction q E Cx(]a, + XJ 0:

One easily checks that, for y E Vx

In other words, is a quadratic function in Va, centered at x.

LEMMA 2. - Let 00 D. Then there exists a function

yl E in any strong neighbourhood 

Proof 2014 Let 03C6 E Jt(S, UJ n and W(03C6) as above. If x is a critical
point for then it is a non degenerate critical point for the restriction 
Consider the _potentials ~ + a~r~, where e R and 11 is defined by (14) with
the given x E Uac.

For À small enough, ~ + ~.r~ is in On the other hand, one can
check that, since = 0, x remains a critical point of (ct&#x3E; + a ~)~n~.
The Hessian of (ql + ~.~){n~ at x is:

As the rank of is n, the rank of + is maximal for all 5~,
except for at most n values solutions of det + i~ r~)~n&#x3E; = 0.
Thus the possible degeneracy of the critical point x is removable in the

neighbourhood 
Moreover, one needs at most k variations of this kind to get a function

which, on one hand, belongs to and, on the other hand,
gives a potential energy which is a Morse function in Ux. This completes
the proof. Q. E. D.

Vol. XXXVII, n° 3-1982.



260 M. DUNEAU

Openness of ’n’, with respect to the weak topology.

Now we know that the set M(X~, U2) of functions in which
are Morse functions on the compact set U~, is a (dense) open set for the
weak topology.
The mapping 03C6 ~ C03B1(]a, + ~[) ~ 03C6(n) E being continuous for

the weak topology, the corresponding pull back UJ of Ua)
is thus a weak (and consequently, strong) open set of oo [).

PROPOSITION 2. - For any n, any stratum S of X~n~, and any Ua in its
covering, the set U~) of § such that is a Morse function on

Ua is a dense open set of ]a, oo [) with respect to both weak and strong
topologies.

Proof - The density follows from lemma 2 and openness from the
previous remarks. Q. E. D.

COROLLARY 1. - For n fixed, we have a finite number of strata S in 
and each of them is covered by a countable collection of open sets Ua.
The set of 03C6 such that is a Morse function on x(n) is thus a
countable intersection of the dense open sets i. e. is a residual
set. Since COO( ]a, 00 [) is a Baire space for the weak and strong topologies,

is dense for both topologies.

Finally, the set A = n of ~ such that, for all n, ~~n~ is a Morse
nz 1

function, is also residual, and thus dense in C°°( ]a, 00 [) for both topologies.

Consequences. - a) The set of potentials bounded from below is a

strongly open set in ]a, 00 [). The intersection of ~~ with this open set
is dense in it, which means that, generically, such a potential admits minimal
energy configurations which are non degenerate critical points.

b) Consider for all b &#x3E; a the set Ub of the potentials 03C6 ~ C~(]a, ~ [)
such that :

2) t &#x3E;__ b =&#x3E; &#x3E; 0 : attraction at large distances (15)
One checks easily that is strongly open. Then, for all n, 

is strongly open.
In fact, the critical points of all lie in the compact set:

1, }

Proposition 2 implies that the set of cjJ such that is a Morse
function on Kbn) is strongly open.
One easily checks that n Jùb is contained n 
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261GENERIC PROPERTIES OF CLASSICAL n-BODY SYSTEMS

The opposite inclusion being obvious, the equality of these two sets implies
the strong openness of n ~. It follows that A(xn) is strongly

open for any n, where U = 
b&#x3E;a

COROLLARY 2. - As a last remark, we prove the existence of a strong open
set contained in w0Y = ~~(X~), which is only a priori a residual set.

n&#x3E; 1

Let b &#x3E; a and 03C6 ~ Ub (defined by (15)). For any n, the critical points of
lie in the compact set defined above. When b is small enough, we

give a sufficient and open condition ( 16) for the Hessian of to be positive
definite. Thus has only one critical point in X~B which is its minimum.
Let us write :

For to be positive definite, it is sufficient that for all i = 1, 2, ..., n :

But, when i  j:

If 4J E the critical points of 4J(n) satisfy : a  ~ ~ ~ thus

For re define

Then if i  j :

which yields for any i :

Vol. XXXVII, n° 3-1982.



262 M. DUNEAU

and:

Thus we get the following positivity condition for the Hessian, in 
and any n :

This condition is clearly open for the strong topology, and certainly non
empty if b  2a.

Let 1/b be the subset that satisfy the condition (16), and
© = U"Yb’

b&#x3E;a

Then 1/ is a non empty strongly open set in ]a, oo [), contained in
all the A(x(n»), and thus contained in A. Notice that 1/ corresponds to
realistic potentials, since it consists of hard core potentials attractive at
large distances, and satisfying a certain convexity condition.

IV. PERTURBATION OF EQUILIBRIUM CONFIGURATIONS
AND STABILITY OF THE STRATA

In the following, we shall be concerned with perturbations of non degene-
rate equilibrium configurations, corresponding to small enough, but
arbitrary variations of the two body interaction.
A main point in our conclusion is the existence, for any n, of a stratum

of x(n) which is stable with respect to variations of the potential, in
the following sense. If x E is a non degenerate critical point of ~,
there exists a weak neighbourhood 1/ of ø such that, for all 03C8 in 1/, has
a non degenerate critical point, close to x, which also lies in 9~B

This property is not obvious, since the dimension of .9~ is 201420142014 , ,
~ + 1 - 

- 2
integer part of 2 

.

Trajectory of critical points.

x [), and assume that, for a given n, x0.~X(n) is a non

degenerate critical point of ~~B 
’

Annales de l’Institut Henri Poincaré-Section A



263GENERIC PROPERTIES OF CLASSICAL n-BODY SYSTEMS

Then there exist two relatively compact open sets, U and V in x(n) such
that :

Now, proposition 1 implies the existence of a weak neighbourhood 
of 0 in oo D such that for any 03C8 ~ W and À E [0, 1 ], (1) + 03BB03C8)(n)
is a Morse function on V with a unique critical point in U.
Then we have the following lemma :

LEMMA 3. - Let xo be a non degenerate critical point of ~~"~ and let U, V
satisfy the conditions (17). There exists a neighbourhood #’ of 0 in

00 [), such that Ve E ’~l~’, the trajectory : ~, E [0, 1 ] - xg E U of the
critical point of (1) + ~.E)~n~ is C~ and satisfy the following equation:

-- A’" . , - ,,"’, " , ’IJI" , ,

where :

Proof - Let ~ be as above. For any fixed e e ~, let x~, be the critical
point of (~ + ~.E)~n~ in U. We have:

The derivation of this relation yields the equation of the trajectory:

which is equivalent to (19) and (20).
The regularity of the trajectory follows directly from that of 03C6 and s.

Q. E. D.
If is the subspace associated by formula (7) to the stratum

then and :

We are thus led to give the following general definition. For x any non
degenerate critical point of !//"B let:

It is the subspace of spanned by the tangents at x to the trajectories
of the critical point corresponding to any variation of the potential ~.

Vol. XXXVII, n° 3-1982.



264 M. DUNEAU

Infinitesimal and local stabilities of strata.

We can now give the following infinitesimal stability condition.

DEFINITION. - Let S be a stratum of and x ~ S. Then the stratum S
is stable at x if, for any potential 03C8 such that x is a non degenerate critical
point of t/J(n), the trajectories of the critical point corresponding (using the
method of lemma 3) to any variation of the potential, are all tangent to S
at x.

This condition is clearly equivalent to Ex,1/! c TxS, for x any non
degenerate critical point of 

LEMMA 4. - A stratum S of is stable if and only if dim S = dim ~(B),
n(n+ 1)

where B is the subspace of R 2 associated with S. The stratum S is
then stable at any point.

Proof - Let us first prove that TxS c Ex,I/!’
Formula (3’) gives :

For ç E TxS, one checks that the family { is contained in the
n(n + 1)

subspace B of IR 2 associated with S by formula (7). Then there exists
b E B such that, VI, = bi and thus Hx~r(n)(~) _ 6(b).

In other words :

The stability condition c TxS is thus equivalent to the property:
TxS = Ex,t/J when x is a non degenerate critical point of !/~B

Since the Hessian is non degenerate, it follows that dim S = dim 5(B).
Conversely, if dim S = dim 6(B), the inclusion TxS c implies

TxS = Ex,t/J and yields the stability of S at x.
Finally, since the condition dim S = dim ð(B) is independant of x and ~,

the stability at one point of S is equivalent to the stability everywhere in S.
Conversely, for a certain pair (x, ~), then dim S  dim 5(B)

and this inequality extends in the same way to the whole stratum.

Q. E. D.
We now prove that the infinitesimal stability is equivalent to the local

stability defined as follows.

DEFINITION. - A stratum S of is locally stable if, for any x ~ S and all .
(~ such that x is a non degenerate critical point of ~~n~, there exists a neigh-
bourhood ’j//’ of 0 in oc D satisfying the condition :

V G E (1) + G)(n) has a non degenerate critical point in S close to x.
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Let us notice that, if S is not infinitesimally stable, then dim S  dim 5(B).
Under these conditions, lemma 3 implies that there exists some trajectories
of critical points going out of the stratum. Thus S is not locally stable.
Conversely, we have the following result.

LEMMA 5. - If S is a stratum of x(n) such that dim S = dim 5(B), then S
is locally stable.

Proof - Let xo be a non degenerate critical point of belonging to
a stratum S. Lemma 3 gives an open neighbourhood U of xo in S and an
open neighbourhood ~ of 0 in + 00 D, such that for all 
there exists a trajectory À E [0, 1 ] - x~, E U of critical points of + 

Let us prove that if dim S = dim (5(B), then this trajectory is contained
in S. 

_

Consider the one-parameter vector field on U defined by:

Equations (19) and (20) show that the trajectory is an integral curve
of the vector field (22). On the other hand, it is clear that S n U is an integral
manifold since Vx E S, ~, E [0, 1 ], E TxS. The smoothness of the Hessian
implies uniqueness of the solution of the system (19)-(20), for given initial
conditions. It follows that, for xo E S, the trajectory of critical points is
contained in S n U. More specially, the critical point of (~ + E)n belongs
to S. Q. E. D.

Remark. Stability of S. 
_

Let S be a stratum of X(n). The closure S in is a submanifold without

boundary and the topological boundary S - S is a union of strata with
lower dimensions. 

_

Assume that S is stable, i. e. dim S = dim 5(B) and that x E Si 1  S - S
n(n+ 1)

is a non degenerate critical point of If Bi is the subspace of!R 2
associated to the stratum Si, then B 1 c Band :

The demonstration of lemma 5 fits immediately, and implies the stability
of S.

In other words, if x is a critical point that belongs to an unstable stratum Si
in the boundary of a stable stratum S, then some variations of the two body
potential will shift x out of Si, but any of them will leave it in S.

In the following, we shall consider three particular strata, and we shall
prove that one of them, namely the symmetric stratum, is the lowest dimen-
sional stable stratum.
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The open stratum.

For any n, there exists a unique stratum of maximal dimension, the open
stratum of equation:

This stratum is open an dense in and the space B(n) corresponding is
n(n + 1 ) &#x3E; 

" °

~ ~ . Thus = 0~"* and dim Sgz) = dim 
Consequently this stratum is stable, but its stability follows merely

from its openness.

The « periodic » stratum.

This stratum, which is the lowest dimensional stratum in X~B is given by

It is diffeomorphic to ]a, + oo [, and of dimension 1. The corresponding
subspace B~ is given by:

and is isomorphic to fR" by the mapping : b E B~ -~ (b~ 1 ~, ..., b~"&#x3E;) E flRn
where bI = 

M ) 1Using elementary linear algebra, one can check that dim ~(B~~) = 20142014 ,

integer part of n+1 . 
2

2
Thus dim  dim for n &#x3E; 2, and the « periodic » stratum is

not stable.

The symmetric stratum.

Consider the stratum :

The closure of y(n) in x(n) is:

One checks that dim. ~~"~ = and that the corresponding space
~~"~ is defined by: L 2 

po g p

..,.. ~ " B

where I = (n + 1 ) - J means that I and J are two intervals of ~ 1, ..., n },
symmetric with respect to n + 1. It follows that

2
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Consequently, dim 03B4(B(n)) ~ [n ; 1 J. On the other hand, we know that
dim J(n) ~ dim It follows that dim g(n) = dim 03B4(B(n)) = 2 .

In other words, the symmetric stratum is stable, and thus its closure as
well.
We conclude this part by the proof that yen) is the lowest dimensional

stable stratum of X~"~, in the following sense. If S is another stable stratum,
then dim S &#x3E; dim [fen) and yen) c S - S.

Let S be a stable stratum ofX~. Then c S, where S~ is the « periodic »
stratum.

If x E Spn) is a non degenerate critical point of ~~n~, one must have
Ex,4J c TxS. On the other hand, Ex,~ _ ~ Hx ~cn&#x3E; ~ -1 b(B p")) is of the same

dimension as i. e. 2 and since g(n) is stable, E is contained
in It follows that = c TxS. 

_
. 

Since and S are both affine submanifolds of X~n~, either g(n) = S,
or, the stratification implies yen) c S - S and dim S &#x3E; dim 
The physical meaning of this result is the following. If x E yen) is a non

degenerate equilibrium configuration for a given potential then there
exists a weak neighbourhood of ~ in which any potential yields a perturbed
equilibrium configuration in Moreover, the breakdown of this

symmetry can occure only through the degeneracy of the Hessian.

V. EXISTENCE OF SYMMETRIC

EQUILIBRIUM CONFIGURATIONS

We saw that the symmetric strata yen) are stable. The interest of this
property would be however restricted if the existence of equilibrium confi-
gurations in such strata was exceptional. Actually, nothing of this kind
occurs, and more precisely, the potentials which are attractive at large
distance generate interactions such that, for any n, there exists at least one
equilibrium in This result follows mainly from a property of 
and more generally of stable strata.

LEMMA 6. - Let (~ e oo 0 and let S be a stable stratum in 
n arbitrary. Then any critical point of the restriction 4&#x3E;fs) is a critical point
of ~~"~. If x E S is a degenerate critical point for 4&#x3E;fs&#x3E;’ then x is also degenerate
for 
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Proof - Let x E S be such that (x) = 0, i. e. Y ç E TxS, = 0.
n(n+ 1) &#x3E;

If B is the subspace of R 2 corresponding to S, the stability implies
~(B) = 5 c i(TxS). 

_

In other words, there exists’ E TxS such that

t

Thus we have for 

Since the bilinear form (03BE, 03B6) ~ 03A3(n)03BEI03B6I is positive and non degenerate,
I

it follows that’ = 0 and = 0. 
_

If x E S is a degenerate critical point there exists ( E TxS such that :

The linear form Hx03C6(n)(03BE)= 03A3(n)03C6"(xI)03B6I~I, which belongs to 5(B),
_ 

I

is thus zero on TxS. As in the previous case, we can conclude that it is zero
everywhere, i. e. Hx~(n~(~) = 0, so that x is a degenerate critical point for
~. Q. E. D.
Now, consider a potential § belonging to % (defined by (15)). For any n,

the critical points of lie in the compact set

Observe then has certainly a relative minimum in 
In fact, the minimum of on the boundary of n Kin) is reached

at a point such that xi &#x3E; a Vi, and x J = = b for at least one j.
Define 03BE ~ TxJ(n) by S3 = 03BEn-j = 1 and 03BEi = 0 for all i ~ j and n - j.

1(n&#x3E;
Then ~~).;= ~ &#x3E; 0, since j E I or n - j E I implies

I

and &#x3E; 0.

Since ç points out of y(n) n Kin) in it follows that reaches
a relative minimum in j/(n) n 
Lemma 6 asserts that this critical point for the restriction to is a

critical point for ~~n~. Thus we get :
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PROPOSITION 3. - Let % = of ~ [) defined from ( 15)
b&#x3E;a

be the set of hard core potentials which are attractive at large distances.
Then U contains a residual set of potentials 4&#x3E; such that, for any n, 
has a non degenerate critical point in the symmetric stratum ~~"~.

Consider the open set f = where fb is the subset of § E-1lb
b&#x3E;a

satisfying the convexity condition (16). Then, for all § E ~ and any n,
the only critical point of ~~n~ is non degenerate and belongs to ~~.

In other words, proposition 3 exhibits an open set ~ of realistic poten-
tials for which the ground states for any number of particles are symmetric.

Proof - The result follows from lemma 6, a subsequent remark and from
the consequences of proposition 2. Q. E. D.

VI. CONCLUSION

We have thus proved that, in one dimension, and for a large class of
realistic two body potentials, there exists for any number of particles,
an equilibrium configuration which is symmetric with respect to a center.
But in one dimension, there is only one non trivial symmetry transformation,
namely the inversion, and thus only one Bravais lattice, the periodic lattice.
Now, if we could extend our results to the case of infinite configurations, the
translationnal invariance suggests that the periodic stratum should be
stable in an appropriate sense.

In a recent work [4 ], G. C. Hamrick and C. Radin investigate the pertur-
bations of an infinite periodic equilibrium configurations, and prove that
an arbitrary small perturbation yields a non periodic equilibrium configu-
ration.

In fact, this result is not contradictory with ours, since the situation they
study is precisely non generic : the initial interaction is of finite range, and
so the n-points energies are not Morse functions.

Moreover, the « perturbation » does not tend to zero, with the coupling
constant, even for the weak topology.

In several dimensions, one may hope that the configurations space is
stratified with respect to the symmetry groups of the configurations, and
that the crystallographic point groups correspond directly to stable strata.
However there exist other finite subgroups of the rotations, namely the
dihedral groups and the icosahedron group.

Actually one can define a stratification corresponding to the symmetry
groups of the configurations. It is unclear wether this stratification is stable
or wether some symmetry groups play a special part in the stability and
genericity properties. These questions will be studied in a subsequent paper.
Vol. XXXVII, n° 3-1982. 
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