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Section A.

Physique theorique.

ABSTRACT. - We consider a class of Lorentzian metrics on ~4 which
are stationary at time-like infinity and Minkowskian either at space-like
or time-like infinity. For these metrics, we construct wave operators for
the classical Klein-Gordon equation. For certain transient cases we also
construct inverse wave operators. Given the classical wave operators,
we show how to construct in and out field operators for the quantum
Klein-Gordon equation and a particle interpretation for this theory.
Finally, we give several results of a general nature on the construction
of classical and quantum scattering operators paying special attention
to the stationary case. The methods and results of the paper could be
generalized to other external field problems (not just gravitational).

RESUME. - Nous considerons une classe de metriques lorentziennes
sur [R4 stationnaires a l’infini temporel et minkowskiennes a l’infini spa-
tial ou a l’infini temporel. Dans ces metriques, nous construisons des
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94 J. DIMOCK AND B. S. KAY

operateurs d’onde pour 1’equation de Klein-Gordon classique. Pour cer-
tains cas de champs gravitationnels ephemeres, nous construisons aussi
les operateurs d’onde inverses. Les operateurs d’onde classiques etant
donnes, nous expliquons comment construire des operateurs de champs
in et out pour 1’equation de Klein-Gordon quantique et obtenons une
interpretation en termes de particules pour cette theorie. Finalement,
nous demontrons plusieurs resultats de nature plus generate concernant
la construction d’operateurs de diffusion en développant particuliere-
ment Ie cas stationnaire. On pourrait generaliser les methodes et resultats
de cet article a d’autres problemes de champs externes (non seulement
gravitationnels).

I INTRODUCTION

The theory of linear quantum fields on a curved space-time is now reaso-
nably well understood on a mathematical level [70] ] [7~] ] [7~] ] [7~]. As
for the physical interpretation it is now clear that for generic space-times
the concepts of vacuum and particle are inappropriate. If however the
field operator approaches a free field operator in the distant past and/or
future then a particle interpretation is possible in the appropriate asymp-
totic sense. We are concerned with studying how this happens, and further
with the construction of a scattering operator to relate the notions of
in-particle and out-particle.

In particular we study the covariant Klein-Gordon equation

(It will be supposed throughout that the mass is not zero.)
We have isolated conditions on the space-time which give one control

over the classical scattering theory for this equation. This is just the input
needed for studying asymptotic behavior of the corresponding quantum
fields.
Our first restriction is that the manifold is taken to be This is mainly

for simplicity and we expect that our methods could be adapted to cer-
tain other manifolds as well.
For the Lorentzian metric we have several conditions.

A. The coefficients guv are bounded COO functions on [R4. There exist

positive constants C1, C2 such that 

Annales de Henri Poincaré-Section A



95CLASSICAL WAVE OPERATORS AND ASYMPTOTIC QUANTUM FIELD OPERATORS

C. For some 2 ~ /? ~ oo, there are constants &#x3E; 0 such that if 

is the Minkowski metric

The significance of these conditions is roughly as follows (details in
Chapter II). Condition A implies that the space-time is globally hyper-
bolic with surfaces constant as Cauchy surfaces. As a consequence
one has existence and uniqueness for the global Cauchy problem. Condi-
tion A also bounds the growth of solutions by growth in energy. Condi-
tion B says that the metric is asymptotically stationary, and is needed

so that the energy of solutions is bounded in time. Condition C says that

the metric becomes Minkowskian at space-like infinity (2  p  oo),
and/or at time-like infinity (3/(1 + 8)  p  oo). Stronger decay to 
in space-like directions (smaller p) allows weaker decay or even growth
in time-like directions. Note that for stationary metrics (t-independent)
it is sufficient and II lip are finite for some
2  p  3. Thus metrics for which and its spatial deriva-
tives are 0( -1-~) for some 5 &#x3E; 0 are permitted.
Under conditions ABC we show the existence of classical wave opera-

tors in the free energy norm (Chapter I II). These give the free asympto-
tic behavior of solutions, and an immediate consequence is the existence
of free asymptotic fields for the quantum problem and a corresponding
particle interpretation (Chapter V). If in addition Ran 03A9- = Ran 03A9+
one can define a classical scattering operator. This ensures the existence
of a scattering automorphism on the field algebra for the quantum case.
With further assumptions we develop more detailed results. For a class

of transient metrics we prove classical asymptotic completeness, that is
Q~ are onto (Chapter IV). For stationary metrics we show that various
definitions of a vacuum are equivalent, and that the scattering automor-
phism (when it exists) is implemented by a unitary scattering operator
(Chapter VI).

This completes the survey of our results. A preliminary announcement
and further exposition can be found in [17 ]. Related results for the classical
problem have recently been announced by Panei tz and Segal [22], who
have a somewhat different approach to the quantum problem. Furlani [11] ]
has some results for scattering on non-globally hyperbolic manifolds.
We also mention the work of Cotta-Ramusino, Kruger, and Schrader [7]
who study scattering for the Schrodinger equation on curved 3-space.
Our results have implications for other external field problems. For

example, consider a charged scalar field in an external electromagnetic
field as described by the equation

Vol. XXXVII, n° 2-1982.



96 J. DIMOCK AND B. S. KAY

Then one should be able to formulate conditions analogous to our ABC
and prove similar theorems. Many of these results would be new. For the
existing literature on this problem see [8] ] [77] ] [79] ] [2~] ] [2~] ] [26 ].

Finally we remark that in any quantum problem on curved space-time
it is desirable to formulate things in a representation and coordinate inde-
pendent way, as much as possible. There is a general algebraic framework
accommodating these ideas [10 ], which however we do not employ in
this paper. We do maintain representation independence and only pick
special representations when the problem selects them for us. Coordinate
independence is not emphasized and would only be realized by stating
our conditions ABC in the form « there is a global coordinate system such
that... ». It would be nice to have a more intrinsic (manifestly covariant)
set of conditions.

II PRELIMINARIES

A. Notation.

Our metric has signature ( +, -, -, - ). Tensors are assumed to be COO
(for convenience) and components of tensors are always taken with respect
to the standard coordinate system on ~3 or ~4. We use Roman letters
(i, j, k,...) for indices going from 1 to 3, Greek letters (/1, v,...) for indices
going from 0 to 3, and employ the summation convention. For any tensor t
(or object with indices) we define a norm |t to be the square root of the
sum of the squares of the components. Thus if t = @ 7A’

we have t , = (03A3|t 03BD|2)1/2 (some authors write I for |t I). If t is a
u,v / /~ llp

tensor field we define the Lp-norm ~t !!p = |t |p) and ~t~~ = sup I t I.

Throughout C denotes an arbitrary constant which may vary from line
to line.

B. The metric.

We begin by introducing some general notation for our metric

g = (8) We define lapse and shift functions by

We let 03B3ij = 2014 gij be the positive definite 3-metric induced on the constant
time hypersurfaces. One then has

Annales de l’Institut Henri Poincaré-Section A



97CLASSICAL WAVE OPERATORS AND ASYMPTOTIC QUANTUM FIELD OPERATORS

where ~3~ = One can show that the inverse 3-metric y‘’ is related
to the inverse 4-metric by

Furthermore the determinants |g| = ! |det {g 03BD}| and y = det { 03B3ij} are
related by

 1/0 1/0 /~~B

LEMMA 11.1. - Under assumption A :

a) k 1 I ç 12 ~ k2 J ~ 12 for some constants k 1, k2
b) k2 1 I ~ 12 
c) and are bounded 

.

goo, I are bounded above and below (i. e. away from zero).

Proof 2014 ~) follows directly from assumption A and (2.3). If r is the
then (a) says k 1 1 ç 12 ~! I r-1/2ç 12 ~2 ! I ç 12 and if we set

ç = we get (b). Now ~3L is bounded and by (b) y~J is bounded so ~3I = 
is bounded. The boundedness of g 03BD follows which completes (c). By (2. 3)
again we have for  = 03B2idxi

Thus if /3 ~ 0 we have bounded below, and this is also true if
~ = O. Finally y is bounded above since the are, and since y-1= det (r - 1)
is also bounded, y is bounded below. Similarly for I g (or use (2 . 4)) so (d )
is proved.

LEMMA 11.2. - Under assumption A, every light cone is contained
in a fixed cone, i. e. there is a constant M such that if 0 then

M~0)2 _ B (~)2 ~ o
j

Proof. -

where v = Thus if 0 we have x? - C I and
hence | | M 

C The Klein-Gordon Equation.

Now we are ready to discuss the Klein-Gordon equation which can
also be written as

Vol. XXXVII, n° 2-1982.



98 J. DIMOCK AND B. S. KAY

Associated with this equation is the form

where nu = ~°a is the unit normal to the constant time hypersurfaces
and nu = If u2 are solutions then 6(u 1, u2) is independent of t,
as may be seen by using the divergence theorem.
We pose the Cauchy problem in terms of the variable.

which is the canonical momentum in a Hamiltonian formalism. The
existence and uniqueness theorem is :

THEOREM II . 3. - Under Assumption A, given f, p E there is

a unique Coo solution u of the Klein-Gordon equation such that/= u(to, .)
and p = The solution has compact support on every
other constant time hypersurface.

This result is straightforward to prove using the standard method of
energy estimates (e. g. [12 ]). We do not go into details of the proof, but
will need to derive detailed energy estimates for other purposes. Alterna-

tively one can note that Lemma 11.2 implies that the metric is globally
hyperbolic and that the surfaces constant are Cauchy surfaces. Then
a general theorem of Leray [5] ] [70] ] [7~] gives existence and uniqueness
for the Cauchy problem.

D. Energy Estimates.

The energy-momentum tensor for our problem is given by

Let X be the vector field so that X~‘= We define the energy E(t)= 
by

The energy density T8 can be written as

and is positive.
Annales de l’Institut Henri Poincaré-Section A



99CLASSICAL WAVE OPERATORS AND ASYMPTOTIC QUANTUM FIELD OPERATORS

The following two theorems bound growth of energy (and related func-
tions) in time. Quite similar bounds have been obtained by Choquet-
Bruhat, Christodoulou, and Francaviglia [6 ]. Note that under assump-
tion B, the next theorem gives that energy is bounded in time.

THEOREM 11.4. - Let u be a solution of (Og + m2)u = 0 as in Theo-
rem 11.3. Then the energy E(t) satisfies for some C

Proof - By the divergence theorem

Thus E(t) is differentiable and

The derivative is evaluated using = 0 and

and so

We now estimate I and note that by Lemma 11.1
we have CT00 and hence Thus we have

If we put /(t) = (ao g)(t, . ) Then Then

Therefore F(t)  F(O) which is our result.
The next result is a generalization of this theorem which we shall need

in Chapter IV. It concerns a collection of scalar fields uA which satisfy
a coupled set of Klein-Gordon equations. (Later, uA will be a derivative a~u
of a solution of the Klein-Gordon equation).

THEOREM 11.5.

Vol. XXXVII, n° 2-1982.



100 J. DIMOCK AND B. S. KAY

let = Et(UA) be the energy (2.8) and let = ’B’ Then for
some constant C Ý

Proof 2014 We analyze EA as in the previous theorem, but now we replace
= 0 b

This yields

We write

and use Lemma II.1 to obtain

The other terms are treated similarly and we have

Then E’(t) satisfies the same type of bound and this gives the result.

E. The Hamiltonian Formalism.

Scattering is conveniently discussed in a first order formalism which
we now develop (cf. [15 ]). For any solution u of the Klein-Gordon equa-
tion as in Theorem 11.3 we define x C~(t~) by

Then we have that

where

Conversely any solution of this equation has a first entry which satisfies
the Klein-Gordon equation. Existence and uniqueness of solutions for (3 .1)
follows from Theorem II. 3
For any F let F(t) be the solution of (2.9) such F(s) = F. The time evo-

l’Institut Henri Poincaré-Section A
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lution operator sending F = F(s) to F(t) is denoted s). Then ~(~ s)
maps C~([R3) x to itself, is linear, and satisfies

Furthermore by the uniqueness of solutions

A special case of the above is the Minkowski metric for which the Hamil-
tonian is

The evolution operator in this case is denoted s) or s).
We now define the bilinear form 6 on Co (I~3) x defining

for FI = (II, p~) and F2 = (f2~ p2)

This is the translation of our earlier definition (2.6) into the first order
formalism and so

Note that 6 is a linear symplectic form (i. e. skew-symmetric and weakly
non-degenerate). Operators such as s) which leave 6 invariant are
called symplectic.
We want to extend our dynamics to a Hilbert space setting. We define

our Hilbert space j~ to be the completion of Co(~3) x CO(~3) in the free
energy norm ~ F~ defined for F = ( f p) by

Alternatively j~ is the Sobolev space @ with this norm.

Note that the associated inner product satisfies (F, G) == f7(F, HoG).
We want to compare this norm with the energy of solutions as defined

previously. This energy can be written E(t) = I where

Vol. XXXVII, n° 2-1982.



102 J. DIMOCK AND B. S. KAY

(The associated inner product satisfies (F, G)r = 6(F, H(t)G) here as

well [7~]). The next lemma says that these norms are uniformly equi-
valent.

LEMMA 11.6. 2014 Under condition A there are positive constants Ki, K2
such that

Proof. - The first inequality follows easily by Lemma 2.1. For the
second we note that by condition A, ( /3~~i)2a- 2 &#x3E; 2C ~ ~ ~ 2 for
some C. We choose a &#x3E; 1 so that - (a2 - 1)(03B2i03BEi)203B1-2  - C I ç 12. Adding
these inequalities gives

Now we write

which combined with (2.11) gives

As a consequence of this lemma and Theorem 11.4 we have for

Then J(t, 0) extends to a bounded operator on A with the same bound.
Similarly we extend to all of j~. The relations (2.10) still hold.
Furthermore 6 is a continuous form on A  A and the extended s)
is still symplectic. Finally (2.12) gives us uniform boundedness 

THEOREM II . 7. - Under conditions A, B, ~ ~ J (t, 0) II is bounded in time.

III. CLASSICAL SCATTERING

We now pose the scattering problem. The first question is to find data
with given free asymptotic behavior. That is for either t ~ :t oo, if we

are given we want to find G E j~ such that

Annales de Henri Poincare-Section A



103CLASSICAL WAVE OPERATORS AND ASYMPTOTIC QUANTUM FIELD OPERATORS

Assuming conditions A, B so that ~"(t, 0) is bounded this is solved by showing
that the wave operators

exist, and taking G = Q- F.
The other half of the scattering problem is to find free asymptotic behavior

for given data. That is given G E ~, find so that (3.1) holds. This
is solved by showing that

exists and taking F = 
We define the domains Dom Q:!:, Dom Q~ to be those vectors for which

the limits exist. These are subspaces of d.

PROPOSITION 111.1. - Under assumptions A, B

a) Dom Dom Q:!:: are closed

b) Ran Q:!: = Dom Ran Q:!:: = Dom Q~

c) I on Dom I on Dom 03A9±

d) Q:t are symplectic.

Proof 2014 ~) follows easily using the fact that 0) 0) II are
bounded. For (&#x26;.) let Q(t) = J(0, 0) and Q(t) = 0). If

then we have

Thus Ran Q~ c Dom I on Dom and hence
Dom S2 ± c Ran Q~. The same statements hold with S2 ±, ~ ± interchanged.
This completes the proof of (b.), (c.), and (d.) follows by the continuity of 6. II
The next theorem, our main result, shows that Dom Q~ == ~. Statements

about Dom Ran S2 ± are more difficult and we only consider a spe-
cial case in the next chapter. For now we note that if Ran Q~ = Ran Q-
(weak asymptotic completeness) then we may define the classical scattering
operator

which relates asymptotic behavior in the past and future. The operator S
is bounded and symplectic, as is its inverse

THEOREM III.2. 2014 Under assumptions A, B, C the limits

exist for all 

Vol. XXXVII, nO 2-1982.



104 J. DIMOCK AND B. S. KAY

Proof employ the usual Cook formalism for scattering theory
(e. g. [2~]). Since Dom S2 ~ is closed it is sufficient to prove convergence
on a dense domain and we choose Co (I~3) x Co(~3). For F, G in this
domain we compute for = J (o, 0)

(Here we use that J (t, 0) is symplectic and H(t) is skew-symplectic. The
differentiation under the integral sign is easily justified.) If we now inte-
grate we obtain the identity

This holds in the weak symplectic sense, i. e. applying 6(G, . ) (under the
integral) gives an identity. But since (G, . ) = 6(G, Ho . ) we also have that
the identity holds weakly for G in a dense set and hence weakly in ~/.
The identity thus holds as stated with the integral interpreted weakly.
To show that has a strong limit as t ~ :t oo it therefore suffices

to show that

where we again use that ~ ~ t) ~ ~ is bounded.

Writing this out with ( f (t), p(t)) = we can dominate (3 . 2)

by a sum of terms of the form ~~(t,.)~2dt where

Expanding out the derivatives we may dominate by a sum of terms of the
form

where

and where

Note that all the uo are derivatives of f and hence are solutions of the free
Klein-Gordon equation.

de l’lnstitut Henri Poincaré-Section A



105CLASSICAL WAVE OPERATORS AND ASYMPTOTIC QUANTUM FIELD OPERATORS

To estimate (3 . 3) we choose p from condition C and have by Holder’s
inequality

By the following lemmas we have

Furthermore the free solutions uo satisfy

For q = oo this result is well known [7] ] [77] [20] and the result for
2  q  oo follows since supports grow like 0(t3). Combining the above
estimates gives

and hence convergence of the integral.

LEMMA 111.3. - Under assumption C the following functions Z

satisfy (3 . 4) : oc - 1, y -1 - 1 as well as aka, 
C says that satisfies (3.4). Then

does also. The same estimate for (3j and y~’ - ~i’ follows easily. We also
have I y-1 - 1|  C 03B3ij - I which gives (3 . 4) again.
C also says that satisfies (3.4) and this gives the second set of

estimates. For we use the identity so that

LEMMA 111.4. - Under assumption C the following functions Z

satisfy (3 . 4) :

Proof 2014 These follow by straightforward manipulation of the results
of the previous lemma.

IV . TRANSIENT GRAVITATIONAL FIELDS

In this section we specialize to a class of transient space-times and
show that ~ ± also exists on all of d. Then we have asymptotic completeness :
Ran SZ ± - ~, i. e. all states are scattering states.

This class of space-times is obtained by strengthening condition B to

Vol. XXXVII, n° 2-1982.



106 J. DIMOCK AND B. S. KAY

control more derivatives of the metric, and by restricting condition C to
p = oo. Explicitly we adjoin to A the conditions

B’)

where

C’) There are positive constants C, ~ such that for 1

Condition C’ picks out metrics which, although not necessarily decaying
at spacelike infinity become Minkowskian at timelike infinity, hence the
name transient. Note that since = - conditions A

and B’ imply that  CIJ and hence that condition B

holds. (One can also show that conditions Band C’ (ii) together imply B’ (i )).

THEOREM IV.1. 2014 Under assumptions A, B’, C’ the limits

exist for all 

Proo~ f 2014 We proceed as in the proof of Theorem III . 2. Since 
is norm preserving, it is sufficient to show

If we let (’(t), p(t)) = then this integral can be bounded by a sum
of terms of the form

where Z is exactly as in Theorem 111.2 and v is one of f, p, 
Now we estimate

By condition C’ we have as before that C [ t [ - s - E, so it

suffices to show that [ [ v(t, . ) ~ ~ 2 is bounded to complete the proof. The
functions v are derivatives of solutions of the full Klein-Gordon equation.
Since [ ( is bounded we have that ( [ ~ f [ [ 2, !! and II ( p 112 are
bounded. In the next lemma we show that second derivatives of solutions

l’Institut Henri Poincaré-Section A



107CLASSICAL WAVE OPERATORS AND ASYMPTOTIC QUANTUM FIELD OPERATORS

have bounded L2 norms. This gives ~~i~jf~2 bounded and also ~ ~kp~2
since

and we may bound the Loo norms using Lemmas II .1, III . 3.

LEMMA IV. 2. - Under assumptions A, B’ if (0 g + m2)u = 0 then
II ~auavu»t, . ) ~ ~ 2 is bounded in t.

Proof - Applying ~a to

one obtains

We regard this as a system of equations for scalar fields By condi-
tion B’ and Theorem II . 5 we conclude that the energy given by (2 . 8)
is bounded in time. By condition A we have for any (~w)(. t) ~ )~ ~ 
Thus ~~03B2(~03B1u)~22  Cet(d03B1u) and so is bounded as required.

v . QUANTUM SCATTERING

A Algebraic Formulation.

We now study the quantum scattering problem. Our formalism is
influenced by the work of I. Segal (e. g. [2~]). The starting point is a repre-
sentation W of the CCR over the real Hilbert space j~ with symplectic - 

.

form 6. That is we have a function W from to unitary operators
W(F) on some complex Hilbert space such that

We assume t ~ W(tF) is strongly continuous and then W(F) = 
for some self-adjoint operator F) which satisfies

on a suitable domain. Defining = 6(c~, (0,/)) and = 2014 (r(~, ( f, 0))
we have F) = when F = (, f; p). These satisfy the usual
[~P(.fi)~ ~(.f2) ] = i(.fl ~ .f2)-
We also consider the C*-algebra U generated by the operators W(F)

of some representation. Any two pairs 211) and (w2, ~2) are equi-
valent in the sense that there is a unique isomorphism i : 2!1 --+ 212 such
that i [Wl(F) ] = W2(F) [4] ] [28 ].
The operator W(F) corresponds to the field operator at time zero.

Vol. XXXVII, n° 2-1982.



108 J. DIMOCK AND B. S. KAY

The dynamics are specified by defining a field at time t by

Since J (o, ~) is symplectic, Wt(F) defines a representation of the CCR
with generator F) = (7(C, J"(0, t)F). Thus formally = 

just as for the classical problem. Since 5"""(0, ~) is invertible, generates
the same algebra as W(F) and by the general equivalence result we have
a time evolution automorphism 0) on 9t such that O)W(F) = Wt(F).
Assuming the existence as in Theorem 111.2 we define asymptotic

fields by

These are given a free time evolution :

If W is strongly continuous in ~, these give the asymptotic behavior of Wr
in the sense that for any vector ~ in the representation space

For such representations we may also characterize by

The maps Wout/in give new representations of the CCR since the 03A9± are
symplectic. On the other hand the elements which have gene-
rators F) = 6(~, ~ ± F), generate subalgebras N out/in of the ori-

ginal algebra 9t. Elements of Uin/out roughly correspond to observables
which can be measured at spatial infinity in the distant past or future.

By the general equivalence result there is a scattering isomorphism ~ :
Uin ~ Uout such that [Win(F)] = WLt(F). If we have Ran S2 -

then Uin = Uout and is an automorphism on this algebra. We also have
that and so or formally
Coui= 
Note that all of the above constructions are representation independent.

They provide an algebraic description of scattering phenomena. To make
contact with physics we must next say something about states and their

interpretation.
B. States.

1) We review some well-known material about states on the CCR.

Given any representation (W, U) and a vector 03C8 which is cyclic for the W(F)

Annales de l’Institut Henri Poincaré-Section A
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we define a state m(.) = ( ~, [. ] ~) on 9t. Then ,u(F) = satisfies

a) ,u(o) = 1
b) t -~ is continuous

c) for any Ci, ...,c~eC, Fi, ...,F~6~/

Conversely given a generating function satisfying these conditions
there is a representation (W, 9t) with cyclic vector ~ giving rise to it, and
the representation is unique up to unitary equivalence.

2) One may define the free vacuum (Do on the CCR by the generating
functional

where Ko: ~ ~ L2([R3, C) is defined by

Concretely one may begin with Fock space over C) with vacuum

Q. = (1, 0, 0, ... ) and define (7(0, F) to be the self adjoint extension of

where a* is the usual creation operator. Then [-]~o) and

Wo(F) = give the above generating functional. Wo is the usual

free representation of the CCR’5.
As is well-known a~o is stationary under the free time evolution ao(t)

and in fact under an associated representation of the full Poincare group
by algebra automorphisms. Furthermore XoM is implemented by a unitary
group with positive energy. Hence is interpreted as a no particle state
for this dynamics. Similarly vectors = (0, h, 0, 0, ... ) in Fock space
give rise to states = ( ~h, ~ . ] ~h) which transform irreducibly
under these Poincare transformations and have positive energy. The 
are then interpreted as one-particle states. Higher particle states are treated
similarly.

3) We are now ready to study states on the CCR and classify them with
respect to their behavior under the full dynamics. This is difficult to do
directly and instead we classify states by their behavior on the asymptotic
form for which is the free field Thus a state on ~

is interpreted as containing no particles in the distant past if

a state is interpreted as having a single asymptotic particle in the distant

Vol. XXXVII, n° 2-1982.



110 J. DIMOCK AND B. S. KAY

past and so forth. These identities will also hold
at any time t (by t)F) and 
Note that the definitions only determine these states on 9t~/out (where

existence is trivial). In general there will be many extensions to the full
algebra. Different extensions presumably correspond to different occu-
pations of bound states.

C The Quantum Scattering Operator.

We now suppose that Ran Q+ = Ran Q’ so S exists. We restrict attention
to the algebra Uin= Uoutwhich is generated by Win(F) or 
Suppose further we choose the free representation for Win(F) (which has
the physical interpretation). We ask whether the scattering automorphism
~ : Win(F) -+ Wout(F) is unitarily implemented. Is there a unitary operator !/
so that

If so :7 gives detailed information about scattering.
To find sufficient conditions for implementability we refer to the free

representation of the CCR over C) regarded as a real symplectic
space with symplectic form 2 Im ( . , . ). As is well-known this consists of

unitary operators (e. g. on Fock space) such that

and a cyclic vector Q such that &#x26; = (Q, [. ] Q) satisfies

Note that W(Ko ’) is a representation over (~, 6) since Ko is symplectic :
2Im(KoFi, KoF2) = 6(Fl , F2). Furthermore a pair (W(Ko-), is a rea-

lization of the (W, introduced earlier, and hence of the we

are now considering.
Next consider the operators

which are real linear and symplectic from the dense domain K0A c C)
onto itself. Suppose that E, E -1 extend to bounded (symplectic) operators
on L2(~3, C). If there is an !/ such that ~W( ~)~-1 - then

WJF)=W(KoF) satisfies as required.
Thus when 03A3 and 03A3-1 are bounded, it suffices to study the implementabi-

bility of (03C8) ~ (03A303C8). If E is unitary it is well-known that this trans-
formation is implementable (by the second quantization of E). More gene-
rally there is Shale’s Theorem [27] which says that the transformation
is implement able if and only I is Hilbert-Schmidt, where ~ +
is the real adjoint of E defined with respect to Re( . , . ). (We remark that
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it is enough that E+X - I on K0A extends to a Hilbert-Schmidt operator.
For then it follows that E extends to a bounded operator (since

and that 03A3-1 extends to a bounded operator i).
For the transient case discussed in § IV we may define Sand E, but

unitary implement ability is difficult. If however g is strictly Minkowskian
off a compact set the unitary implementability has been proved [9] ] [29 ].

VI. STATIONARY SPACE-TIMES

We continue to assume conditions A, B, C and suppose in addition that

gJlV is actually independent of t (so B is trivial). We call such a space-time
stationary. For the classical dynamics this means that H is independent
of t and that time evolution has the form J (t, s) = J (t - s) where 
satisfies = + s). It is then straightforward to obtain the
intertwining relations

We do not study the classical problem further, although there are many
interesting questions.
To discuss the quantum case we recall the concept of a « one-particle

structure » for (~, 6, [7~] [76]. This is a triple (K, ~P, consisting
of a complex Hilbert space ~f regarded as a real symplectic space (with
symplectic form 2 Im ( . , . )), a symplectic operator K : j~ --+ Jf onto a

dense domain in H, and a unitary group on H with strictly positive
generator B, such that

An example we have already met is the one-particle structure

Kay has shown that one-particle structures exist for a class of stationary
space-times including our own [14 ]. Furthermore it is known that one-

particle structures are unique up to unitary equivalence [76] ] [30 ], a fact
we make use of below.
Once one has a one-particle structure one may define a vacuum state

(the clothed vacuum) on the algebra 9t by the generating functional

This OJ is invariant under time evolution, at = and in the represen-
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tation defined by co, is unitarily implemented with positive energy.
We have two results for these stationary space-times.

THEOREM VLL .

Proof 2014 By the intertwining relations (6.1), (6.2), we have

This suggests that can define a one-particle structure for the free
dynamics. In fact define by

Then e - iBt leaves ~f~ invariant. ~f~ is a priori only real linear. However
let P± be the projection onto ~± . Since [P::t, = 0 we may conclude
by a theorem of Weinless { [30 ], Theorem 1. 2) that is complex linear.
Hence is complex linear. Thus is a one-particle
structure for (~, and since (Ko, L2, is also, we have by the
uniqueness that there are unitary operators U+ : such
that

Now we may compute

and hence co agrees with C,Uout,in’

THEOREM VI . 2. - For a stationary space-time with Ran Q~ = RanQ ,
the scattering automorphism is unitarily implementable.

Proof 2014 From the intertwining relations (6.1), we have

It follows that both (KoS, L2, and (Ko, L2, are one-particle
structures for (s~, ffo(t)). By uniqueness we have KoS = EKo for some
unitary E on C). In other words E = KoSKo 1 extends to a unitary.
As pointed out in § V . 3 this gives the implementability.

Remarks. 2014 Both these theorems should be valid for general external
field problems. To our knowledge they have not previously been proved
for bosons. For Dirac fields in an external potential results of this type
may be found in [2] ] [3] ] [21 ].
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