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C*-algebraic generalization
of relative entropy and entropy (*)

V. P. BELAVKIN (**) P. STASZEWSKI

Institute of Physics, Nicholas Copernicus University,
Toruri, Poland

Section A :

Physique ’ théorique. ’

Ann. Inst. Henri Poincare,

Vol. XXXVII, n° 1, 1982,

SUMMARY. - The concept of differentiability of a state with respect
to a weight (state) on C*-algebra recently introduced by authors generalizes
the notion of almost majorising introduced by Naudts in a von Neumann
algebra context. In enables us to introduce the notions of entropy and
relative entropy in the case of C*-algebraic description of a physical system.
Our generalization of relative entropy leads to some modification of this
notion concerning in the quantum case the effect of possible noncommu-
tativity of the states.

1. INTRODUCTION

Let Jf denote the Hilbert space corresponding to a quantum system
and denote the algebra of bounded operators on ~f. Observables
are represented by selfadjoint elements of In the most cases the
statistical states of the system are described by normal states on 
To each normal state 6 on corresponds a unique density operator E
(semi-positive trace-class operator satisfying the condition Tr E = 1)
and = Tr (LA), VA E The entropy of the normal state o- on

(called von Neumann entropy) is defined by the formula

(1.1)

(*) Supported in part by Polish Ministry of Science Higher Education and Techno-
logy, project MR. I. 7.
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52 V. P. BELAVKIN AND P. STASZEWSKI

In the classical case the phase space of the system is a measure space
(Q, ~, The macroscopic state of the system is described by a probability
measure 6 (positive normalized measure) absolutely continuous with
respect to cp. Then there exists a positive integrable function f (Radon-

Nikodym derivative) which satisfies = 1, d6 = and the entropy

of the state described by 6 (called generalized Boltzmann-Gibbs-Shannon
entropy) is given by the formula

( 1. 2)

Let us remind another notion of entropy, the so-called relative entropy,
cf. for instance [5 ]. In the classical case consider two states described in
terms of the probability measures cr and cp and assume 7 to be absolutely

continuous with respect to 03C6. Denote - 2014. The relative entropy ofp 
. 

~P g 
d~ 

pY

the state 6 with respect to ~p is defined by the formula

(1.3)

(This entropy is frequently called Kullback information or information
gain).
The quantum analogue of (1. 3) is usually written in the form [5 ]

( 1. 4)

where 6(A) = Tr (EA), ~p(A) = Tr (~A), VA E 
The aim of this paper is to generalize the notion of entropy and relative

entropy in the case of a physical system described in terms of C*-algebra.
For this purpose we use the notion of differentiability of the state 6 with
respect to a weight ~p on C*-algebra .xl recently introduced by authors [2 ].
In the case of A being a von Neumann algebra, 03C6 2014a faithful normal
semi-finite weight on A and 6 a normal state on .xl, 6 differentiable
with respect to 03C6 means that 6 is almost majorised by 03C6 in the sense of
Naudts, [4 ]. Next, following Naudts, the C*-algebraic generalization of
entropy is defined (Sec. 3). It is verified that this expression for entropy
in the cases ~ = takes the form ( 1.1 ) and ( 1. 2),
respectively. In Section 2 we consider the case of cp being a state on C*-alge-
bra A and generalize the notion of relative entropy via the density operator
of a state cr differentiable with respect to the state ~p. Our generalization
of the relative entropy leads to the expression ( 1. 3) in the classical case
but in the quantum case j~ = we obtain some modification of ( 1. 4)
concerning the effect of possible noncommutativity of the states cr and ~p.

de l’Institut Henri Poincaré-Section A



53C*-ALGEBRAIC GENERALIZATION OF RELATIVE ENTROPY AND ENTROPY

Namely, if = Tr (EA), ~p(A) = Tr (CA), assuming C to be strictly
positive we obtain

= In (~- 1~) ~ - Tr { ~(~- 1~2~~- 1~2) In (~- 1~2~~- 1l2) ~
(1. 5)

which differs from ( 1. 4) except for the case of commuting 03A3 and 1&#x3E;.

2. RELATIVE ENTROPY

Let ~p be a state on a C*-algebra d and let -+ denote
the cyclic representation of d with respect to ~p. Let 

denote the inner product in 
A state 6 on s~ will be called differentiable with respect to ~p ( [2 ]) if

it has the form
(2 .1)

where ç E is the vector for which there exists a closable operator /~),
densely defined in by the formula

(2.2)
It is easy to verify that p(~) is affiliated with In this case there exists

a unique vector ç for which is positive and selfadjoint [4 ]. Such vector
will be called the positive vector. An operator P = p(~) + p(~) is called

the density operator of the state 6 with respect to ~p and p() = P1~2 for 
-

positive ~, which we denote ç = Following [4] ] we define the
entropy of the state cr differentiable with respect to ~p in the following
way

(2 . 3)

whenever this limit exists, Eð = E( [5, ~ ~ ]), where F,(d~,) stands for the
spectral measure of P.

a) Let us first consider the case j~ = Let = Tr (I&#x3E;A), A E ~,
be a fixed state described by a density operator C. Let denote the
Hilbert space of cyclic representation of j~ = with respect to ~p.
The inner product in has the form

(2 . 4)
Let

(2 . 5)
and let moreover 6 fulfil the conditions

(2.6)

(*) We employ the following notation: |a &#x3E; stand for vectors belonging to the pre-Hilbert
space obtained via the G. N. S. construction while ç can be an element of ~-comple-
tion 
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and there exists an operator p(D) such that

(2 . 7)
(2 . 8)

(The involution *, conjugated to the involution +, is defined in the following
manner : if p(D) = R(I D») then p(D)+ = R(! D )*) and D )* == ! D* ~).
Hence, according to (2.1) and (2. 2) the state 6 is differentiable with respect
to the state ~p. From (2. 5) and (2. 6) one can easily obtain

(2.9)

Taking into account (2.7) and (2.8) we have

(2.10)
From this condition and (2 . 4) assuming 03A6 to be strictly positive one can find

(2 .11 )
As mentioned above there is exactly one vector D ~ for which p(D) is

selfadjoint and positive. Deriving the appropriate conditions from (2.10)
we obtain with the help of (2.9) and (2.11) that p(D) is selfadjoint and

positive for

(2.12)

The operator c~-1~2~~- ll2 is obviously selfadjoint and positive with

respect to the initial inner product (x, y) in J~. Let

(2 .13)

stand for its spectral decomposition. The operators 
1 

are

not selfadjoint with respect to (x, y) but they are selfadjoint and positive
with respect to (x, y)~-i 1 = (1&#x3E;-1 x, y) and (x, y)~ = (~x, y), respectively.
Denote by ~ E~ 1 }nE~ spectral families of the operators

(with respect to the inner products (x, ~-i and (x, y)~,
resp.). Then

(2.14)

(2 .15)

where
(2 .16)
(2.17)

From (2.14)-(2.17) we obtain

(2.18)
(2 .19)
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55C*-ALGEBRAIC GENERALIZATION OF RELATIVE ENTROPY AND ENTROPY

Moreover one can easily verify the identity

(2 . 20)
Because

(2.21)
we easily obtain

(2.22)

Taking into account (2.14) define bounded operators by the formula

(2 . 23)

(2.24)

Now let us calculate from (2. 3) the entropy of the state 6 differentiable
with respect to the state (p. Using (2.12), (2.24), (2.4) and (2.20) we obtain

Vol. XXXVII, n° 1-1982.
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Let us generalize the expression (2.25) in the case of noninvertible 1&#x3E;.

In this case our relative entropy is well defined by the formula

(2 . 26)

for every differentiable 03C3 having the density operator 03A3 = 03A6X, where X

is an essentially selfadjoint operator with respect to the inner product
(x, y)~ _ (~x, y), which for invertible 1&#x3E; takes the form X = ~ -1 ~. It is

obvious that X is positive with respect to the inner product (x, y)~ ;
(x, X x)~ _ (0~-, Xx) = (x, ~Xx) _ (x, ~x) &#x3E; 0 for all x E ~(X) ~ ~f due
to the positivity of E.
Note that In In 0, except for the case of commuting E and 1&#x3E;.

Hence our relative entropy differs from the Araki’s relative entropy [1 ],
which is well defined only in the case of faithful states and in this example
takes the form ( 1. 4).

b) In the classical case consider A = F(03A9, B) the C*-algebra of bounded
measurable functions with the norm ~g 1100 = sup {! 03A9}. Let cp
and 03C3 be probability measures on (Q, which define the states on A

(2.27)

(2 . 28)

Let = L 2(Q, 03C6) and 03C003C6 : A ~ B(H03C6) be the cyclic *-representation
with domain defined by

(2.29)

The inner product in has the form

(2 . 30)

Assume 6 to be differentiable with respect to cp. It is easy to verify that in

(2.31)

Annales de Henri Poincare-Section A
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3. ENTROPY

We will briefly sketch some elements of the theory of weights on C*-alge-
bra according to [3] ] and [4 ].
A weight on C*-algebra is a function j~+ -~ [~+{+00} satis-

fying the conditions :

(with the convention 0 . ( + oo) = 0).
A trace on A is a weight 03C6 for which

Define

then j~, is a left ideal in J3/. Let that is the set of all complex
linear combinations of elements b E ~~. Then ~~ is a *-subalgebra
of j~ and ~~ + - ~~ n j~+ is exactly the set ~ a E ~+ :  + 00 }
and s~~ is the complex linear span Moreover is a cone in j~+
which is hereditary, i. e.,

hence ~~ has the property that E ~~ if b, c E The weight ~p can be
extended uniquely to a linear positive functional on ~~ (again denoted

THEOREM (cf. [3 ], [4 ]). For each weight 03C6 on A there exists a Hilbert
space and two mappings : -+ and -+ 

such that Alp is linear with the range dense in ~~ is a representation
ofd,and

for all a ~ A and b, c ~ L03C6.
Let ~p be a weight on C*-algebra j~ and let j~ -+ denote

the representation of A corresponding to cp. A state o- on A will be called
differentiable with respect to ~p if it has the form

(3 .1 )
where ç E is the vector for which there exists a closable operator /)(~),
densely defined in by the formula

(3.2)
Again, there exists a unique vector ç for which is positive and selfadjoint
and an operator P = is called the density operator of the state 6
Vol. XXXVII, n° 1-1982.
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with respect to cp. In the case of j~ being a von Neumann algebra, cp 2014a
faithful normal semi-finite weight on A and 6 a normal state on A,
o- differentiable with respect to ~p means that 6 is almost majorised by ~p ( [4 ]).
Analogously to [4 ] we define the entropy ~6~~ of a state 6 differentiable

with respect to a weight ~p by the formula

(3 . 3)

whenever this limit exists, Ea = E( [5, ~ ~ ]), where E(d~,) stands for the
spectral measure of P.
As in the previous section one can verify that (3.3) is a generalization .

of entropy.
a) Let = Tr (A + A) for all Assuming that a state o-

is differentiable with respect to Tr ( . ) we can find that p(D) is positive and
selfadjoint for D* = D = ~1~2, P = [p~~l/2) J2 and consequently

b) Let = ggd03C6, ’dg E where 03C6 is positive measure on

(SZ, Assuming 6 differentiable with respectto 03C6 we obtain 03C1(03BE) = 
d 

,

P = ~ == f Then from (3.3) we obtain
d~p
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