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Physique théorique.

ABSTRACT. - In this article, a covariant non-stationary theory of
continuum irreversible thermodynamics is proposed. The specific entropy
and the entropy flux as well as the thermodynamical forces are expanded
up to second order in the dissipative fluxes. As a consequence, the speed
of propagation of perturbations is finite and the phenomenological laws
are non-linear in the dissipative fluxes. In the non-relativistic limit, these
equations reduce to those of extended irreversible thermodynamics.

RESUME. - Dans cet article on propose une theorie covariante et non
stationnaire de la thermodynamique irreversible des milieux continus.
L’entropie specifique et le flux d’entropie, d’une part, ainsi que les forces
thermodynamiques d’autre part, sont développés jusqu’au deuxième ordre
dans les flux dissipatifs. Comme une consequence, on obtient des pertur-
bations se propageant a vitesse finie et des lois non-linéaires dans les flux.
Dans la limite non-relativiste ces equations se reduisent a celles de la
thermodynamique irreversible generalisee.

1. INTRODUCTION

In the last deqade, the interest of physicits about relativistic thermo-
dynamics has increased, perhaps, as noted by Israel [1 ], due in part to
possible applications to astrophysical and cosmological problems where
relativistics effects can play a main role. In particular, the problem of
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80 D. PAVON, D. JOU AND J. CASAS-VAZQUEZ

detection of gravitational waves has oriented the work of some

authors [2 ] - [5 ] toward the dissipative solid which, under suitable condi-
tions, could be utilized for detecting such waves.
The common feature of some recent covariant theories describing

dissipative processes in a fluid is their non-stationary, -causal-, cha-
racter [6 ]- [12 ]. All of them avoid the paradox of instantaneous propaga-
tion of disturbances by allowing the inclusion of the dissipative quantities
(heat flux and dissipatives stresses), in the expression of the entropy density
and the entropy flux. Indeed, conventional thermodynamical approa-
ches [13 ] - [16] ] postulate vanishing contribution of dissipative fluxes to
the entropy and to the entropy flux. It is to say, they maintain the equili-
brium equations of state for the entropy density and assume moreover a
linear relation between the entropy flux and the heat flux. Actually, this
approximation is valid in quasi-stationary situations only, where the

space-time gradients of dissipative quantities are negligible.
All the above referred causal theories have Newtonian counterparts.

Thus, those of Israel [6 ] and Israel and Stewart [7] ] as well as the Dixon’s [8 ]
one, rest on the Muller’s [17] ] classic approach, the Bampi and
Morro’s [9] ] [10 ] one extends the method of hidden variables [18 ] to the
relativistic framework, whereas our approach to heat and electric conduc-
tion [11 ] [12] ] generalizes their Newtonian treatment in extended irre-
versible thermodynamics [19 ] [20]. Recently, the latter theory has been
used in the non-relativistic context in the analysis of several problems,
as the thermodynamic description of second order fluids [21 ], the fluctua-
tions of dissipative fluxes [22] ] [23 ], and the fluctuations of the heat flux
near a critical point [24 ].
Our main purpose in this paper is to develop a phenomenological

causal theory for a relativistic dissipative simple fluid, which can be under-
stood as the covariant version of the afore-mentioned classical extended

thermodynamics. In this connection we get a set of equations describing
the evolution of dissipative variables of that fluid along the world line by
means of the expansion of the specific entropy as well as the entropy flux
and the thermodynamical forces up to second order in the dissipative
fluxes. As a consequence, the constitutive equations obtained are more
general than those of earlier relativistic formulations of continuum thermo-
dynamics.

2. CONSERVATION LAWS
AND THERMODYNAMIC ASSUMPTIONS

We start introducing the notation and some useful relations. Let 54 be
the four-dimensional space-time of the special or general relativity and gl1v
the metric tensor with signature ( - , +, +, + ). Comma and semicolon
represent partial and covariant derivative respectively. Symmetrization
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81ON A COVARIANT FORMULATION OF DISSIPATIVE PHENOMENA

is indicated by round parentheses around the corresponding indexes. The
dimensionless hydrodynamical velocity ul1 fulfills the normalization

condition 1. Differentiation along the world line is defined by
A .’.’.== ul1 A .....;11 where A . ’ . ’ . , is a generic tensorial quantity.
In particular ul1 = stands for the acceleration vector, which satisfies

u u  = 0. The symmetric spatial projector = gl1V + projects any
vectorial or tensorial quantity in the tri-space orthogonal to i. e.

= = 0. With its help any vector V~ can be split uniquely into
a « temporal part » jj parallel to uu and another « spatial » 
orthogonal to uu, Vu = II + I VI1 11-, ~~ and V~ L being respectively
I jj 

= - ul1uvVV and I VI1 11- = ~~’’Vv. Likewise, following to Bressan [25 ],
any tensor of rank two can be decomposed into temporal, mixed and
spatial parts according to

with

Finally, we denote the trace-free part, or deviator of Al1v by

Let us consider a heat conducting viscous simple fluid, with momentum-
energy tensor TI1V symmetric and conserved. Let p be the mass density
of the system in its proper frame and JIl = pUll the mass flux which is
submitted to the restriction JI1;11 = 0 provided that chemical reactions as
well as creation and annihilation of matter are excluded. From that relation
the continuity equation

follows immediately, v being the specific proper volume.
Such as Bressan has shown [25 ] the expression proposed by Eckart [13 ]

is adequate to describe our fluid. In (2) the quantities 8, ql1 and stand
respectively for the specific internal energy, the heat flux and the pressure
tensor; these two later quantities are of spatial type, i. e. qu = I ql1 11- and

11-.
Usually, the pressure tensor is decomposed in their equilibrium and

viscous parts according to

p being the hydrostatic pressure. In turn, WI1V admits the following decom-
position
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where II = ( - is the bulk viscosity and the traceless shear

viscosity tensor. Both WJlV and WI1V are of spatial type, and if moreover,
as in our case, the fluid is structureless they are also symmetric.
When the momentum-energy conservation equation TI1V;v = 0 is split

in their temporal and spatial parts, it gives rise on the one hand to the
linear momentum conservation = 0, and on the other hand to
the energy conservation uIJTI1V;v = 0. By using (1) and (2), a brief calcula-
tion shows that these relations can be written respectively as

This latter is the relativistic version of the first law of thermodynamics,
which we will use later.

Following the lines of extended irreversible thermodynamics, we postu-
late the existence of a quantity s, called non-equilibrium specific entropy,
which is a function not only of equilibrium variables but also of the dissi-
pative quantities, namely ql1, II and WI1V,

This means that the thermodynamic state of the system under considera-
tion is completely specified with the knowledge of these variables in every
point of space-time occupied by the fluid, and then expression (7) plays
the role of the fundamental equation in thermostatics.
The evolution of s along ul1 is given by means of a generalized Gibbs

relation. In order to write s up to second order in the dissipative variables
we adopt the following equations of state

where an upper prime indicates that all quantities but the one subject to
derivation are to be kept constant. Obviously all these derivatives are also
functions of ~, u, II and 

The first two relations of (8a) are similar to the classical equations of
thermostatics defining the absolute temperature T and the thermodynamic
pressure respectively, while (8b) and the latter of (8a) establish the depen-
dence between s and the dissipative variables and vanish identically at
equilibrium. We have moreover introduced in (8) three parameters ai

functions of B and u which as we will show later are related to the relaxation

Annales de l’Institut Henri Poincaré-Section A
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proper times. Note that in our approach, T and p are non-equilibrium
quantities which can be related to the corresponding thermostatic or local
equilibrium variables by means of appropriate expansions in series around
their equilibrium values.

Taking into account the above equations of state differentiation of (7)
yields the covariant and second-order Gibbs equation

which differs largely of that used in stationary theories.
Our next basic assumption concerns to the spatial vector entropy

flux It states that this quantity must be a function of the same variables
entering in the specific entropy, i. e.

whose most general expression up to second order in these variables reads

where the Pi are scalar functions of s and u, in particular the coefficients P2
and P3 couple heat flux to bulk and shear viscosity respectively. A compa-
rison of (11) with eq. (6) from ref. [77] ] allows us to identify Pi as 1/cT.
Evidently the r. h. s. of (11) coincides formally with the usual expression
of the entropy flux only if viscosity is neglected.

3. ENTROPY PRODUCTION
AND PHENOMENOLOGICAL RELATIONS

In order to derive the phenomenological laws governing the behaviour
of n, ql1 and WI1V, it is necessary to obtain previously the entropy produc-
tion cr in terms of these variables. This quantity is related to s and I s by
means of the entropy balance equation, whose standard form reads

By resorting to (9) and (11) a can be expressed as

with

Here ~, ~*, y and y* denote dimensionless factors with no other restriction
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that r~ + r~* = y + y* = 1. In the deduction of (13) we have used the
relations ql1 1 Xli = q  | 1X  1, and W 03BD 2Xpv = 11- implying that
only the spatial parts of 1 Xli and 2Xl1v contribute to the increase of entropy.

In the current literature phenomenological relations are usually obtained
assuming a linear relation between fluxes and forces. However, we will
follow a different procedure since we are interested in the obtention of a
more general set of constitutive equations which, as we shall see later,
may be interpreted as evolution equations of the dissipative variables.
With this in mind, we expand 11 Xli 11-, °X and 2X~v ~1 up to second order
in terms of the thermodynamical .variables ; thus, taking into account
that 1X~ I1 and are spatial quantities, we write down

the au coefficients being functions of the equilibrium variables.
These developments are more consistent with equations (9) and (11)

than the conventional linear relations between fluxes and forces. It is to

say, if both s and I~ have been developed up to second order in the dissi-
pative quantities also °X and 2Xuv ~ 1 must be expanded up to
that order, because the importance of ( 17)-( 19) in this approach is analogous
to that of equations (9)-(11). Note that all these developments could be
carried out to some order higher than two, but the inherent formal complica-
tions would not be compensated by a deeper physical insight.
When (17)-(19) are introduced into (13) the second law of thermodynamics

imposes on the aij coefficients the following restrictions

since qllql1 as well as 112 and are non-negative quantities, while n,
can be both positive or negative and

By equating the r. h. s. of (14), (15) and (16) with the corresponding
r. h. s. of ( 17), ( 18) and (19) and taking moreover into account the definition
of the projector tensor as well as the set of restrictions (20) we have the
phenomenological relations
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with

In the deduction of (23) we have used the restriction a20 = 0, which
arises from the requirement W~~ _ ~ W~~ ~ . The relativistic temperature
gradient T 1, + Tuv [13 ] [25 ] [26] ] occurring in (21) through (24) follows
in a natural way from the inertia of heat [27]. The vector al ql1 appears
in (22) split into a purely spatial part a10q  + a1103A0q  + + Q ,
and another purely temporal part 03B11u q03BDu03BD. This phenomenological relation
constitutes a generalization of the issue already obtained by the authors [77 ].
which when viscosity is disregarded have identified the coefficient aio as
1/kcT, k (~ 0) being the thermal conductivity of the fluid. Consequently,
a10 is a positive quantity such as was stated above. Likewise the relaxation
coefficient a 1 is easily identified where z 1 is the proper relaxation
time of the heat conduction process.

In the local instantaneous rest frame one has ~~‘v = diag (0, 1, 1, 1),
= = (0, qk), Wo, = 0, (/’, k = 1, 2, 3), ~ and ak.

being the Cartesian components of the ordinary three-velocity and the
ordinary three-acceleration respectively. If in that frame and in the absence
of heat flux (22) and (23) are compared with the corresponding relaxational
constitutive equations [22] J and 
the following identifications arise : 

where ~ and p are respectively the bulk and shear viscosity coefficients,
and T-2 and L 3 stand for the proper relaxation times of the involved processes.
Recently, equations of that kind have been used in connection with cosmo-
logical problems [28 ]. The above identifications confirm two important
points of the theory, on the one hand the positive semidefinite character
of ao and a21 and on the other hand the negativeness of a2 and Indeed,
eii  0 (i = 1, 2, 3) implies a finite speed whereby the causality of the
present theory is guaranted, and if moreover Li is assumed to be of the order
of a molecular mean collision time, the speed of the corresponding dissi-
pative disturbance results not only lower than c but moreover comparable
to the velocity of sound in the fluid under consideration.

Relation (23) exhibits the tensor split into a purely spatial tensor
a21 W 03BD + a23  q q03BD ~ +  and another one Ct3  W 03C1u03BDu03C1 + 
which is not purely spatial nor temporal but mixed.

Israel and Stewart [7] have succeded in relating some coefficients

(ocl, ei2, f33 Q10, aoi and a21) appearing in our constitutive equations
to kinetic quantities for a relativistic quantum gas, by means of the Grad’s
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method of the 14-moment. For the time being, and analogous determination
of the remaining ai~ coefficients, -although desirable-, has not been
made, at least to our knowledge.

Except for the term occurring in the spatial parts of (21 )
and (23) reduce in the classical limit to the Newtonian phenomenological
relations obtained by Jou et al. [20 ], the temporal and mixed parts take
into account purely relativistic acceleration effects, and therefore they
have not classic counterparts. Indeed, in the local instantaneous rest

frame, (21)-(23) differ from the referred Newtonian equations by terms of
the order c - 2 only.
Extended irreversible thermodynamics concerns with the evolution of

the thermodynamic quantities. In our case, this evolution means evolution
with respect to the proper time, and consequently we interpret the consti-
tutive relations (21)-(23) as those giving the evolution of the dissipative
fluxes along the world line of each material point of the fluid. The evolution
of the equilibrium variables u and E is governed by the continuity equa-
tion (1) and by the energy conservation law (5) respectively, whereas the
evolution of u" is furnished by the linear momentum conservation (6).
The non-linear terms IIql1’ appearing in our

constitutive equations do not occur in other causal phenomenological
approaches [6] ] [10 ]. Indeed, these terms may be negligible in ordinary
situations, but their importance increase as the thermodynamic system is
separated from equilibrium and consequently they can contribute with
new phenomena, qualitatively different from the linear ones. They may
have interest in cosmological and astrophysical problems where rapid
fluctuations, fast rotations and strong gravitational fields can occur [7].
Thus, Novello and d’Olival have analysed the Bianchi type-I Universe
filled with a non-linear Stokesian fluid [29 ]. According to these authors,
in a highly compressed early epoch of the Universe the large scale aniso-
tropy could be so important as to induce a non-linear response. In fact
they find several new results, as for instance, a very sensitive dependence
of the stability of the Friedmann solution on the values of the quadratic
coefficient of viscosity and a non-symmetric behaviour of the Universe
under time inversion. Likewise, the high values of the phenomenological
coefficients k, ç and f1 obtained by De Groot for some components of the
cosmic fluid in the lepton era [30 ] suggest that the afore-mentioned non-
linear terms must not be ruled out in such an extreme situation of the

Universe.

Concerning both the temperature T and the pressure p our approach
differ likewise from other causal theories. Thus, whereas on the one hand
Dixon [8 ] and Israel [6] ] use their local equilibrium values - To, po -,
it is to say the same ones used in stationary approaches [13 ] - [16 ], and
on the other hand Bampi and Morro [9] ] [10 ] use their so-called empirical
values, the temperature and the pressure introduced by us -in eqs (8)-
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differ from the equilibrium ones by terms of second order in the dissipative
fluxes. These second order terms could be found from the equality of the
second derivative of the entropy, as obtained from (8) and (9), [31 ]. As a
consequence the identifications T = To, p = Po are valid to first order

only as Israel and Stewart [7] have also noted.

4. CONCLUSIONS

On the basis of extended irreversible thermodynamics, we have developed
a phenomenological non-stationary relativistic theory for heat-conducting
viscous simple fluids. This has been done by including the heat flux and the
shear and bulk viscosity in both the Gibbs equation and the entropy flux
and expanding moreover the thermodynamic forces up to second order
in the dissipative variables.
We have presented a complete set of equations governing the evolution

of the thermodynamic variables along the world line: the equilibrium
ones from the conservation laws and the dissipative ones by means of the
phenomenological relations. In this account, the evolution of the specific
entropy is set through the Gibbs equation.

Usual extended irreversible thermodynamics [19] J [20] ] appears to be
the non-relativistic limit of the present approach. Three new coefficients,
namely a11, a12 and a2 3 are introduced with respect to Israel and Stewart [7] ]
in the phenomenological laws, which are no longer linear in the dissipative
quantities.
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