ROBERT ALICKI

On the scattering theory for quantum dynamical semigroups

Annales de l'I. H. P., section A, tome 35, nº 2 (1981), p. 97-103 http://www.numdam.org/item?id=AIHPA_1981_35_2_97_0

© Gauthier-Villars, 1981, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section A » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

MM Y. CHOQUET-BRUHAT

Section A : Physique théorique.

On the scattering theory for quantum dynamical semigroups

by

Robert ALICKI

Institute of Physics, Gdańsk University PL 80-952 Gdańsk, Poland

ABSTRACT. — We consider the wave operators and scattering matrix for quantum dynamical semigroups. The dynamical semigroups with bounded perturbations are briefly studied using the Cook's method and the simplified model of heavy-ion collision is presented as an example.

1. INTRODUCTION

The purpose of this note is to clarify some ideas concerning the phenomenological approach to dissipative scattering. There exists a class of scattering phenomena for example a scattering and capture of a neutron by a nucleus or the heavy-ion collision which can be described in terms of the theory of open systems [1]-[5]. Namely we can eliminate a large number of internal degrees of freedom together with some external fields to obtain the irreversible dynamics for few fixed degrees of freedom (e. g. 3-degrees of freedom of the relative motion of two heavy-ions). Moreover because the interaction of internal degrees of freedom is strong then the relaxation time for them is short and hence one can apply the Markovian approximation [6] [7]. It follows that the dynamics of such open system can be described by quantum dynamical semigroup.

We start by introducing some preliminary mathematical definitions. Let \mathscr{H} be a Hilbert space associated with the open system with scalar product (,) and norm $|| \cdot || = \sqrt{(\cdot, \cdot)}$. $L^{\infty}(\mathscr{H})$ is a real Banach space of hermitian operators with operator norm $|| \cdot ||_{\infty}$ and $L^{c}(\mathscr{H})$ is a Banach subspace of $L^{\infty}(\mathscr{H})$ which containes compact operators.

 $L^1(\mathscr{H})$ denote a real Banach space of hermitian trace-class operators with trace norm $|| \cdot ||_1$.

We have also the relations $L^{c}(\mathscr{H})^{*} \cong L^{1}(\mathscr{H}), L^{1}(\mathscr{H})^{*} = L^{\infty}(\mathscr{H}).$

Consider a one parameter strongly continuous contracting and positive semigroup $\{\Lambda_t = e^{tL}, t \ge 0\}$ on $L^1(\mathcal{H})$.

We call it dynamical semigroup if for all $t \ge 0$ the dual map Λ_t^* is completely positive [6]-[8] and conservative dynamical semigroup if moreover tr $(\Lambda_t \sigma) = \text{tr } \sigma$, for all $\sigma \in L^1(\mathcal{H})$, $t \ge 0$.

REMARKS. — The non conservative semigroups can describe the scattering if some other open channels of reaction are taken into account [3]-[9].

The complete positivity of Λ_t^* will be not used manifestly further, but this property is based on strong physical arguments and restricts the class of dynamical semigroups [6]-[8].

2. WAVE OPERATORS AND S-MATRIX

We start by assuming that the free evolution is represented by the dynamical group $\{ U_t ; t \in \mathbb{R}^1 \}$

$$\mathbf{U}_{t}\sigma = e^{-it\mathbf{H}_{0}}\sigma e^{it\mathbf{H}_{0}} \equiv e^{t\mathbf{L}_{0}}\sigma, \, \sigma \in \mathbf{L}^{1}(\mathscr{H}), \quad (2.1)$$

where H_0 is a self-adjoint Hamiltonian.

The perturbed dynamics is given by the quantum dynamical semigroup

$$\{\Lambda_t = e^{t\mathbf{L}}; t \ge 0\}.$$

As in ordinary scattering theory we define the wave operators W_1 and W_2^* I) $W_1 : L^1(\mathcal{H}) \to L^1(\mathcal{H})$

$$W_1 \sigma = \lim_{t \to \infty} \Lambda_t U_{-t} \sigma \tag{2.2}$$

for all $\sigma \in L^1(\mathcal{H})$

II) $\tilde{W}_2 : L^c(\mathscr{H}) \mapsto L^{\infty}(\mathscr{H})$

$$\mathbf{W}_2 a = \lim_{t \to \infty} \Lambda_t^* \mathbf{U}_t a \tag{2.3}$$

for all $a \in L^{c}(\mathcal{H})$.

We have the dual homomorphism

$$W_2^* : L^{\infty}(\mathscr{H})^* \to L^{c}(\mathscr{H})^* \cong L^{1}(\mathscr{H}).$$

Because $L^{\infty}(\mathscr{H})^* \supset L^1(\mathscr{H})$ we can finally define

$$W_2^* = W_2^* |_{L^1(\mathscr{H})}, \qquad W_2^* : L^1(\mathscr{H}) \to L^1(\mathscr{H}).$$

$$(2.4)$$

Annales de l'Institut Henri Poincaré-Section A

Therefore we obtain the scattering matrix

$$S = W_2^* W_1$$

REMARK. — The definition of W_2^* presented here seems to be more appropriate then the strong limit $W_2^*\sigma = \lim_{t \to \infty} U_{-t}\Lambda_t \sigma, \ \sigma \in L^1(\mathscr{H})$ because for the later and under the assumption that Λ_t is conservative the S-matrix preserves the trace of σ and hence cannot describe for instance the capture of particle by the potential of target which is possible in the case of dissipative scattering.

Moreover the definition (2.3)-(2.4) allows to apply the Cook's criterion. One can easly prove the following properties

i) if W_1, W_2^* exist then the following probability function

1) If $\mathbf{w}_1, \mathbf{w}_2$ cance if $\mathbf{P}(\rho_{\text{in}} \to |\varphi^{\text{out}}\rangle \langle \varphi^{\text{out}}|) \coloneqq \lim_{t \to \infty} (\varphi^{\text{out}}, \{e^{-t\mathbf{L}_0}e^{2t\mathbf{L}}e^{-t\mathbf{L}_0}\rho_{\text{in}}\}\varphi^{\text{out}}) = (\varphi^{\text{out}}, (S\rho_{\text{in}})\varphi^{\text{out}}), \quad (2.6)$

where

$$\rho_{\rm in} \in L^1(\mathscr{H}), \quad \rho_{\rm in} \ge 0, \quad \text{tr } \rho_{\rm in} = 1, \quad || \varphi^{\rm out} || = 1.$$

- *ii*) W_1 , W_2^* are positive contractions on $L^1(\mathscr{H})$
- *iii*) if $\{\Lambda_t, t \ge 0\}$ is conservative then W_1 is trace preserving $iv) e^{\tau L} W_1 = W_1 e^{\tau L_0}$
 - $\mathbf{W}_{2}^{*}e^{\tau\mathbf{L}_{1}}=e^{\tau\mathbf{L}_{0}}\mathbf{W}_{2}^{*}\,,\qquad\tau\geqslant0$

and hence $e^{\tau L_0}S = Se^{\tau L_0}$.

One can easly generalize Cook's arguments [11] [12] to prove the existence of W_1 , W_2^* (see also [10]).

PROPOSITION 1. — Let $D \{ D^* \}$ be a dense set in $L^1(\mathcal{H}) \{ L^c(\mathcal{H}) \}$ such that

 $e^{-t\mathbf{L}_0}\mathbf{D} \subset \operatorname{dom}(\mathbf{L}) \cap \operatorname{dom}(\mathbf{L}_0) \left\{ e^{-t\mathbf{L}_0^*}\mathbf{D}^* \subset \operatorname{dom}(\mathbf{L}^*) \cap \operatorname{dom}(\mathbf{L}_0^*) \right\}$

for all $t \in [s, \infty)$,

and some $s \ge 0$.

Assume that the function $||(L-L_0)e^{-tL_0}\sigma||_1 \{ ||(L^*-L_0^*)e^{-tL_0^*}a||_{\infty} \}$ is integrable on $[s, \infty)$ for $\sigma \in \mathbf{D} \{ a \in \mathbf{D}^* \}$.

Then $W_1 \{ \tilde{W}_2 \text{ and therefore } W_2^* \}$ exists.

3. QUANTUM DYNAMICAL SEMIGROUPS WITH BOUNDED PERTURBATIONS

We consider a quantum mechanical Fokker-Planck equation

$$\frac{d\rho}{dt} = -i[\mathbf{H}_0 + \mathbf{U}, \rho] + \sum_{\alpha} \mathbf{V}_{\alpha} \rho \mathbf{V}_{\alpha}^* - \frac{1}{2} \{\mathbf{B}, \rho\} \equiv \mathbf{L}_{\sigma} \qquad (3.1)$$

Vol. XXXV, nº 2-1981.

99

Here H_0 is a self-adjoint operator (free Hamiltonian), $U = U^*$ is bounded (Hamiltonian perturbation) and $\sum V_{\alpha}^* V_{\alpha} \leq B$, B is also bounded.

By standard theorems [11] and using Lindblad results one can prove that the equation (3.1) generates the quantum dynamical semigroup { $\Lambda_t = e^{tL}$, $t \ge 0$ } (conservative if $\mathbf{B} = \sum_{\alpha} \mathbf{V}_{\alpha}^* \mathbf{V}_{\alpha}$). Following

Davies [9] the core of $L_0 = -i[H_0, \cdot]$ and hence of L is given by

$$\mathscr{D} = (1 + iH_0)^{-1}L^1(\mathscr{H})(1 + iH_0)^{-1}$$
(3.2)

One can check that for $\rho \in L^1(\mathscr{H})$ and $a \in L^c(\mathscr{H})$ tr $(e^{tL}\rho a) = \text{tr} (\rho e^{tL*}a)$

$$\mathbf{r} \left(e^{t\mathbf{L}} \rho a \right) = \mathrm{tr} \left(\rho e^{t\mathbf{L} \star} a \right) \tag{3.3}$$

$$L_*a = i[H_0 + U, a] + \sum_{\alpha} V_{\alpha}^* a V_{\alpha} - \frac{1}{2} \{ B, a \}.$$
 (3.4)

REMARK. — In this paper we denote by $i [H, \cdot]$ the closure of a comutator (in a suitable Banach space of operators) which is a generator of one parameter group $X \rightarrow e^{itH}Xe^{-itH}$.

Using similar arguments one can show that

$$\mathscr{D}_{*} = (1 + iH_{0})^{-1}L^{c}(\mathscr{H})(1 - iH_{0})^{*}$$
(3.5)

is a core for L_* .

It follows that

$$\widetilde{\mathbf{W}}_2 a \equiv \mathbf{W}_2 a = \lim_{t \to \infty} e^{t\mathbf{L} \star} e^{t\mathbf{L}_0} a$$

 $a \in L^{c}(\mathcal{H})$ and $W_{2}^{*} = W_{2}^{*}$ in this case (if W_{2} exists of course).

Now one can prove the simple form of Cook's criterion valid for the dynamical semigroup governed by (3.1).

PROPOSITION 2. — Let \mathscr{H}_0 be a dense set in dom (H₀).

Assume that the following functions are integrable on $[s, \infty)$, $s \ge 0$ for all $\psi \in \mathcal{H}_0$.

a)
$$\sum_{\alpha} || \mathbf{V}_{\alpha} e^{-it\mathbf{H}_{0}} \psi ||^{2}, \qquad || \mathbf{B} e^{-it\mathbf{H}_{0}} \psi ||, \qquad || \mathbf{U} e^{-it\mathbf{H}_{0}} \psi ||, \qquad (3.6)$$

b)
$$\sum_{\alpha} || \mathbf{V}_{\alpha}^{*} e^{it \mathbf{H}_{0}} \psi ||^{2}, \qquad || \mathbf{B} e^{it \mathbf{H}_{0}} \psi ||, \qquad || \mathbf{U} e^{it \mathbf{H}_{0}} \psi ||, \qquad (3.7)$$

Then a) implies the existence of W_1 and

b) implies the existence of W_2^* .

Annales de l'Institut Henri Poincaré-Section A

Proof. — Let D be a set of all finite rank hermitian operators whose eigenvectors lie in dom (H_0) .

D is dense in $L^1(\mathcal{H})$, $L^c(\mathcal{H})$ and $\mathbf{D} \subset \mathcal{D} \cap \mathcal{D}_*$.

Therefore D can be used as a set D and D^* in Proposition 1.

Taking $\sigma = |\psi\rangle \langle \psi|$, $\psi \in \mathscr{H}_0$ one can easly prove that *a*) implies integrability of $||(L - L_0)e^{-tL_0}\sigma||_1$ and similarly for $a = |\psi\rangle \langle \psi|$ and $||(L^* - L_0^*)e^{tL_0^*}a||_{\infty}$ under the assumption *b*).

Taking linear combinations we extend the above results to σ , $a \in D$ and therefore all assumptions of Proposition 1 are fulfiled.

4. SIMPLE MODEL OF HEAVY-ION COLLISION

In paper 5 one can find the heuristic derivation based on the simple model of heavy-ion collision of the quantum Fokker-Planck equation describing the relative motion of two nuclei. The final result is the following

$$\frac{d\rho}{dt} = -i \left[\mathbf{H}_{0} + \mathbf{U}, \rho \right] + \frac{1}{2} \sum_{k=1}^{3} \left\{ \left[\mathbf{V}_{k}, \rho \mathbf{V}_{k}^{*} \right] + \left[\mathbf{V}_{k} \rho, \mathbf{V}_{k}^{*} \right] \right\} \equiv \mathbf{L}_{\delta} \quad (4.1)$$

Here ρ is a density matrix on Hilbert space $\mathscr{L}^2(\mathbb{R}^3)$ and

$$(\mathrm{H}_{0}\psi)(\vec{x}) = -\frac{1}{2m}\Delta\psi(\vec{x}), \qquad \bar{x} = (x_{1}, x_{2}, x_{3}).$$
(4.2)

$$(\mathbf{U}\psi)(\vec{x}) = \mathbf{U}(\vec{x})\psi(\vec{x}) \tag{4.3}$$

$$(\mathbf{V}_{k}\psi)(\vec{x}) = \mathbf{W}(\vec{x})\left(x_{k} + \alpha \frac{\partial}{\partial x_{k}}\right)\psi(\vec{x}), \qquad k = 1, 2, 3 \qquad (4.4)$$
$$\lim_{|\vec{x}| \to \infty} \mathbf{W}(\vec{x}) = \lim_{|\vec{x}| \to \infty} \mathbf{U}(\vec{x}) = 0, \qquad \alpha > 0$$

To give the physical motivation of (4.1) we write down the formal Heisenberg evolution equations for position and momentum operators $(\hat{x}_k, \hat{p}_k)k = 1, 2, 3)$

$$\frac{d\hat{x}_k}{dt} = \frac{1}{m}\hat{p}_k + \alpha^2 \frac{\partial}{\partial \hat{x}_k} W^2(\hat{\vec{x}}) - \alpha W^2(\hat{\vec{x}})\hat{x}_k$$
(4.5)

$$\frac{d\hat{p}_{k}}{dt} = -\frac{\partial}{\partial\hat{x}_{k}} U(\hat{\vec{x}}) - \frac{\alpha}{2} \{ \mathbf{W}^{2}(\hat{\vec{x}}), \, \hat{p}_{k} \}, \qquad k = 1, \, 2, \, 3$$
(4.6)

For large $|\langle \hat{p}_k \rangle|$ or small α (4.5) (4.6) correspond to the classical Newton equation with a friction force $-\alpha W^2(x)\vec{p}$ describing the « nuclear friction » in heavy-ion collisions [4].

Vol. XXXV, nº 2-1981.

Under some technical conditions one can construct rigorously the dynamical semigroup generated by (4.1) using the method of minimal solution [9] but unfortunately the domain of obtained generator is not manifestly defined and then we cannot easly adopt the methods presented in Section 3.

However one can introduce the \ll regularized version \gg of equation (4.1). Namely we assume that

A) $U(\vec{x})$, $W(\vec{x})$, $x_k W(\vec{x})$ are bounded and continuous functions on \mathbb{R}^3 , B) operator V_k is replaced by

$$\left(\mathbf{V}_{k}^{(\varepsilon)}\psi\right)(\vec{x}) = \mathbf{W}(\vec{x})x_{k}\psi(\vec{x}) + \alpha\mathbf{W}(\vec{x})\frac{1}{\varepsilon}\left[\psi(\vec{x} + \varepsilon\vec{e}_{k}) - \psi(\vec{x})\right] \quad (4.7)$$

The regularized generator $L^{(t)}$ belongs to the class described in Section 4 and $\{e^{tL^{(t)}}, t \ge 0\}$ is a conservative dynamical semigroup.

PROPOSITION 3. — Assume that A) B) hold and moreover

$$\int_{\mathbb{R}^3} \left\{ U^2(\vec{x}) + \vec{x}^2 W^2(\vec{x}) \right\} d^3 \vec{x} < \infty$$
(4.8)

Then the wave operators W_1 and W_2^* exist for the generator $L^{(\varepsilon)}$.

Proof. — Taking into account the structure of $L^{(\varepsilon)}$, $V_k^{(\varepsilon)}$ and Proposition 2 it is sufficient to prove that the following functions are integrable on $[s, \infty)$ and $(-\infty, -s]$

$$|| U\psi_t ||, || W\psi_t ||, || W\hat{x}_k \psi_t ||, k = 1, 2, 3$$
 (4.9)

for $\psi_t = e^{-itH_0t}\psi$, $\psi \in \mathscr{H}_0 \subset \text{dom}(H_0)$ (\mathscr{H}_0 is dense in $\mathscr{L}^2(\mathbb{R}^3)$).

Taking \mathscr{H}_0 as a linear subspace spaned by all Gaussian functions

$$\exp\left\{-\frac{|\vec{x}-\overline{\xi}|^2}{2a^2}\right\}$$

we apply the standard method [13] to prove the integrability of (4.9).

REFERENCES

- [1] E. B. DAVIES, Comm. math. Phys., t. 71, 1980, p. 277-288.
- [2] E. B. DAVIES, Ann. Inst. Henri Poincaré, t. XXXII, 1980, p. 361-375.
- [3] A. BARCHIELLI, Nuovo Cimento, t. 47A, 1978, p. 187-199.
- [4] R. W. HASSE, Nuclear Physics, t. A318, 1979, p. 480-506.
- [5] R. ALICKI, Simple model of heavy-ion collision.
- [6] E. B. DAVIES, Quantum theory of open systems. Academic Press, 1976.
- [7] V. GORINI, A. FRIGERIO, M. VERRI, A. KOSSAKOWSKI, E. C. G., SUDARSHAN, *Rep. Math. Phys.*, t. 13, 1978, p. 149-173.
- [8] G. LINDBLAD, Comm. math. Phys., t. 48, 1976, p. 119-130.
- [9] E. B. DAVIES, Rep. Math. Phys., t. 11, 1977, p. 169-188.

Annales de l'Institut Henri Poincaré-Section A

- [10] Ph. A. MARTIN, Nuovo Cimento, t. 30B, 1975, p. 217-238.
- [11] T. KATO, Perturbation thory for linear operators. Berlin, Heidelberg, New York, Springer, 1966.
- [12] N. DUNFORD, I. T. SCHWARTZ, Linear operators, Part 3. Spectral Operators. Wiley-Interscience, 1971.
- [13] J. R. TAYLOR, Scattering theory. John Wiley and Sons. Inc., 1972.

(Manuscrit reçu le 11 février 1981)

Vol. XXXV, nº 2-1981.