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Characterizing the conformality
in a Minkowski space

Iulian POPOVICI Dan CONSTANTIN RADULESCU

Institute of Mathematics, Str. Academiei 14, Bucharest, Romania

Ann. Inst. Henri Poincaré,

Vol. XXXV, n° 2, 1981,

Section A :

Physique théorique.

ABSTRACT. -- Given a Minkowski space M of dimension m  3, we
prove the following theorem : let F : U -~ M be an injective map defined
on a connected open set U in M; for any closed segment a which is contained
in U and lies in a light ray, let us suppose that F(6) is a closed segment
which lies in a light ray; then F is the restriction to U of a conformal trans-
formation in M. The condition m &#x3E; 3 and the connectivity of U are essen-
tial. The physical meaning of this theorem consists in the fact that every
local transformation in M which preserves the special relativistic law
of light propagation is a conformal transformation. We derive a genera-
lization of Zeeman’s theorem [7] concerning the luminal case. We also
obtain a local characterization of Weyl transformations (i. e. Lorentz
transformations composed with translations and dilatations).

1 INTRODUCTION

In the m-dimensional real space 2, we consider the Minkowski
quadratic form Q given by

(1.1)
where (xi, x2, ..., xm) are the canonical coordinates in IRm. We say that
pair M = (IRm, Q) is the m-dimensional Minkowski space. We shall also
use the canonical affine structure on [Rm and denote by A(m ; R) the cor-
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132 1. POPOVICI AND D.-C. RADULESCU

responding affine group acting on We note that A(m ; [R) is generated
by the group GL(m ; [R) together with the group Y of all translations of [Rm.
The Lorentz group 2 of the Minkowski space M consists of all linear

applications F E GL(m ; ~) such that Q(F(x)) = Q(x) for any x e ~~.
The Poincaré group P of M is the subgroup of A(m ; R) generated by L
and Y. The Weyl group W of M is generated in A(m ; R) by P together
with the dilatations of t~.
We recall that the light cone of the Minkowski space M with the vertex

at a point x E is the degenerate quadric of all points y E for which

Q(x - y) = 0. A light ray of M is a straight line which lies in a light cone.
A light segment of M is a closed segment which lies in a light ray.
Now we briefly indicate the construction of the conformal group ~

which acts on the compactified Minkowski space M corresponding to M.
To begin with, we consider the quadratic space 2, Q), where

( 1. 2)

We introduce the pointed cone

(1.3)

and denote by tf : [R""~ - {0} - 1 the canonical projection onto
the (m + 1)-dimensional real projective space pm+ 1. We identify the

compactified Minkowski space M with the compact quadric 
Moreover, we can imbed the Minkowski space M onto a dense open sub-
manifold of M by the M - M given by .

(1.4)

Let P(m + 1 ; R) be the projective group acting on pm+ 1. We note
that any transformation G E P(m + 1 ; R) is given by

(1.5)

where the matrix (Gpv) is defined by G up to a non-null scalar factor.
On the other hand, we consider the orthogonal group 0(Q) as the sub-

group of GL(m + 2 ; [R) which preserves Q. Denoting by I the unity matrix
of degree m + 2 and putting Z2 = {I, - I}, we see that the subgroup
~’ = 0(Q)/Z2 of P(m + 1 ; [R) leaves invariant the quadric M = 
We say that ~, together with its canonical action on M, is the conformal
group associated to the Minkowski space M.

An element G corresponds to a matrix (Guv) for which

(1.6)
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133CHARACTERIZING THE CONFORMALITY IN A MINKOWSKI SPACE

where ~~,,(~c, v = 1, ... , m + 2) are given by

( 1. 7)

We note that G defines up to the sign the matrix (Gtlv)’
Further, G induces by means of the imbedding 03C8 the following analytic

transformation in IRm

(1. 8)

called a conformal transformation in the Minkowski space M. If we take

GS~ = Gsr = Gir = 0 in (1.8), we obtain the Weyl group For any

map G given by ( 1. 8) which is not a Weyl transformation, the set of all
singularities of G is either a light cone or a (m - l)-plane tangent to a
light cone.

It is a well-known property of every conformal transformation G to

map light cones into light cones. Since any light ray appears as the inter-
section between two tangent light cones, it follows that G maps also light
rays into light rays. More precisely, if U is a connected open set in the

domain of G, then G maps diffeomorphically U onto the connected open
set G(U), and any light segment contained in U onto a light segment
contained in G(U).
The aim of this paper is to prove the following converse property:

THEOREM 1 .1. -- In a Minkowski space M = Q) of dimension m ~ 3,
let F : U -~ {Rm be an injective map defined on a connected open set U in lRm.
F snaps any light segment contained in U onto a light segment, then F is

the restriction to U of a conformal transformation.
It is known that Theorem 1.1 holds for F of class C3 (see e. g. [2, p. 377-

384 ] and 6, p. 46-50]). Our contribution is that we eliminated any assump-
tion for F to be differentiable. We require the continuity of F along light
rays only. ’

The theorem of Zeeman [7] concerning the luminal case derives from

COROLLARY 1.2. -- In a Minkowski space M = Q) of dimension
m &#x3E; 3, let F: [Rm - R"’ be an injective map. 1 f F maps any light segment
of M onto a light segment, then F is a Weyl transformation.

Corollary 1.2 is an immediate consequence of Theorem 1.1. Indeed,
the single conformal transformations whose domains coincide with R"’

are Weyl transformations.

Remark. - We cannot derive the theorem of Alexandrov [1] concerning
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134 1. POPOVICI AND D.-C. RADULESCU

the luminal case from Theorem 1.1. On the other hand, Corollary 1.2 is
not a consequence of the above mentioned theorem of Alexandrov.

In Section 2 some auxiliary results are obtained. Since the main theorem
of projective geometry cannot be used to prove Theorem 1.1 and Corol-
lary 1.2, we have taken.some elements from the original proof of E. C. Zee-
man in a modified form, and introduced other new constructions.

In Section 3 we shall prove Theorem 1.1 ; we shall also establish its

COROLLARY 1. 3. - In a Minkowski space M = (~m, Q) of dimension
m &#x3E; 3, let F : U - [Rm be an injective map which is defined on a connected
open set U in and applies any light segment contained in U onto a light
segment. We consider m pairs (Ri, 1 ~ i ::.::; m, of distinct parallel light
rays which intersect U, such that the lines Ri pass through a point a E U and
generate affinely [R11I. For any i = 1, ..., m, let irs suppose that F(U n Ri)
and F(U n R~) are contained in two parallel light rays, respectively. Then F
is the restriction to U ofa Weyl transformation.
We remark that Corollary 1. 3 generalizes the theorem given in [5 ].
By a counterexample we shall show thet the hypothesis from Theo-

rem 1.1 concerning the connectivity of U is essential for F to be a conformal
transformation. We note that the hypothesis en a 3 is also essential (see
e. g. the example from [7]).

In Section 4 we shall discuss the physical meaning of Theorem 1.1 and
Corollary 1.2.

2. SOME AUXILIARY RESULTS

Let M = (t~"B Q) be a Minkowski space. A coordinate system on tR""
. is called an inertial system (or a Lorentz system) if it is obtained from the

canonical coordinate system of [Rm by a Poincaré transformation (by a
Lorentz transformation, respectively). We note that there exists a canonical
one-to-one map between the set of all Lorentz systems of M and the set
of all frames of the vector space [Rm which are orthonormal with respect
to Q. For such a frame/= ( fl, ... , ~’m), we have

(2 . 1 )

Let v be an arbitrary vector in If Q(v) = 0 we say that v is a light
vector. If Q(v) &#x3E; 0 [or Q(v)  0 we say that the vector v is time-like [space-
like, respectively].

LEMMA 2 .1. - Let M = Q) be a Minkowski space and let V be
the vector subspace of generated by n &#x3E; 2 light vectors e1, ..., en o. f ’ M,
which are linearly independent. Then the restriction of Q to V is a Lorentz
quadratic form (i. e. of signature +, ~ -, ..., - ).

Annales de l’Institut Henri Poincaré-Section A



135CHARACTERIZING THE CONFORMALITY IN A MINKOWSKI SPACE

-- For n - 2’1 we choose the orthonormal frame f such that
rn

el - ~’~J1 + J2)~ put e2 - and we have ele2 = lu2). It

i=1 1

follows that e1e2 ~ 0; otherwise eland e2 should be proportional.
If n &#x3E; 2, let us suppose that Lemma 2. 1 is true for the vector subspace V’

generated by e l, ... , en - 1. We choose the orthonormal frame f such that V’
be generated by fl, ... , fn - 1, and

By using the frame (fb ..., e") of V, it can be shown that the res-
triction of Q to V must be again a Lorentz form. Q. E. D.
Any translation Ta : x H x + a of [R"", which is defined by the vector a,

induces canonically a new structure of vector space on having a as
origin and which will be denoted by the pair a). Moreover, Q induces
the Lorentz quadratic form Qa on ([Rm, a) given by Qa(x) = Q(T-a(x)).
The triplet (~, a, Qa) will be denoted by (M, a) and named a pointed
Minkowski space. The Minkowski scalar product corresponding to Qa of
any two vectors x, y E (U~n~, a) will be also denoted by xy and we put xx = x2.

Let J~, be the group of all Poincaré transformations of M which leave
the point a invariant. We note that !Ea can be regarded as the Lorentz
group of the pointed Minkowski space (M, a). We identify [Rm and M
with ([RB0) and (M, 0), respectively.

Let a be an arbitrary point in [Rm and let e1, ... , en be n &#x3E; 1 light vec-
tors of (M, a), which are linearly independent. The prism

(2.2)

together with the topology induced by [Rm on 03C0, is said to be a light n-prism
or, more precisely, the light n-prism centred at a and generated by the
vectors el, ..., en. The vector n-subspace V of (tR~, a) which contains
the prism 77 is called a light n-plane or a light hyperplane.
For n  2, every subset 1 n, of 7r given = 0 in (2 . 2) is

named a median (n - l)-prism of 7r. We note that 03C0j is the light (n - 1)-
prism centred at a and generated by el, ..., ej+1, ..., en.
Each light 2-prism (or each light 2-plane) is said to be a light paralle-

Vol. XXXV, n° 2-1981.



136 1. POPOVICI AND D.-C. RADULESCU

logram (a light plane, respectively). Each light I -prism (or each light I -plane)
is a light segment (a light ray, respectively).

LEMMA 2.2. -- I n a Minkowski space M = Q), ~ ~ 3, let F : U --~ (l~m
be an injective map defined on a convex open set U in We suppose that F
maps any light segment contained in U onto a light segment. Let 03C0 c U be a
light 3, centred at a and generated by the light vectors el, ..., en.
We consider the median (n - l)-prism ~3 centred at a and generated by el,
e2, e4, ... , en, and the light parallelograms 03C013 and which have a as
centre and are generated by el, e3 and e2, e3, respectivel y. If’ the restriction
of F t0 03C03 u TL13 U 03C023 is the corresponding inclusion map in R"’, then there
exists an open neighbourhood Ua of a in 1t such that the restriction of F to UQ
be the inclusion map of Vain ~.

Proo, f. Firstly we remark that, for any light segment a c U, the end
points of 7 are mapped by F on the end points of the light segment F(a)
and the interior of 6 is mapped by F onto the interior of 

Let V and W be the light hyperplanes which are generated by the prisms 1t

and 7~3, respectively. We p ut a’ - 1 2 e 3 and ~ == - -~3. Since the restric-
tion of the quadratic form QQ to V is a Lorentz one (see Lemma 2.1),
we can choose an orthonormal frame f = ( fl, ... , fn) of V c a) for
which (2.1) holds with m = n and such that a" be anterior to the point a
with respect to f (*). 

’

Let Li 1 and L2 be two time straight lines passing through the point a"
(i. e. the restrictions of Qa" to Li and L2 are positive), such that Lh, h = 1, 2,
be contained in the light plane determined by the parallelogram 
respectively. We choose in the line L~ an open interval1Jh c 7~,3 - W for
which a" E I1h’ We also choose two distinct parallel (n - l)-planes W’
and W" in V passing through a’ and a", respectively, such that Lh c W",
h = 1, 2. We denote by V’ the open set in V whose boundary coincides
with W’ u W".
For any point x E V’, we denote by = 1, 2, the light ray which

passes through x and intersects the line Lh at the point xh anterior to x with
respect to the orthonormal frame/ It is clear that Rh(x) intersects always W’
in a point xh and we denote by ah(x), h = 1, 2, the light segment of end
points xh and x~.
Now we consider the following continuous maps

(*) For two points x, y E V, x = y = we say that x is anterior to y with respect
to f if Xl  y~ and the straight line passing through x and y is a light ray.
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137CHARACTERIZING THE CONFORMALITY IN A MINKOWSKI SPACE

. Obviously, = a’ and ’Ph(a’) = a". Moreover, for any x E V’ such
that ~ 03C0 and E 1Jh, we have x E 03C0. Hence, if we choose an

open neighbourhood 0’ c 7r of the point a’ in W’, we obtain the open
neighbourhoods O~ = ~h n O’ of a’ in W’ and the open neighbour-
hoods Oh = ~~ 1 (Oh) of a in z.

In addition, if 0’ is convex and disjoint with W, then we can take
~Ua = Oi n 02. Indeed, for any x E O1 n O2, each light segment 6h(x)
intersects the prism 1t3 at a point xh, respectively. Since F leaves invariant
the distinct points Xh and it follows that F maps onto a light seg-
ment contained in the light ray 

If R1 (x) = R2(x), then x E n 13 n n23 and we have by hypothesis F(x) = x.
If R2(x), then both x and F(x) coincide with the intersection point
of the straight lines R 1 (x) and R2(x). Q. E. D.

Let a be a point in m &#x3E; 3, let V be a light 3-plane of M, a E V, and,
let a be a strictly positive real number. The hyperboloid with one sheet

(2 . 3)

together with the topology induced by [Rm on H, is said to be a light hyper-
boloid. We note that H is a ruled surface with two families of generators
which are light rays; H is homeomorphic with the standard cylinder S~ x [R,

LEMMA 2 . 3. - In a Minkowski space M = Q), m ~ 3, let F : U --~ 
be an injective map defined on a convex open set U in We suppose that F

maps any light segment contained in U onto a light segment. Let re be a light
parallelogram contained in U. We denote by 61, ..., ~4 the sides of ~t with
03C31 ~ 0-3, and put 03C3’i = F(ai)’ 1 4. Then either a light parallelo-
gram, or the compact domain ~ of a light hyperboloid, whose boundary is

(P = 6i u a2 u 63 u T~ according as the light segments 61 and ~-3 are

parallel or not.

Proof - Firstly it is easy to show that, and 63 lay in the same light
ray, then F would not be an injective map. Therefore we must consider
two cases, according as 6i and 63 are parallel or not.

If 03C3’1 110";, then 03C3’1, 1 4, are contained in a light plane V of Rm.
It results that 0"2 II 64 ; otherwise V should contain three distinct direc-
tions of light rays. Denoting by 7c’ the light parallelogram of sides 6 i, ..., 64,
the following two properties hold -

(2.4) each light segment 6 whose end points belong to opposite
sides of 7c, respectively is mapped by F onto a light segment a’ c whose
end points belong to the corresponding opposite sides of 

(2.5) each light segment 7’ c 7r’ whose end points belong to opposite
sides of respectively is the image by F of a light segment 7 whose
end points belong to the corresponding opposite sides of 7L

Property (2 . 4) is obvious. To prove (2 . 5), let pi and p3 E 63 be the end
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138 1. POPOVICI AND D.-C. RADULESCU

points of o-’. Then we p1 ~ 03C31, and p3 = F{ p3), p3 ~ 03C33. If
the segment J of end points pl, p3 were not a light segment, then there
should be two distinct light segments which contain the points pi, p3,
respectively, and which are mapped by F onto J’. So 7 is a light segment
and F(a) = a’. From (2.4) and (2.5) it follows that 7r’.

If 6 i and 0~3 are not parallel, then 6I, 1 4, are contained in a light
3-plane W ; moreover c W. We put

and consider W as a vector subspace of (!R"B a).
By using Lemma 2.1, we choose a Lorentz coordinate system (xl, X2, x3)

of W such that either (2. 6) or (2. 7) below holds, according as the segment
of end points b, d is space-like or time-like.

(2 . 6) a(0, 0, 0), A. 0), d(~,, - ~., 0) ;

(2. 7) a(0, 0, 0), b(~ ~ 0), d( - ~ ~ 0) .

The point c must belong to the intersection between the light cones with
the vertices at band d, respectively. In case (2.6) we obtain

(2. 8) c(a, 0, (a - ~.)2 - fJ2 = 2~ ~8~0.

In case (2. 7) we obtain

(2.9) (a - %~)2 + {32 - )~2, {3 ~ 0 .

We find that the quadrangle qJ is contained in the light hyperboloid

(2 .10)

where a, {3 verify (2. 8) and 8 = - 1 [or (2. 9) and 8 = + 1 ] if we consider
case (2.6) [case (2. 7), respectively].
Now, for each point pe 61, we denote by Rp c H the light ray passing

through p and which does not contain It is easy to show that Rp lies
in the palne determined by the points p, c, d. Moreover, if c is given by (2.8),
then all rays Rp, intersect the segment a3 if and only if a &#x3E; 2/.;
if c is given by (2 . 9), then Rp, intersects always the segment (73.
Denoting by ð the compact domain of H whose boundary is cp, it results

that 03C0 and 03B4 verify properties which are analogous with (2.4) and (2.5).
Consequently we obtain 3. Q. E. D.

LEMMA 2.4. - Let F : U - Rm be as in Lemma 2.3. Then F is conti-

nuous on U.

Proof - Firstly we choose an Euclidean metric p on IRnt which is compa-
tible with the canonical affine structure of !?"’.
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139CHARACTERIZING THE CONFORMALITY IN A MINKOWSKI SPACE

For any light n-prism n c U, 1 x n x m, we shall prove, by induction
on n, the following two properties

(2.11) is a bounded set in 

(2.12) F maps continuously the light prism 7r onto 

Obviously, these properties are true for n = 1. Now we assume that (2.11)
and (2.12) hold for any light (n - 1)- prism, 1  n  m, which is contained
in U.

Let 7c c U be a light n-prism given by (2.2). We choose two opposite
(n - l)-faces 7T’ and 7r" of 7r as follows

We assign to each vector x E a) n 03C0, x = 03BB1e1 + ... + its pro-
jections x’ and x" on 7~’ and 7r’B respectively, given by

By induction hypothesis, there is a ball B defined with the aid of the
metric p such that the set F 7r") is contained in B. Since each point
of F(7r) lies in a light segment whose end points belong to and F(7r"),
respectively, we see that c B. So property (2.11) is proved. 

’

For any point p ~ 03C0 and for any sequence { pk }k1 of points in 03C0 which
converges to p, we obtain from the induction hypothesis the sequences
{ which converge to F(p’) and F(p"), respectively.
We remark that F(p) belongs to the light segment a of end points F(p’),
F( p").
Now we choose a subsequence { qk }k 1 of { pk } for 

converges to a point q E the existence of such a subsequence is ensured
by property (2 .11 ). Since

for any k, we have by passing to the limit

respectively, i. e. the point q belongs to the light ray R determined by 6.
By using an other pair of opposite (n - l)-faces of the prism 7~ we prove

analogously that the point q belongs to a new light ray which passes
through F(p) and is distinct of R, i. e. we have q = F(p). Since any accu-
mulation point of the bounded sequence { must coincide with F(p),
it follows that this sequence is a convergent one and its limit is the point F(p).
So property (2.12) is also proved, because the point p and the sequence { pk }
have been choosen arbitrarily.

Finally, for any point x E U and for any sequence { xk }k 1 of points
in U which converges to x, we choose a light m-prism 7r c U which is
centred at x. Taking into account that all xk belong to 7r for k &#x3E; N, from
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140 1. POPOVICI AND D.-C. RADULESCU

property (2.12) it results that the sequence { F(xk) } converges to F(x).
Q. E. D.

Now we introduce two kinds of conformal transformations in the
Minkowski space M = Q). Firstly we consider the inversion Io :
x ~ x/x2, X2 i= 0, which is centred at the origin. For any point p E 
the inversion of centre p is the conformal transformation Ip = 
where Tp is the translation x - x + p. To every light vector v of (M, p)
we associate the Kelvin transformation Kp,v = IpTvIp. In the pointed Min-
kowski space (M, p) we can write

(2 .13)

(2.14)

The set of the singularities of Ip coincides with the light cone Cp whose
vertex is at p, while the set of the singularities ofKp,v is a degenerate (m - 1 )-
plane of M.
Each Weyl transformation of M which is of the form x - Àx, x E p),

0  03BB  1, is called a contraction of centre p.

LEMMA 2 . 5. - Let F : U - Rm be as in Lemma 2 . 3 and let T ~ U be
a light 3-prism centred at a point a E U. Then there exist a contradiction Da
ofcentre a and a conformal transformations J whose domain contains 
such that J applies onto a light 3-prism.

Proof. - Let Tb 1 i 3, be the median parallelograms of !. For

any point p E F(z 1 ), the inversion Ip maps into a light plane V.
If we choose the point p such that F(~) ~ Cp, then we obtain the open
neighbourhood F(!)-Cp of F(a) in F(T). By property (2.12) there is a contrac-
tion Da of centre a, such that is contained in the domain of Ip.
Putting 7T = Ip(F(Da(!))) and 7ri = 1 3, we see that 7~ 1
is a light parallelogram in V.
Now we construct a conformal transformation J’ as follows. If n2 is

a light parallelogram we put J’ = Ip. If n2 is contained in a light hyper-
boloid H, then H n V consists of two light rays R’, R" whose intersection
is a point p" and such that ni n 7r2 c R". The points p" and Ip(F(a)) are
distinct. Otherwise, there exist two distinct light segments which pass
through a, are contained in and respectively, and have the
same image by IpF ; consequently, F should not be an injective map. It

results that we can choose a point p’eR’ for which Cp. and
we put J’ = Ip, I p. Moreover, by modifying the contraction Da, we can
assume that 7r is contained in the domain of Ip..

Putting 7T’ = and ~~ = 1 ~ i x 3, we see that

7~ and n2 are light parallelograms. If n3 is a light parallelogram, then
we can take J = J’. Indeed, let 0~, 1 4, be the consecutive faces of
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which are parallel to the light segment ,’t 1 n ~2. It follows that each

light segment n O2)), J’(F(o2 n 03)), J’(F(83 n 8J), J’(F(04 n 01)) is

parallel to ~ci n 7r,. So the faces 1 ~ k  4, of 7~ are light paralle-
lograms. Replacing z2 by 1-3 in the above argument, we see that all faces

of n’ are light parallelograms ; therefore n’ is a light 3-prism.
The case when 7~3 is contained.in a light hyperboloid H’ is reduced

to the previous one. Indeed, H’ is contained in the light 3-plane V’

determined by n’. On the other hand, we can regard V’, together with the

light ray R which contains the segment n’ n 7~, as subspaces of

= J’(F(a)). The equation of the hyperboloid H’ in V’ is of the

form x2 + hx = 0. Since the intersection between R and H’ is the point q,
there is a light vector v E R for which 1 - 2bv = 0. Denoting by W the

(m - l)-plane of singularities of the Kelvin transformation K = Kq,v,
it is easy to show that K maps 7r; - W, 1 3, into three light planes,
respectively. By modifying once more the contraction D~, we can assume
that ~ci n W = 0. So we can take J = KJ’. Q. E. D.

LEMMA 2.6. ---- Let G be a conformal transformation in a Minkowski

space M = Q). If G applies identically a light parallelogram ~c of
centre a onto itself, then G is a Lorentz transformation of (M, a).

Proof -- We denote by V the light plane generated by 7r, choose an

orthonormal frame f = ( f l, ... , fm) of (M, a), for which the vectors f l, f 2
generate V, and denote by (Xb ... , xm) the coordinates of the Lorentz

system associated to f Since G maps identically 7r onto itself, then there
is an a &#x3E; 0 such that 

(2.15)

Taking x3 = ... = ~ = 0 in (1. 8) and using (2.15), we obtain

Since this identity is true for  rl, [  a, we find

(? .16)

Now (1.6) and ( 1. 7) show that Gsi = 0 for 1 ~ i ~ m. From (2.16) we
can also obtain Gir = 0 for 1 i. e. G E ~. Further G E 20’ because G
leaves the points a, fi invariant and = 1. Q. E. D.

3. PROOF OF THEOREM 11 AND COROLLARY 1.3

PROPOSITION 3.1. --- In a Minkowski space M = (lRm, Q), ~ ~ 3, let F :
U - [Rm be an injective map which is defined on a convex open set U in [Rm
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142 1. POPOVICI AND D.-C. RADULESCU

and which applies any light segment contained in U onto a light segment.
We consider an arbitrary light n-prism 8 c U, 3 ~ n  m, which is centred
at a point a E U. Then there exist a contraction Da of centre a and a conformal
transformation G, such that is contained in the domain of G and the
restrictions of F and G to coincide.

Proof -- Firstly we construct a « Zeeman figure » [7, Lemma 4 ] for
any light segment cr c U. We denote by po, pi 1 the end points of the seg-
ment 6 and by p2 its midpoint. We choose a light parallelogram whose
the consecutive vertices pl, p2, p3, P4 belong to U. In a light 3-plane which
contains this parallelogram we consider a point pk, 0 ~ ~ ~ 4,
such that the straight lines determined by ps, p2 and Ps, p4, respectively, .

are light rays, and denote by p6 the point for which p3, p~., ps, p6 are the
consecutive vertices of a new light parallelogram. We can show, as in
the proof of Lemma 2. 3, that ps describes a curve which passes through pi
and is either a hyperbola of the form (2.8) or a circle of the form (2.9).
By an elementary continuity argument, we can fix the points ps and p~
in U. If we also consider the light parallelogram whose consecutive vertices
are ps, p6, P7, p2, we have the following equipollence relation

So p7 = po and we obtain the third light parallelogram whose the conse-
cutive vertices are ps, p6, po, p2. We say that the points ph E U, 0 ~ 6,
form a Zeeman ~ figure associated to the light segment 0".

Now we prove Proposition 3.1 for n = 3. We consider the contraction Da
and the conformal transformation J given by Lemma 2.5. We denote
by 03C0i, 1 i 3, the median parallelograms of the 3-prism 03C0 = 
and we put

It results that F’ = JF applies 1 3, onto the median parallelo-
grams 7r~ of the light 3-prism 7~’ = respectively. We also consider
the light segments 6~ - F’(ai), 1 x i ~ 3.
For any light segment a c we can construct the above Zeeman figure

such that the light segment 61 1 of end points p3, p4 is contained in 03C01 and
the intersection of the parallelogram p3p4p5p6 with the plane determined
by n2 is a light segment 0~ which lies in the domain of F’. Since F’(81)
and. F’(82) are both parallel to 0~3, it results that the points ph = F’(p~),

6, verify the following equipollence relation 
.

Therefore, the points ph form a Zeeman figure associated to the light seg-
ment F’~Q), the midpoint of which coincides with F’{p2). So we see that F’
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applies the midpoint of any segment a c 61, 1 i 3, on the midpoint
oj’ the segment F’(o-).
We denote by bi, ci the end points of the segment O"b 1 ~ i ~ 3, and

put bi = F’(bi), c = F’(ci). For any integer s &#x3E; 0 we define the partition ~S
of the segment ~i whose division points ao = bi, a 1, ..., at = ci, t = 2S,
are given by

(3 .1 )
The points au = F’(au), 0 ~ u :( t, define a partition of the segment 6 L.
Since F’ applies the midpoint au+ 1 of the segment whose end points are au
and au + 2 on the midpoint au of the segment whose end points are au and 2~

from (3 .1 ) it follows that ~~+1. So we have

(3.2)

Let 61 c 6~ be the set of all division points of the partitions s &#x3E; 0.

Taking account of (3.1) and (3.2), we obtain the following equality of
affine ratios

(3.3)

for any p E 6i. Since 6i is a dense subset of o~~ and F’ applies continuously 6i
onto 6i, it results that (3 . 3) holds for any p E 6i. In other words, if we consider
the light vectors ei E (m, a) and e~ E a’), a’ = F’(a), given by the points b~
and b ~, respectively, we have

(3 . 4)
For any vector v E a) n vr, we consider the light parallelograms 

which are parallel to ni, respectively, which pass through v and have the
sides on the boundary of n. We define the projection vt E (lRm, a) on 6i
as being the intersection between n;(v) and By using the parallelo-
grams 03C0’i and the segments 03C3’i, we introduce analogously, for any vec-
tor v’ E a’) n n’, the light parallelograms 7~(t/) and the projections
vi E a’). Since = we see that F’(vi) _ (F’(v))~. Taking
into account (3.4) and putting v = + ~2~2 + ~3e3, we have

(3 . 5)

Let V c a) and V’ c (Rm, a’) be the vector 3-spaces generated
by n and n’, respectively. By (3.5) we extend F’ to a unique linear trans-
formation L : V - V’. Since L applies each light segment of n onto a
light segment of n’, an elementary calculation shows that L is a Weyl
. transformation between (V, and (V’, 

where a is a non-null constant.
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Let W and W’ be the orthogonal spaces to V and V’ with respect to Q~
and Qa, respectively. Further we extend L to a Weyl transformation L’ of
the Minkowski space M as follows: we choose the orthonormal frames

(/i, ...,~-3) and (/~ ...~-3) in W and W’, respectively; we put
L’{ f ) = 1 ~ i ~ m - 3 ; for any vector z, E V, we put L’(v) = L(v).
Taking G = J -1 L’. Proposition 3 .1 is proved for n = 3.
Now we prove Proposition 3.1 by induction on n. Let us assume that

this is true for n - 1 with m.

In a light n-prism 0 c U centred at a, we consider two median (n - 1)-
prisms n" and r". From the induction hypothesis, we find a contraction Da
of centre a and two conformal transformation A, B such that: Da(n") is
contained in the domain of A : the restrictions of F and A to 

Da(~") is contained in the domain of B ; the restrictions of F and B to 
coincide.

Taking into account the continuity of F given by Lemma 2.4, we
find a convex open neighbourhood U’ of the point a in U for which the
injective maps 

B-1F : U’ -~ [Rm

apply any light segment contained in U’ onto two light segments, respec-
tively. In addition, we can modify the contraction Da such that Da{8) c U’.
So A -1 F applies identically onto itself, and B -1 F applies identi-
cally onto itself. Since the conformal transformations A and B
coincide onto the light (n - 2)-prism Da(n" n r"), ~ 2014 2 ~ 2, from
Lemma 2 . 6 we obtain B-1 = LIA -1, where Ll is a Lorentz transforma-
tion of (M, a), and we have

(3 . 6) F:U’ ~ 

Let Vi c (IRm, a) be the vector .space generated by r", and let V2 be its
orthogonal space with respect to Qa. We can choose the light 3-prism
n c and the light (n - l)-prism r c for which we have:
n is generated by the light vectors el, e2, e3 of (M, a); 1: is generated by the
light vectors ei, e2, e4, ..., en of putting

e3 = e + e’, e ~ V1, e’ E V2 ,

the vectors e, ei , e2 are coplanar and e, e’ E 7r. From (3 . 6) it follows that B-1 F
applies linearly the prism 7: onto Therefore we obtain

B 1 F(e3) = e + B -1 F(e’), B’ F(e’) E V2 .
So we can find a Lorentz transformation L2 of (M, a) which applies

identically Vi onto itself and maps B-1F(e3) on e3. We see that the injec-
tive map L2B -1 F applies identically n onto itself and any light segment
of U’ onto a light segment. From Lemma 2 . 2 it results that, by a new modi-
fication the map L2B-IF applies identically the prism onto

itself, and so we can take G = Q. E. D.
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Proof of Theorem 1.1. Let F : U ~ ~m be an injective map which
is defined on a connected open set U in ~ and which applies any light
segment contained in U onto a light segment. By using Proposition 3.1
for n = m, it results that any point a E U has a convex open neigh-
bourhood Ua in U such that F coincides on U~ with a conformal trans-
formation Ga. Since U is a connected open set and Ga, a E U, are analy-
tic maps, it is easy to show that there is a unique conformal transformation G
whose restriction to each Ua coincides with Ga. Therefore F is the restric-
tion to U of the conformal transformation G. Q. E. D.
Examining the proof of Lemma 2. 5 and of Proposition 3.1, from Theo-

rem 1.1 we also obtain

COROLLARY 3.2. - The conformal group ~ of a Minkowski space M of
dimension m a 3 is generated in the projective group P(m + 1; (~) by the
Weyl group ’~ of M together with an inversion Ip, p E M.

Proof Corollary 1. 3. In the pointed Minkowski space (M, a) we
consider a Lorentz coordinate system. Let ei E a) be a light vector
which generates Ri, 1  i  m, and let eij be the components of ei with
respect to the choosen Lorentz system.

In the following we shall identify the Minkowski space M with its image
by the imbedding 03C8 given by ( 1. 4). So the point at infinity pi of each light
ray Rj, 1  i  m, has the homogeneous components (eij, 0, 0) in the
projective space pm+ 1.
From Theorem 1.1 it results that F is the restriction to U of a conformal

transformation G, which can be written in the form (1. 5). Since F(U n Ri)
and F(U n Ri) are contained in parallel light rays, it follows that G(p;)
is also a point at infinity, and we have

But the vectors ei are linearly independent, because the concurrent light
rays Ri generate affinely Rm; hence Gsi = 0 for s = m + 2, 1 x i x m.
Taking account of (1.6) and (1. 7), we obtain either Gsr = 0 or G,, = 0,

r = m + 1, s = m + 2. But only the case Gsr = 0 is possible; otherwise G(a)
should be a point at infinity. Q. E. D.
Now we show by a counterexample that the connectivity of U is an

essential hypothesis in Theorem 1.1. In a Minkowski space M = Q)
let us consider the following two connected open sets

(3.7)
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We take U as being the open set U u U 2 with two connected components,.
and introduce the injective map

(3 . 8)

We remark that F leaves invariant each set Ui and U 2 ; in addition,
the restrictions of F to Uland U 2 are given by two Lorentz transforma-
tions, respectively. Therefore F maps any light segment contained in U
onto a light segment. On the other hand F is not a conformal transforma-
tion in the Minkowski space M.

4. PHYSICAL INTERPRETATION

In this section we consider the 4-dimensional Minkowski space
M = ([R4, Q) and use its canonical coordinates (xl, ..., x4). We say
that a point x of M is anterior to a point y of M if x 1  y 1 and if the straight
line determined by x, y is a light ray. We say that a set S c R4 is weakly
convex if S is a connected set and if, for any two distinct points x, y ~ S
which determine a light ray, the segment of end points x, y is contained in S.
We note that each light hyperboloid is weakly convex, but it is not convex.
We represent the physical universe corresponding to the special rela-

tivity by a non-empty set Q whose elements are called events. The phe-
nomenon of light propagation in Q is described by a binary relation
Q’ c Q x Q and by a ternary relation Q" c Q x Q x Q such that

(4.1) if (u, v) E then (v, u) E Q and u # v ;
(4.2) if (u, v, w) E Q", then (u, w) E Q’ and u # v ~ w.

In a physical language, the membership of a pair (u, v) to Q’ means
that the events u and v can be connected by light propagation. The mem-

bership of a ternary (u, v, w) to Q" means that the events u and w can be
connected by light propagation, but the event v can hinder this phenomenon.

In order to precise completely the relations Q’ and Q", firstly we introduce
the notion of luminal reference system. Such a system is a bijective 

U, where co is a subset of Q and U is a weakly convex open set in R4,
so that

(4 . 3) for any two distinct events u, v E OJ, the pair (u, v) belongs to Q’
if and only if the points ~), ç(v) determine a light ray of M ;

(4 . 4) for any pair (u, w) E Q’ with u, w e co, the set of all events v for which
the ternary (u, v, w) belongs to Q" is contained in co and is represented
by ç onto the open segment whose end points are ç(u), ~(w).
We say that the luminal reference system ~ is an inertial one if its domain OJ
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coincides with the whole universe Q. We assume that there exists an inertial

reference system Ço which establishes a bijection between Q and f~4.
. The physical meaning of Theorem 1.1 is given by its

COROLLARY 4.1. - D -~ U be a bijective map, where c~ is a

subset of S2 and U is a weakly convex open set in ~4. Then ~ is a luminal
reference system fand only if the map ~o~ -1 : U - ~4 is given by a confor-
mal transformation in the Minkowski space M ; in this case is a weakly
convex open set in f~4.

Indeed, from (4. 3) and (4.4) it results that ç is a luminal reference system
if and only applies any light segment contained in U onto a light
segment.
The physical meaning of Corollary 1.2 follows from

COROLLARY 4.2. S2 --~ U be a bijective map, where U is a
weakly convex open set in ~4. Then ç is an inertial reference system f and
only if the map Weyl transformation of the Minkowski space M ;
in this case we have U = 1R4.

So we see that the image of each inertial reference system coincides
with [R4.

PROPOSITION 4.3. cr~ -~ U cv’ -~ U’ be two luminal

reference systems with ~ ø. Then the map 03BE’03BE-1 establishes a

conformal diffeomorphism between the open sets n c~’) and 

~ Proof -- We have n cr~’) = ~~0 n ~o(co’)). From Corollary 4.1
it results that is an open set in ~4 which is mapped by the
conformal transformation onto a set of the same kind. On the other
hand, the map ç’ ç - 1 is given by the composition between the conformal
transformations We note that and n 

are not always connected sets. Q. E. D.

Corollary 4 . 2 shows that, for any two inertial reference systems ~ and ~,
the map ~’ ~ -1 is a Weyl transformation of the Minkowski space M.
Now we introduce a new binary relation -~ on Q, putting u  v if and

only if is anterior to It is easy to prove

PROPOSITION 4.4. - For two events u, v E Q, the pair (u, v) belongs to Q’
if and only if" either u ~ v or v « u. For three events u, v, w ~ Q, the ter-
nary (u, v, w) belongs to Q" if and only if either u « v ~ w or w - v ~ u.
So we see that Q’ and Q" are completely characterized. Moreover,

Proposition 4.4 suggests the following definition of the luminal causa-
lity in Q : we say that the event u can influence the event v by light propa-
gation if and only if u - v. Therefore, we adopted only the luminal connec-
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tivity as a basic notion, and introduced the luminal causality as a derived
concept.
We mention the following issue [3 ] [4 ] : are the luminal reference sys-

tems achievable in a natural way from the physical point of view ?
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