Annales de l'I. H. P., section A

SYlVia Pulmannová Compatibility and partial compatibility in quantum logics

Annales de l'I. H. P., section A, tome 34, no 4 (1981), p. 391-403
http://www.numdam.org/item?id=AIHPA_1981__34_4_391_0
© Gauthier-Villars, 1981, tous droits réservés.
L'accès aux archives de la revue «Annales de l'I. H. P., section A » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Compatibility and partial compatibility in quantum logics

by
Sylvia PULMANNOVÁ
Institute for Measurement and Measurement Technique, Slovak Academy of Sciences, 88527 Brastislava, Czechoslovakia

Abstract. - Compatibility relation, commensurability of observables and existence of joint distributions in quantum logics are considered. A weakened form of compatibility, so-called partial compatibility of propositions is introduced and its connections with a relativized commensurability of observables and with the existence of joint probability distributions of Gudder's type are studied.

1. INTRODUCTION

In the quantum logic approach to quantum theory, the structure of the set of all yes-no measurements (called also propositions, questions, events), which is called the logic of a physical system, is of a primary importance.

The logic of a classical system is found to be the Boolean lattice of all Borel subsets of the phase space of the system, while the logic of a standard quantum mechanical system is the complete ortholattice of all closed sub-spaces of a (complex, separable) Hilbert space corresponding to the system.

For a general physical system its logic L is assumed to be an orthomodular σ-orthoposet, i. e. L is a partially ordered set with 0 and 1 and with the orthocomplementation $\perp: \mathrm{L} \rightarrow \mathrm{L}$ such that $i) \vee a_{i} \in \mathrm{~L}$ for any sequence of pairwise orthogonal elements of L (we say that $a, b \in \mathrm{~L}$ are orthogonal
and write $a \perp b$ if $a \leq b^{\perp}$) and ii) $a \leq b(a, b \in \mathrm{~L})$ implies $b=a \vee c$, where $c \in \mathrm{~L}, c \leq a^{\perp}$.

If the logic L is given, we can identify the states of the physical system with probability measures on L and the observables with σ-homomorphisms from Borel subsets of the real line R^{1} into L. (See e. g. Mackey [1], Varadarajan [2] and [3]).

2. COMPATIBILITY RELATION

Let L be an orthomodular σ-orthoposet. In the following we shall call L briefly a logic. A subset K of L is a sublogic of L if i) $a \in \mathrm{~K}$ implies $a^{\perp} \in \mathrm{K}$ and ii) $\vee a_{i} \in \mathrm{~K}$ for any sequence $\left\{a_{i}\right\}$ of mutually orthogonal elements of K. A subset K of L is a Boolean subalgebra of L if i) $a \in K$ implies $a^{\perp} \in K$, ii) for any $a, b \in \mathbf{K}, a \vee b \in \mathrm{~K}(a \wedge b \in \mathrm{~K})$ and iii) for any $a, b, c \in \mathrm{~K}$,

$$
a \wedge(b \vee c)=a \wedge b \vee a \wedge c \quad(a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c))
$$

K is a Boolean sub- σ-algebra of L if it is a Boolean sub-algebra and $\vee a_{i} \in \mathrm{~K}$ ($\wedge a_{i} \in \mathrm{~K}$) for any sequence $\left\{a_{i}\right\}$ of elements of K .

Two elements $a, b \in \mathrm{~L}$ are said to be compatible ($a \leftrightarrow b$ in symbols) if there exist three pairwise orthogonal elements a_{1}, b_{1}, c in L such that $a=a_{1} \vee c$ and $b=b_{1} \vee c$. Varadarajan [2] proved the following:
$a \leftrightarrow b$ iff there exist an observable $x: \mathrm{B}\left(\mathrm{R}^{1}\right) \rightarrow \mathrm{L}$ and Borel subsets E , F of R^{1} such that $a=x(\mathrm{E})$ and $b=x(\mathrm{~F})$.

As a direct consequence we obtain:
$a \leftrightarrow b$ implies $a \leftrightarrow b^{\perp}$.
The following statement may help to clarify the significance of the relation \leftrightarrow [2]:
$a \leftrightarrow b$ iff there exists a Boolean subalgebra of L containing both a and b.

Thus, if $a, b \in \mathrm{~L}$ are compatible, they can be treated as classical propositions. As the most important feature of quantum mechanical physical system is considered the existence of propositions that are not compatible.

The following statements were proved by Varadarajan [2] and Mackey [1].
(1) If $a \leftrightarrow b$, that is $a=a_{1} \vee c, b=b_{1} \vee c, a_{1}, b_{1}, c \in \mathrm{~L}$ are mutually orthogonal, then there exist $a \vee b$ and $a \wedge b$ and $c=a \wedge b$.
(2) Let a_{1}, a_{2}, \ldots are elements of L. If $a \leftrightarrow a_{i}$ for all $i=1,2, \ldots$, and if $\vee a_{i}$ and $\vee\left(a \wedge a_{i}\right)$ both exist, then $a \leftrightarrow \vee a_{i}$ and $a \wedge\left(\vee a_{i}\right)=\vee a \wedge a_{i}$.
(3) The logic L is a Boolean σ-algebra iff $a \leftrightarrow b$ for any $a, b \in \mathrm{~L}$.

Guz [4] showed that \leftrightarrow is the strongest one in the family of all relations $\mathrm{C} \subset \mathrm{L} \times \mathrm{L}$ such that
i) C is symmetric and reflexive,
ii) $a \mathrm{Cb}$ implies $a \mathrm{C} b^{\perp}$,
iii) $a \leq b$ implies $a \mathrm{Cb}$,
iv) $a \mathrm{C} b, a \mathrm{C} c, b \perp c$ imply $a \mathrm{C}(b \vee c)$.

If the relation \leftrightarrow has the following property c) for any triple a, b, c of mutually compatible elements of L one has $a \leftrightarrow b \vee c$, we say that \leftrightarrow is regular. The logic L is said to be regular if the relation \leftrightarrow in it is regular. Examples, which have been found by Pool [6] and independently by Ramsay [7] show that not every logic is regular. If L is a lattice, then property (2) implies that it is regular.

Let A be a subset of L, we say that A is compatible if $a \stackrel{L_{0}}{\leftrightarrow} b$ for any $a, b \in \mathrm{~A}$. The following statement is true: the logic L is regular iff for any compatible subset A of L there is a Boolean sub- σ-algebra of L containing A (see e. g. Guz [6]).

If the logic L is not regular, then a stronger definition of compatibility is needed for the existence of a Boolean σ-algebra containing a compatible set. Such a condition was found by Guz [5] and, independently, by Neubrunn [8]. We shall call it strong compatibility (s-compatibility). Given a set $\mathrm{A} \subset \mathrm{L}$, the smallest sublogic L_{0} of L containing it always exists. The set A is said to be strongly compatible if any two elements $a, b \in \mathrm{~A}$ are compatible in \mathbf{L}_{0}. (The compatibility of a, b in L_{0}, denoted by $a \stackrel{\mathrm{~L}_{0}}{\leftrightarrow} b$ means that there are mutually orthogonal elements a_{1}, b_{1}, c in L_{0} such that $a=a_{1} \vee c$ and $b=b_{1} \vee c$). In [5] and [8] the following theorem is proved.

Theorem 2.1. - If a subset A of L is strongly compatible, then there is a Boolean sub- σ-algebra B such that $\mathrm{A} \subset \mathrm{B} \subset \mathrm{L}$.

Moreover, Neubrunn [8] proved that the sublogic generated by an s-compatible set A coincides with the generated Boolean sub- σ-algebra.

Another strenghthening of compatibility has been introduced by Brabec [9]. To distinguish this notion we shall call it full compatibility (f-compatibility). A finite set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of elements of L is said to be fully compatible in L if there exists a finite collection of pairwise orthogonal elements $\left\{e_{i}: 1 \leq i \leq k\right\}$ of L such that for any element $a_{i}(1 \leq i \leq n)$ there exists a finite subcollection $\left\{e_{i j}\right\}_{j}$ of $\left\{e_{i}\right\}_{i}$ such that $a_{i}=\vee_{j} e_{i j}$. The collection $\left\{e_{i}\right\}_{i}$ is called an orthogonal covering of the set $\left\{a_{1}, \ldots, a_{n}\right\}$. A set $\mathrm{A} \subset \mathrm{L}$ is said to be f-compatible in L if any finite subset of A is f-compatible in L .

Using f-compatibility, the following result was proved in [9].
Theorem 2.2.- If $\mathrm{A} \subset \mathrm{L}$ is f-compatible, then there exists a Boolean sub- σ-algebra B such that $A \subset B \subset L$.

Relations among s-compatibility, f-compatibility and pairwise compatibility are discussed in [10]. It can be easily seen that s-compatibility
implies f-compatibility and f-compatibility implies the pairwise compatibility. The logic L is regular iff f-compatibility is equivalent to the pairwise compatibility.

If $\left\{e_{i}\right\}_{i=1}^{k}$ and $\left\{f_{j}\right\}_{j=1}^{l}$ are two orthogonal coverings of a finite set $\mathrm{M} \subset \mathrm{L}$, we say that $\left\{e_{i}\right\}_{i=1}^{k}$ is less than $\left\{f_{j}\right\}_{j=1}^{l}$ if for any $e_{i}, 1 \leq i \leq k$, there is a subcollection $\left\{f_{i s}\right\}_{s}$ of $\left\{f_{j}\right\}_{j=1}^{l}$ such that $e_{i}=\bigvee_{s} f_{j s}$.

If $\mathbf{M} \subset \mathrm{L}$, we write $\mathbf{M}^{\perp}=\left\{a^{\perp}: a \in \mathbf{M}\right\}$. The following statement is a consequence of the fact that to any f-compatible subset of L there is a Boolean sub- σ-algebra containing it.

Lemma 2.3. - Let $\mathrm{M}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be f-compatible in L. Then the collection $\mathrm{F}=\left\{a_{1}^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}}: d \in \mathrm{D}^{n}\right\}$, where $\mathrm{D}=\{0,1\}$, $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathrm{D}^{n}, a^{d_{j}}=\left\{\begin{array}{ll}a & \text { if } d_{j}=1 \\ a^{\perp} \text { if } d_{j}=0,\end{array}(a \in \mathrm{~L})\right.$, is the minimal covering of the set $\mathrm{M} \cup \mathrm{M}^{\perp}$.

Lemma 2.4. - The set $\mathrm{F}=\left\{a_{1}{ }^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}}: d \in \mathrm{D}^{n}\right\}$ is an orthogonal covering of the set $\mathrm{M}=\left\{a_{1}, \ldots, a_{n}\right\}$ iff

$$
\bigvee_{d \in \mathrm{D}_{n}} a_{1}{ }^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}}=1
$$

Proof. - Necessity follows by Lemma 2.3. To prove sufficiency, let

$$
\bigvee_{d \in \mathrm{D}_{n}} a_{1}^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}}=1
$$

Let $a_{j} \in \mathrm{M}$ be fixed. Clearly, $a_{j} \leftrightarrow b$ for any $b \in \mathrm{~F}$. As the elements

$$
\left\{b \wedge a_{j}: b \in \mathbf{F}\right\}
$$

are mutually orthogonal, we get by (2) that

$$
a_{j}=a_{j} \wedge\left(\bigvee_{b \in \mathrm{~F}} b\right)=\bigvee_{b \in \mathrm{~F}} b \wedge a_{j}
$$

But

$$
b \wedge a_{j}=\left\{\begin{array}{lll}
b & \text { if } d_{j}=1 \\
0 & \text { if } & d_{j}=0
\end{array}\right.
$$

$b=a_{1}^{d_{1}} \wedge \ldots \wedge a_{j}^{d_{j}} \wedge \ldots \wedge a_{n}^{d_{n}}$. From this we have that F is the orthogonal covering of \mathbf{M}.

Corollary 2.5. - The set $\mathrm{A} \subset \mathbf{L}$ is f-compatible in L iff for any
finite subset $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of A the elements ${a_{1}}^{d_{1}} \wedge \ldots \wedge a_{n}{ }^{d_{n}}, d \in \mathrm{D}^{n}$, all exist and $\bigvee_{d \in \mathrm{D}^{n}} a_{1}{ }^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}}=1$.

It can be easily seen that a subset A of L is contained in a Boolean sub-σ-algebra of L iff it is f-compatible. The minimal Boolean sub- σ-algebra containing A can be found in the following way. For any finite subset $\mathrm{M}=\left\{a_{1}, \ldots, a_{n}\right\}$ of A the set $\mathrm{F}=\left\{a_{1}{ }^{d_{1}} \wedge \ldots \wedge a_{n}{ }^{d_{n}}: d \in \mathrm{D}^{n}\right\}$ is orthogonal and its lattice sum equals to one. From this it follows that the set of all lattice sums over all subsets of F is a Boolean subalgebra of L (see e. g. [7]). Let us denote it by $B(M)$. Now let $B^{\prime}=\cup\{B(M): M$ is a finite subset of $\mathbf{A}\}$, then \mathbf{B}^{\prime} is a Boolean subalgebra of \mathbf{L}. Indeed, if $a, b \in \mathbf{B}^{\prime}$ then there are \mathbf{M}_{1} and \mathbf{M}_{2} such that $a \in \mathrm{~B}\left(\mathbf{M}_{1}\right), b \in \mathrm{~B}\left(\mathbf{M}_{2}\right)$. But $\mathbf{M}_{1} \cup \mathbf{M}_{2}$ is a finite subset of A and $a, b \in \mathrm{~B}\left(\mathrm{M}_{1} \cup \mathrm{M}_{2}\right)$. From this it follows that $a \vee b, a \wedge b \in \mathbf{B}\left(\mathbf{M}_{1} \cup \mathbf{M}_{2}\right) \subset \mathbf{B}^{\prime}$. Similarly we show the distributivity. Evidently, \mathbf{B}^{\prime} is s-compatible, so that by [8] the least sublogic \mathbf{B} containing B^{\prime} is a Boolean sub- σ-algebra of L . Clearly, B is the minimal Boolean sub-σ-algebra of L containing A .

A set of observables $\left\{x_{\alpha}\right\}_{\alpha}$ is said to be commensurable if there is an observable x and Borel functions $f_{\alpha}: \mathrm{R}^{1} \rightarrow \mathrm{R}^{1}$ such that $x_{\alpha}=f_{\alpha} \circ x$. (By $f \circ x$, where f is a Borel function we mean the observable

$$
\left.f \circ x: \mathrm{E} \rightarrow x\left(f^{-1}(\mathrm{E})\right), \mathrm{E} \in \mathrm{~B}\left(\mathrm{R}^{1}\right)\right) .
$$

Theorem 2.6. - A set $\left\{x_{n}\right\}_{n=1}^{\infty}$ of observables on a logic L is commensurable iff the set $\bigcup_{n=1}^{\infty} \mathrm{R}\left(x_{n}\right)$, where $\mathrm{R}\left(x_{n}\right)=\left\{x_{n}(\mathrm{E}): \mathrm{E} \in \mathrm{B}\left(\mathrm{R}^{1}\right)\right\}$ is the range of the observable x_{n}, is f-compatible in L .

Proof. - The statement follows from the fact that $\left\{x_{n}\right\}_{n=1}^{\infty}$ are commen$\underset{x}{\text { surable }} \operatorname{iff} \bigcup_{n=1}^{\infty} \mathrm{R}\left(x_{n}\right)$ is contained in a Boolean sub- σ-algebra of L (see [3]) iff $\bigcup_{n=1} \mathrm{R}\left(x_{n}\right)$ is f-compatible.

The commensurability of observables enables us to construct joint probability distributions for observables [3].

Corollary 2.7. - Let $\left\{x_{\alpha}\right\}_{\alpha}$ be a set of observables on L. The joint probability distribution for $\left\{x_{\alpha}\right\}_{\alpha}$ exists iff the set $\bigcup_{\alpha} \mathrm{R}\left(x_{\alpha}\right)$ is f-compatible
iff

$$
\bigvee_{d \in \mathrm{D}^{n}} x_{1}\left(\mathrm{E}_{1}\right)^{d_{1}} \wedge \ldots \wedge x_{n}\left(\mathrm{E}_{n}\right)^{d_{n}}=1
$$

for any $n \in \mathrm{~N}$, any $x_{1}, x_{2}, \ldots, x_{n} \in\left\{x_{\alpha}\right\}_{\alpha}$ and any $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{n} \in \mathrm{~B}\left(\mathrm{R}^{1}\right)$.

Proof. - Let the joint distribution exist. Then for any finite subset $\left\{x_{1}, \ldots, x_{n}\right\} \subset\left\{x_{\alpha}\right\}_{\alpha}$ there is a σ-homomorphism $h: \mathrm{B}\left(\mathrm{R}^{n}\right) \rightarrow \mathrm{L}$ such that $h\left(\mathrm{E}_{1} x \ldots x \mathrm{E}_{n}\right)=x_{1}\left(\mathrm{E}_{1}\right) \wedge \ldots \wedge x_{n}\left(\mathrm{E}_{n}\right)[3]$. From this it follows that

$$
\begin{equation*}
\bigvee_{d \in \mathrm{D}^{n}} x_{1}\left(\mathrm{E}_{1}\right)^{d_{1}} \wedge \ldots \wedge x_{n}\left(\mathrm{E}_{n}\right)^{d_{n}}=1 \tag{2.1}
\end{equation*}
$$

is satisfied. It can be easily seen that (2.1) is equivalent to the f-compatibility. Indeed, if $\left\{a_{1}, \ldots, a_{n}\right\}$ is any subset of $\bigcup_{x} \mathrm{R}\left(x_{\alpha}\right)$, then any element $a_{1}{ }^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}}$ can be written in the form $x_{1}\left(\mathrm{E}_{1}\right)^{d_{1}} \wedge \ldots \wedge x_{k}\left(\mathrm{E}_{k}\right)^{d_{k}}$ for some $x_{1}, \ldots, x_{k} \in\left\{x_{\alpha}\right\}_{\alpha}, \mathrm{E}_{1}, \ldots, \mathrm{E}_{k} \in \mathrm{~B}\left(\mathrm{R}^{1}\right)$ and some $d \in \mathrm{D}^{k}$. The equivalence then follows by Corollary 2.5. Now, if $\bigcup_{n} \mathrm{R}\left(x_{\alpha}\right)$ is f-compatible, then $\bigcup_{i=1} \mathrm{R}\left(x_{i}\right)$ is f-compatible for any $x_{1}, \ldots, x_{n} \in\left\{x_{\alpha}\right\}_{\alpha}$. Hence, x_{1}, \ldots, x_{n} are commensurable. From this it follows that the joint distribution exists for them.

3. PARTIAL COMPATIBILITY

Definition 3.1. - Let L be an orthomodular σ-orthoposet. A subset A of L is said to be partially compatible (p. c.) with respect to some $a_{0} \in \mathrm{~L}$ $\left(a_{0} \neq 0\right)$ if
i) $a_{0} \leftrightarrow a$ for any $a \in \mathrm{~A}$,
ii) the set $\left\{a_{0} \wedge a: a \in \mathrm{~A}\right\}$ is f-compatible in L .

Proposition 3.2. - A set $\mathrm{A} \subset \mathrm{L}$ is partially compatible with respect to a_{0} iff $a_{0} \leftrightarrow a$ for all $a \in \mathrm{~A}$ and the elements $a_{0} \wedge a, a \in \mathrm{~A}$ are f-compatible in the logic $\mathrm{L}_{\left[0, a_{0}\right]}=\left\{b \in \mathrm{~L}: b \leq a_{0}\right\}$.

Proof. - Let A be p. c. with respect to a_{0} and let $\left\{a_{1}, \ldots, a_{n}\right\}$ be any finite subset of A. Let $b_{i}=a_{i} \wedge a, 1 \leq i \leq n$. The set $\left\{b_{i}, b_{i}^{\perp}, 1 \leq i \leq n\right\}$ is f-compatible in L and $\left\{b_{1}{ }^{d_{1}} \wedge \ldots \wedge b_{n}^{d_{n}}: d \in \mathrm{D}^{n}\right\}$ is the minimal orthogonal covering of it. If $d_{j}=1$ for some j, then
and

$$
b_{1}{ }^{d_{1}} \wedge \ldots \wedge b_{j}^{d_{j}} \wedge \ldots \wedge b_{n}^{d_{n}} \leq b_{j} \leq a_{0}
$$

$$
b_{1}^{\perp} \wedge \ldots \wedge b_{n}^{\perp}=\left(b_{1} \vee b_{2} \vee \ldots \vee b_{n}\right)^{\perp} \geq a_{0}^{\perp},
$$

so that all the elements $b_{1}{ }^{d_{1}} \wedge \ldots \wedge b_{n}^{d_{n}}, d \in \mathrm{D}^{n}$, are compatible with a_{0}. From this it follows that

$$
\begin{aligned}
\bigvee_{d \in \mathrm{D}^{n}} b_{1}^{d_{1}} \wedge \ldots \wedge b_{n}^{d_{n}} \wedge a_{0}= & \bigvee_{d \in \mathrm{D}^{n}} b_{1}^{d_{1}} \wedge a_{0} \wedge \ldots \wedge b_{n}^{d_{n}} \wedge a_{0} \\
& =\left(\bigvee_{d \in \mathrm{D}^{n}} b_{1}^{d_{1}} \wedge \ldots \wedge b_{n}^{d_{n}}\right) \wedge a_{0}=a_{0},
\end{aligned}
$$

where

$$
b_{i}^{d_{i}} \wedge a_{0}= \begin{cases}b_{i}=a_{i} \wedge a_{0} & \text { if } d_{i}=1 \\ b_{i}^{\perp} \wedge a_{0}=a_{i}^{\perp} \wedge a_{0} & \text { if } d_{i}=0\end{cases}
$$

Since $b_{i}^{\perp} \wedge a_{0}$ is the orthocomplement of b_{i} in $\mathrm{L}_{\left[0, a_{0}\right]}$, we get by Lemma 2.4 that $\left\{b_{1}, \ldots, b_{n}\right\}$ are f-compatible in $\mathrm{L}_{\left[0, a_{0}\right]}$.

On the other hand, if $a_{0} \leftrightarrow a_{i}$ for any $a \in \mathrm{~A}$ and $a_{0} \wedge a_{i} 1 \leq i \leq n$ are f-compatible in $\mathrm{L}_{\left[0, a_{0}\right.}$, then there is an orthogonal covering of the set $\left\{a_{0} \wedge a_{i}: 1 \leq i \leq n\right\}$ in $\mathrm{L}_{\left[0, a_{0}\right]}$, which is also an orthogonal covering in L .

Corollary 3.4. - A set $\mathrm{A} \subset \mathrm{L}$ is partially compatible with respect to $a_{0} \in \mathrm{~L}$ iff for any $\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathrm{A}$ all the elements $a_{1}{ }^{d_{1}} \wedge \ldots \wedge a_{n}{ }^{d_{n}} \wedge a_{0}$, $d \in \mathrm{D}^{n}$, exist and

$$
\bigvee_{d \in \mathrm{D}^{n}} a_{1}^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}} \wedge a_{0}=a_{0}
$$

Theorem 3.5. - Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathrm{~L}$ be such that all the elements $a_{1}{ }^{d_{1}} \wedge \ldots \wedge a_{n}{ }^{d_{n}}, d \in \mathrm{D}^{n}$ exist and

$$
a_{0}=\bigvee_{d \in \mathrm{D}^{n}} a_{1}^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}} \neq 0
$$

Then a_{1}, \ldots, a_{n} are p. c. with respect to a_{0}.
Proof. - The elements $a_{1}{ }^{d_{1}} \wedge \ldots \wedge a_{n}{ }^{d_{n}}, d \in \mathrm{D}^{n}$, are mutually orthogonal and $a_{1}^{d_{1}} \wedge \ldots \wedge a_{n}{ }^{d_{n}} \leq a_{j}$ or a_{j}^{\perp} for any $1 \leq j \leq n$, so that

$$
a_{1}^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}} \leftrightarrow a_{j}
$$

for any $d \in \mathrm{D}^{n}$ and $1 \leq j \leq n$. From this it follows that $a_{j} \leftrightarrow a_{0}, 1 \leq j \leq n$. Moreover,

$$
a_{j} \wedge a_{0}=\bigvee_{d \in \mathrm{D}^{n}} a_{1}^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}} \wedge a_{j}
$$

so that $\left\{a_{1}{ }^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}} \wedge a_{j}: d \in \mathrm{D}^{n}, 1 \leq j \leq n\right\}$ is the orthogonal covering of $\left\{a_{1} \wedge a_{0}, \ldots, a_{n} \wedge a_{0}\right\}$.

Proposition 3.6. - If the logic L is regular, then the elements a_{1}, \ldots, a_{n} of L are p. c. with respect to a_{0} iff a_{i}, a_{j} are p. c. with respect to a_{0} for any $1 \leq i, j \leq n$.

Proof. - Necessity is clear. To prove sufficiency, let a_{i}, a_{j} be p. c. with respect to a_{0} for any $1 \leq i, j \leq n$. This implies that $a_{i} \wedge a_{0} \leftrightarrow a_{j} \wedge a_{0}$ for all i, j in the logic $\mathrm{L}_{\left[0, a_{0}\right]}$. By regularity of the logic $\mathrm{L}_{\left[0, a_{0}\right]}$ then

$$
a_{1} \wedge a_{0}, \ldots, a_{n} \wedge a_{0}
$$

are f-compatible in $\mathrm{L}_{\left[0, a_{0}\right]}$, hence a_{1}, \ldots, a_{n} are p . c. with respect to a_{0}.

Let A be a subset of L . We set $\mathrm{A}^{c}=\{b \in \mathrm{~L}: b \leftrightarrow \mathrm{~A}\}$, where $b \leftrightarrow \mathrm{~A}$ means that $b \leftrightarrow a$ for all $a \in \mathrm{~A}$.

Theorem 3.7. - If a finite subset M of L is p. c. with respect to a_{0}, then $\mathrm{M}^{c c}$ is also p. c. with respect to a_{0}.

Proof. - Let $\mathbf{M}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and let $b \in \mathbf{M}^{c c}$. As $a_{0} \leftrightarrow a_{i}$, $1 \leq i \leq n, a_{0} \in \mathbf{M}^{c}$, so that $a_{0} \leftrightarrow b$. Let $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be the minimal orthogonal covering of the set $\left\{a_{1} \wedge a_{0}, \ldots, a_{n} \wedge a_{0}\right\}$. Clearly, $e_{i} \leftrightarrow a_{j} \wedge a_{0}$, $1 \leq j \leq n$, and $e_{i} \leq a_{0} \leq\left(a_{j} \wedge a_{0}^{\perp}\right)^{\perp}$ implies $e_{i} \leftrightarrow a_{j} \wedge a_{0}^{\perp}, 1 \leq j \leq n$ for
any $1 \leq i \leq k . ~ H e n c e ~$
$e_{i} \leftrightarrow a_{j}$ any $1 \leq i \leq k$. Hence $e_{i} \leftrightarrow a_{j} \wedge a_{0} \vee a_{j} \wedge a_{k}^{\perp}, 1 \leq j \leq \underset{k}{n}$, so that $b \leftrightarrow e_{i}$, $1 \leq i \leq k$. As $\bigvee_{i=1}^{k} e_{i} \leq a_{0}$, we have $a_{0}=\bigvee_{i=1}^{k} e_{i} \vee\left(\bigvee_{i=1}^{k} e_{i}\right)^{\perp} \wedge a_{0}$. But $b \leftrightarrow a_{0}$ implies $b \leftrightarrow a_{0}^{\perp}$, so that $b \leftrightarrow \bigvee_{i=1}^{k} e_{i} \vee a_{0}^{\perp}\left(\right.$ because $b \leftrightarrow \bigvee_{i=1}^{k} e_{i}$, $b \leftrightarrow a_{0}^{\perp}$ and $\left.\bigvee_{i=1}^{k} e_{i} \perp a_{0}^{\perp}\right)$. Then $a_{0} \wedge b=\left(\bigvee_{i=1}^{k} e_{i}\right) \wedge b \vee\left(\bigvee_{i=1}^{k} e_{i}\right)^{\perp} \wedge a_{0} \wedge b$

$$
=\bigvee_{i=1}^{k}\left(e_{i} \wedge b\right) \vee\left(\bigvee_{i=1}^{k} e_{i}\right)^{\perp} \wedge b \wedge a_{0}
$$

Since $b \leftrightarrow e_{i}$, we get $e_{i}=b \wedge e_{i} \vee b^{\perp} \wedge e_{i}, 1 \leq i \leq k$, so that

$$
\left\{\left\{b \wedge e_{i}, b^{\perp} \wedge e_{i}\right\}_{i=1}^{k}, b \wedge a_{0} \wedge\left(\bigvee_{i=1}^{k} e_{i}\right)^{\perp}\right\}
$$

is an orthogonal covering of the set $\left\{a_{1} \wedge a_{0}, \ldots, a_{n} \wedge a_{0}, b \wedge a_{0}\right\}$. We have shown that $\mathrm{M} \cup\{b\}$ is p. c. with respect to a_{0}. We proceede further by induction: let $\mathrm{M} \cup\left\{b_{1}, \ldots, b_{n}\right\}, b_{1}, \ldots, b_{n} \in \mathrm{M}^{c c}$ be p. c. with respect to a_{0}, and let $b_{n+1} \in \mathbf{M}^{c c}$. As $\mathrm{M} \subset \mathbf{M} \cup\left\{b_{1}, \ldots, b_{n}\right\} \subset \mathbf{M}^{c c}$ implies $\left(\mathrm{M} \cup\left\{b_{1}, \ldots, b_{n}\right\}\right)^{c c}=\mathrm{M}^{c c}$, we get by the above part of proof that $\mathrm{M} \cup\left\{b_{1}, \ldots, b_{n}, b_{n+1}\right\}$ is p . c. with respect to a_{0}. From this it follows that any finite subset $\left\{b_{1}, \ldots, b_{n}\right\}$ of $\mathbf{M}^{c c}$ is p . c. with respect to a_{0}, i. e. $\mathrm{M}^{c c}$ is p . c. with respect to a_{0}.

Let $\mathrm{A} \subset \mathbf{L}$ be p. c. with respect to $a_{0}\left(a_{0} \neq 0\right)$. By Zorn's lemma, there is a maximal set Q p. c. with respect to a_{0} and such that $\mathrm{A} \subset \mathrm{Q} \subset \mathrm{L}$.

Theorem 3.8. - Let $\mathrm{A} \subset \mathrm{L}$ be p . c . with respect to a_{0}. Then the maximal set Q p. c. with respect to a_{0} and containing A is a sublogic of \mathbf{L}.

Proof. - Let $a_{i} \in \mathrm{Q}, i=1,2, \ldots$ be mutually orthogonal. We show that $\bigvee_{i=1} a_{i} \in \mathrm{Q}$. From $a_{i} \leftrightarrow a_{0}, i=1,2, \ldots$, we have $\bigvee_{i=1}^{\infty} a_{i} \leftrightarrow a_{0}$ and $\left(\bigvee_{i=1} a_{i}\right) \wedge a_{0}=\bigvee_{i=1}\left(a_{i} \wedge a_{0}\right)$. By Proposition 3.2, the set $\mathrm{Q} \wedge a_{0}=\left\{a \wedge a_{0}: a \in \mathrm{Q}\right\}$ is f-compatible in $\mathrm{L}_{\left[0, a_{0}\right]}$. By Brabec [9] the set $\mathrm{Q} \wedge a_{0} \vee\left\{\bigvee_{i=1}^{\infty}\left(a_{i} \wedge a_{0}\right)\right\}$ is f-compatible in $\mathrm{L}_{\left[0, a_{0}\right]}$. From

$$
\bigvee_{i=1}\left(a_{i} \wedge a_{0}\right)=\left(\bigvee_{i=1} a_{i}\right) \wedge a_{0}
$$

we then get that $\mathrm{Q} \vee\left\{\bigvee_{i=1}^{x} a_{i}\right\}$ is p. c. with respect to a_{0}, i. e. $\bigvee_{i=1}^{\infty} a_{i} \in \mathrm{Q}$ by the maximality of Q . Clearly, $a \in \mathrm{Q}$ implies $a^{\perp} \in \mathrm{Q}$, hence Q is a sublogic of L .

Remark 3.9.- If L is a lattice, then Q is a lattice, too. Indeed, if $a_{i} \in \mathrm{Q}$, $i=1,2, \ldots, n$, the elements $\bigvee_{i=1}^{n} a_{i}$ and $\bigvee_{i=1}^{n}\left(a_{i} \wedge a_{0}\right)$ exist and $a_{0} \leftrightarrow a_{i}$ implies $a_{0} \leftrightarrow \bigvee_{i=1}^{n} a_{i}$ and $\left(\bigvee_{i=1}^{n} a_{i}\right) \wedge a_{0}=\bigvee_{i=1}^{n}\left(a_{i} \wedge a_{0}\right)$. By [9], then $\left\{\bigvee_{i=1}^{n} a_{i} \wedge a_{0}\right\}^{i=1} \cup \mathrm{Q} \wedge a_{0}$ are f-compatible in $\mathrm{L}_{\left[0, a_{0}\right]}^{i=1}$, hence $\mathrm{Q} \cup\left\{\bigvee_{i=1}^{n} a_{i}\right\}$ are p. c. with respect to a_{0}, i. e. $\bigvee_{i=1} a_{i} \in \mathrm{Q}$. In this case the set

$$
\mathrm{Q} \wedge a_{0}=\left\{a \wedge a_{0}: a \in \mathrm{Q}\right\}
$$

is a Boolean sub- σ-algebra of $\mathrm{L}_{\left[0, a_{0}\right]}$.
In what follows we shall suppose that the logic L is a lattice. We recall that the logic L is separable if any subset of mutually orthogonal elements is at most countable.

Theorem 3.10. - Let M be a subset of a separable lattice logic L. For any finite set $\mathrm{N} \subset \mathrm{M}$ let us set
where

$$
a(\mathrm{~N})=\bigvee_{d \in \mathrm{D}^{n}} a_{1}^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}}
$$

$\mathrm{N}=\left\{a_{1}, \ldots, a_{n}\right\}, \mathrm{D}=\{0,1\}, d=\left(d_{1}, \ldots, d_{n}\right) \in \mathrm{D}^{n}$,

$$
a^{d_{j}}= \begin{cases}a & \text { if } d_{j}=1 \\ a^{\perp} & \text { if } d_{j}=0\end{cases}
$$

Then the element $a_{0}=\bigwedge_{\mathrm{N} \subset \mathrm{M}} a(\mathbf{N})$ exists in L. If $a_{0} \neq 0, \mathrm{M}$ is p. c. with
respect to a_{0}.
Proof. - We show that $\mathrm{N}_{1} \subset \mathrm{~N}_{2}$ implies $a\left(\mathrm{~N}_{2}\right) \leq a\left(\mathrm{~N}_{1}\right)$. Indeed, let $\mathrm{N}_{1}=\left\{a_{1}, \ldots, a_{n}\right\}, \mathrm{N}_{2}=\left\{a_{1}, \ldots, a_{n}, a_{n+1}, \ldots, a_{m}\right\}$. Then for any fixed $\left(d_{1}, \ldots, d_{n}\right) \in \mathrm{D}^{n}$ we have
$\bigvee_{d_{n}+1 \ldots \ldots d_{m}} a_{1}^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}} \wedge a_{n+1}{ }^{d_{n+1}} \wedge \ldots \wedge a_{m}^{d_{m}}$
and
$\quad \leq a_{1}^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}} \wedge \bigvee_{d \in \mathrm{D}^{m-n}} a_{n+1}{ }^{d_{n+1}} \wedge \ldots \wedge a_{m}{ }^{d_{m}}$ $a\left(\mathrm{~N}_{2}\right)=\bigvee_{d \in \mathrm{D}^{m}} a_{1}{ }^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}} \wedge a_{n+1}^{d_{n+1}} \wedge \ldots \wedge a_{m}^{d_{m}}$ $\leq \bigvee_{d \in \mathrm{D}^{n}} a_{1}^{d^{d_{1}}} \wedge \ldots \wedge a_{n}^{d_{n}} \wedge \bigvee_{d \in \mathrm{D}^{n-m}} a_{n+1}{ }^{d_{n+1}} \wedge \ldots \wedge a_{m}^{d_{m}}$ $\leq \bigvee_{d \in \mathrm{D}^{n}} a_{1}{ }^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}}=a\left(\mathrm{~N}_{1}\right)$.
Now for any $b \in \mathrm{M}, a(\mathrm{~N} \cup\{b\}) \leq a(\mathrm{~N})$ for any $\mathrm{N} \subset \mathrm{M}$. By Zierler [11] there is a sequence $\mathrm{N}_{1}, \mathrm{~N}_{2}, \ldots$ such that $a_{0}=\bigwedge_{i=1}^{x} a\left(\mathbf{N}_{i}\right)$. Then

$$
\bigwedge_{i=1}^{x} a\left(\mathrm{~N}_{i} \cup\{b\}^{\prime}\right) \leq \bigwedge_{i=1}^{\infty} a\left(\mathrm{~N}_{i}\right)=a_{0}
$$

On the other hand, $a_{0}=\bigwedge_{\mathrm{N} \subset \mathrm{M}} a(\mathrm{~N})$, so that $a_{0} \leq a(\mathrm{~N} \cup\{b\})$ for any finite $\mathbf{N} \subset \mathbf{M}$, hence $a_{0}=\bigwedge_{i=1}^{x} a\left(\mathrm{~N}_{i} \cup\{b\}\right.$). As $a\left(\mathrm{~N}_{i} \cup\{b\}\right) \leftrightarrow b$ (Theo-
rem 3.5) for any $i=1,2, \ldots$, we get $a_{0} \leftrightarrow b$. Now let $\mathrm{N}=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathrm{M}$. Then $a_{0} \leftrightarrow a_{i}$ implies $a_{0} \leftrightarrow a_{1}{ }^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}}$ for all $d \in \mathrm{D}^{n}$. Further. $a_{i} \wedge a(\mathrm{~N})=\bigvee_{d \in \mathrm{D}^{n}} a_{1}{ }^{d_{1}} \wedge \ldots \wedge a_{n}{ }^{d_{n}} \wedge a_{i}$. From this it follows that

$$
a_{i} \wedge a_{0}=a_{i} \wedge a(\mathrm{~N}) \wedge a_{0}=\bigvee_{d \in \mathrm{D}^{n}} a_{1}^{d_{1}} \wedge \ldots \wedge a_{n}^{d_{n}} \wedge a_{i} \wedge a_{0}
$$

hence $\left\{a_{1}^{d_{1}} \wedge a_{0}, \ldots, a_{n}^{d_{n}} \wedge a_{0}: d \in \mathrm{D}^{n}\right\}$ is the orthogonal covering of the set $\left\{a_{1} \wedge a_{0}, \ldots, a_{n} \wedge a_{0}\right\}$. That is, \mathbf{M} is p . c. with respect to a_{0}.

Definition 3.11. - We say that a set $\mathrm{A} \subset \mathrm{L}$ is relatively compatible with respect to a state m if for any finite subset N of A there holds $m(a(\mathrm{~N}))=1$.

From $m(a(\mathrm{~N}))=1$ it follows that $a(\mathrm{~N}) \neq 0$, so that by Theorem 3.5 N is p. c. with respect to $a(\mathrm{~N})$.

The notion of relative compatibility in Hilbert space logics was introduced by Hardegree [12]. In [13] it is shown that the relative compatibility is closely connected to the existence of joint distributions of type-1, introduced by Gudder [14]: We say that observables x_{1}, \ldots, x_{n} on a logic L have a type- 1 joint distribution in a state m if there is a measure μ on $\mathbf{B}\left(\mathbf{R}^{n}\right)$ (i. e. the Borel subsets of R^{n}) such that for any rectangle set

$$
\mathrm{E}_{1} \times \mathrm{E}_{2} \times \ldots \times \mathrm{E}_{n} \in \mathrm{~B}\left(\mathrm{R}^{n}\right)
$$

there holds

$$
\mu\left(\mathrm{E}_{1} \times \ldots \times \mathrm{E}_{n}\right)=m\left(x_{1}\left(\mathrm{E}_{1}\right) \wedge \ldots \wedge x_{n}\left(\mathrm{E}_{n}\right)\right)
$$

It was proved in [15] that $\mathrm{M} \subset \mathrm{L}$ is relatively compatible with respect to a state m iff the two-valued observables corresponding to the elements of \mathbf{M} have a type 1 joint distribution in the state m.

It can be shown that if L is a separable lattice logic then a subset M of L is relatively compatible with respect to a state m iff $m\left(a_{0}\right)=1$, where a_{0} is the element defined in Theorem 3.8. Indeed, let M be relatively compatible and let $\left\{\mathrm{N}_{i}\right\}_{i}$ be such that $a_{0}=\bigwedge_{i=1}^{\gamma} a\left(\mathrm{~N}_{i}\right)$. Let us set $\mathrm{Q}_{1}=\mathrm{N}_{1}, \mathrm{Q}_{i}=\bigcup_{i \leq j} \mathrm{~N}_{j}$, then $\mathrm{Q}_{1} \subset \mathrm{Q}_{2} \subset \ldots, a_{0}=\bigwedge_{i=1}^{n} a\left(\mathrm{Q}_{i}\right), a\left(\mathrm{Q}_{1}\right) \geq a\left(\mathrm{Q}_{2}\right) \geq \ldots$, and the continuity from above of m yelds that $m\left(a_{0}\right)=1$. The converse is straightforward.

Let $\left\{x_{\alpha}: \alpha \in \Lambda\right\}$ be a set of observables on L . Let us set $\mathrm{M}=\bigcup_{\alpha} \mathrm{R}\left(x_{\alpha}\right)$, where $\mathrm{R}\left(x_{\alpha}\right)=\left\{x_{\alpha}(\mathrm{E}): \mathrm{E} \in \mathrm{B}\left(\mathrm{R}^{1}\right)\right\}$ is the range of x_{α}. Then for any

$$
\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathrm{M}
$$

the elements $a_{1}{ }^{d_{1}} \wedge \ldots \wedge a_{n}{ }^{d_{n}}, d \in \mathrm{D}^{n}$, can be expressed in the form $x\left(\mathrm{E}_{1}\right)^{d_{1}} \wedge \ldots \wedge x_{k}\left(\mathrm{E}_{k}\right)^{d_{k}}$ for some $\mathrm{E}_{1}, \ldots, \mathrm{E}_{k} \in \mathrm{~B}\left(\mathrm{R}^{1}\right)$, some x_{1}, \ldots, x_{k} and some $\left(d_{1}, \ldots, d_{k}\right) \in \mathrm{D}^{k}$. By [15] we then obtain the following theorem.

Theorem 3.12.-Observables $\left\{x_{\alpha}\right\}_{\alpha}$ on a lattice logic L have a type 1 joint distribution in a state m iff the set $\mathbf{M}=\bigcup_{\alpha} \mathrm{R}\left(x_{\alpha}\right)$ is relatively compatible
withe respect to m iff

$$
m\left(\bigvee_{d \in \mathrm{D}^{n}} x_{1}\left(\mathrm{E}_{1}\right)^{d_{1}} \wedge \ldots \wedge x_{n}\left(\mathrm{E}_{n}\right)^{d_{n}}\right)=1
$$

for any $n \in \mathrm{~N}$, any $x_{1}, \ldots, x_{n} \in\left\{x_{\alpha}\right\}_{\alpha}$ and any $\mathrm{E}_{1}, \ldots, \mathrm{E}_{n} \in \mathrm{~B}\left(\mathrm{R}^{1}\right)$.
Next theorem shows a connection between relative compatibility and «relative commensurability » of observables.

Theorem 3.13. - Let the observables $\left\{x_{\alpha}\right\}_{\alpha}$ on a separable lattice logic L have a type 1 joint distribution in a state m. Then there are an observable z and Borel functions $f_{\alpha}: \mathbf{R}^{1} \rightarrow \mathbf{R}^{1}$ such that $m\left(x_{\alpha}(\mathrm{E})\right)=m\left(\left(f_{\alpha} \circ z\right)(\mathrm{E})\right.$) for any $E \in B\left(R^{1}\right)$ and any α.

Proof. - The existence of joint distribution implies that the set

$$
\mathrm{M}=\bigcup_{\alpha} \mathrm{R}\left(x_{\alpha}\right)
$$

is relatively compatible with respect to m. From this it follows that the set M is p. c. with respect to a_{0}, where a_{0} is defined as in Theorem 3.10. Hence, the set $\mathrm{M} \wedge a_{0}=\left\{b \wedge a_{0}: b \in \mathrm{M}\right\}$ is f-compatible in $\mathrm{L}_{\left[0, a_{0}\right]}$. Let us set $\tilde{x}_{\alpha}(\mathrm{E})=x_{\alpha}(\mathrm{E}) \wedge a_{0}, \mathrm{E} \in \mathrm{B}\left(\mathrm{R}^{1}\right)$, then $\tilde{x}_{\alpha}: \mathrm{B}\left(\mathrm{R}^{1}\right) \rightarrow \mathrm{L}_{\left[0, a_{0}\right]}$ are compatible observables on the logic $\mathrm{L}_{\left[0, a_{0}\right]}$. By [3], there exist an observable \tilde{z} on $\mathrm{L}_{\left[0, a_{0}\right]}$ and Borel functions $f_{\alpha}: \mathrm{R}^{1} \rightarrow \mathrm{R}^{1}$ such that $\tilde{x}_{\alpha}=f_{\alpha} \circ \tilde{z}$ for any α. Let us set $z(\mathrm{E})=\tilde{z}(\mathrm{E}) \vee w(\mathrm{E}) \wedge a_{0}^{\perp}$, where w is an observable on L defined by

$$
w(\mathrm{E})= \begin{cases}1 & \text { if } c \in \mathrm{E} \\ 0 & \text { if } c \notin \mathrm{E}\end{cases}
$$

for some $c \in \mathbf{R}^{1}$. It can be easily checked that z is an observable on L . Then for any $E \in B\left(R^{1}\right)$,

$$
\begin{aligned}
& \left(f_{\alpha} \circ z\right)(\mathrm{E})=z\left(f_{\alpha}^{-1}(\mathrm{E})\right)=\tilde{z}\left(\cdot f_{\alpha}^{-1}(\mathrm{E})\right) \vee w\left(f_{\alpha}^{-1}(\mathrm{E})\right) \wedge a_{0}^{\perp} \\
& \quad=\left(f_{\alpha} \circ \tilde{z}\right)(\mathrm{E}) \vee\left(f_{\alpha} \circ w\right)(\mathrm{E}) \wedge a_{0}^{\perp}=\tilde{x}_{\alpha}(\mathrm{E}) \vee\left(f_{\alpha} \circ w\right)(\mathrm{E}) \wedge a_{0}^{\perp}
\end{aligned}
$$

As $m\left(a_{0}\right)=1$, we obtain $m\left(\left(f_{\alpha} \circ z\right)(\mathrm{E})\right)=m\left(x_{\alpha}(\mathrm{E})\right)$.

REFERENCES

[1] G. W. Mackey, Mathematical foundations of quantum mechanics, W. A. Benjamin, New York, 1963.
[2] V. S. Varadarajan, Probability in physics and a theorem on simultaneous observability, Commun. Pure Appl. Math., t. 15, 1962, p. 189-217.
[3] V. S. Varadarajan, Geometry of quantum theory, Van Nostrand, Princeton, N. Y., 1968.
[4] W. Guz, On the simultaneous verifiability of yes-no measurements, Int. J. Theoret. Phys., t. 17. 1978, p. 543-548.
[5] W. Guz, Quantum logic and a theorem on commensurability, Rep. Math. Phys., t. 2. 1971. p. 53-61.
[6] J. C. T. Pool, Simultaneous observability and the logic of quantum mechanics, Ph. D. Thesis, State University of Iova, 1963.
[7] A. Ramsay, A theorem on two commuting observables, J. Math. and Mech., t. 15, 1966, p. 227-234.
[8] T. Neubrunn, On certain type of generalized random variables, Acta Fac. Rer. Natur. Univ. Commen. Math., t. 29, 1974, p. 1-6.
[9] J. Brabec, Compatibility in orthomodular posets, Časopis pro pěstování matematiky, t. 104, 1979, p. 149-153.
[10] T. Neubrunn, S. Pulmannová, Compatibility in quantum logics, Acta Fac. Rer. Natur. Unic. Comen. Math., to appear.
[1I] N. Zierler, Axioms for non-relativistic quantum mechanics, Pac. J. Math., t. 11, 1961, p. 1151-1169.
[12] G. M. Hardegree, Relative compatibility in conventional quantum mechanics, Found. Phys., t. 7, 1977, p. 495-510.
[13] S. Pulmannová, Relative compatibility and joint distributions of observables, Found. Phys., t. 10, 1980, p. 641-653.
[14] S. P. Gudder, Joint distributions of observables, Journ. of Math. and Mech., t. 18, 1968, p. 325-335.
[15] A. Dvurečenskis, S. Pulmannová, Connection between joint distributions and compatibility of observables, Rep. Math. Phys., to be published.
(Manuscrit reçu le 13 novembre 1980)

