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C. N. R. S.
PHYSIOUE MATHEMATIQUE A :

Physique théorique.

RESUME. 2014 La diffusion elastique d’un boson par un nucleon habille
au-dessous du seuil pour la production d’un autre boson est etudie rigou-
reusement dans un modele des champs quantifies non-relativistes corres-
pondant, physiquement, a 1’interaction meson-nucleon a basse energie.
On presente une equation integrale exacte et singuliere pour la diffusion
elastique, laquelle tient compte de 1’infinite complete des mesons virtuels
autour du nucleon. Pour des petites valeurs de la constante de couplage,
et en admettant certaines hypotheses techniques, on etablie : i) la compacite
du noyau de 1’equation integrale singuliere et 1’existence des solutions de
cette derniere dans un espace de Banach. ii) 1’existence du vecteur de Schro-

dinger a dimension infinie qui decrit la diffusion elastique. On donne des
bornes qui fournissent une solution partielle du probleme posé par Ie

nuage infinie de bosons. Afin de controler completement ce dernier pro-
bleme, des majorations des classes infinies des diagrammes de Feynman sont
necessaires, lesquelles seront presentees ulterieurement, en un deuxième

ABSTRACT. 2014 In a non-relativistic field-theoretic model corresponding
physically to the low-energy meson-nucleon interaction, the elastic scat-
tering of a boson by the dressed nucleon below the one-boson production

(*) A very short summary of this work (announcing its main results without proofs)
has been contributed to the « Ninth International Conference on the Few-Body Pro-
blem », Eugene, Oregon, USA, 17-23 August 1980 (Session on Mathematical and Com-
putational Methods).
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254 R. F. ALVAREZ-ESTRADA

threshold is studied rigorously. We present an exact and singular (elastic-
scattering) integral equation, which includes the whole infinity of virtual
bosons around the nucleon. For small coupling constant and under certain
technical assumptions, we establish : i) the compactness of the kernel of
the singular integral equation and the existence of solutions for it in a
suitable Banach space, ii) the existence of the infinite-dimensional Schro-
dinger ket describing the elastic scattering. Bounds are given which partly
solve the infinite boson cloud problem. In order to control fully the latter,
majoration of infinite classes of Feynman diagrams are required, which are
presented in a separate paper.

1. INTRODUCTION

A large body of rigorous results exists about scattering in quantum
systems of ~(~ 2) particles interacting via two-body potentials (see [1-5] ]
and references therein). Far less rigorous information is known about
those dynamical models which described ~(~ 1) non-relativistic quantum
particles interacting with a quantized boson field, and which are associated
to physical phenomena like low-energy meson-nucleon scattering [~-7],
electron-phonon interactions in solids [8 ], non-relativistic Quantum
Electrodynamics [9 ], etc., in spite of a vast physical literature regarding
them. Mathematical results on scattering in these models appear speci-
fically in [10 ]. For other rigorous studies about them, see [11-14 ]. In
particular, rigorous scattering integral equations for such models which
could play a role analogous to the Lippmann-Schwinger [7] ] (Faddeev-
Yakubovski [4] ] [15 ]) equations in two-(n 2014, n 3) body quantum systems,
do not exist, to the author’s knowledge. On the other hand, rigorous
results about scattering in Lee-type models, where the number of bosons
in the cloud around the non-relativistic particle is limited, appear in [12 ],
[16]., 

.

This work presents a general study of elastic scattering in a model of
the above kind corresponding, physically, to low-energy meson-nucleon
interaction [6-7 ]. Since the mesons are massive and a cut-off function is
used (like in physical applications to low-energy pion-nucleon scattering),
both infrared and ultraviolet divergences are avoided. Nevertheless, two
difficulties exist : i) one faces an infinite number of equations, associated to
the infinite meson cloud around the nucleon, ii) elastic scattering singula-
rities are present, which give rise to singular integral equations. Our main
result is the rigorous construction of the Schrodinger ket describing the
elastic scattering of a meson by a dressed nucleon below the one-meson
production threshold, for small coupling constant and under certain

l’Institut Henri Poincaré-Section A



255ELASTIC MESON-NUCLEON SCATTERING (I)

assumptions on the cut-off function. Our methods can. be generalized, in
principle, for increasing values of the coupling constant ( f ).

This paper is organized as follows. In section 2, we formulate the model
(subsection 2. A), summarize and generalize (subsection 2 . B) properties
of the dressed one-nucleon state and techniques, which will be very useful
later in order to solve difficulty i). Generalities about the elastic scattering
of a meson by the dressed nucleon are presented in section 3. In section 4,
we solve part of the difficulty i). Section 5) presents an exact singular elastic-
scattering integral equation (subsection 5. A) and a compactness proof
for it, therely solving difficulty ii) (subsection 5. B). Certain problems left
open are solved or discussed briefly in section 6. Our construction also
requires a careful analysis and majoration of the infinite class of all Feynman
diagrams contributing to certain (Greens’) functions, in order to solve
completely the difficulty i) for elastic scattering. Such an analysis, which
is rather lengthy, will be presented in a separate paper. For simplicity, we
shall consider a model without spin or isospin dependences throughout
our work. At the end of the second paper, we shall add the essential remarks
in order to include internal degrees of freedom. Our work constitutes a
rigorous formulation, to all orders in f, of an approximate (Tamm-Dancofl)
approach to low-energy meson-nucleon scattering presented in [17 ].
N-quantum approximations to models of the type studied in this work

have been investigated in [18 ]. A formal continued fraction approach to
non-relativistic Quantum Electrodynamics (with applications to sponta-
neous and stimulated emission), which differs considerably from our
developments, appears in [19 ].

2. THE MODEL
AND THE DRESSED ONE-NUCLEON STATE

2 A. Formulation of the model.

Let a non-relativistic spinless particle (nucleon) have bare mass mo and
position and threemomentum operators x = (jc~), p = (pj), L, j = 1, 2, 3

= and let ~I’(q) be a bare one-nucleon state with three-
momentum q. The nucleon interacts with an indefinite number of scalar
bosons (mesons). Let a(k), a + (k) be the destruction and creation operators
for a boson with threemomentum k and strictly positive energy 03C9(k)  03C90 &#x3E; 0

([~),~(P)] = b{3~(k - k’), k = and let !0) be the vacuum. We
assume the total hamiltonian to be :

n2 
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256 R. F. ALVAREZ-ESTRADA

f being a real dimensionless coupling constant and v(k) being a complex
cut-off function. The total conserved threemomentum is

. 
~2

Let with 
- 

 be the subspace of Hilbert space formed by all

kets 03A8 such that (p tot - = 0. A basis for is formed by the set of
all kets

Throughout this work, we shall assume that

b) f is sufficiently small (we shall state this condition more explicitly later,
at the appropriate places), c) and are continuous and bounded
for any k. Later, we shall have to add further assumptions, namely, assump-
tion d) in section 3, assumptions e) and ~’) in subsection 4. B, and assump-
tion g) in subsection 5. B. Since they are somewhat technical, it seems more
convenient to formulate them when they become necessary.
A standard quadratic-form argument yields, for any normalizable B}l

(compare with [20 ] ; see also [10-14 ]) :

Then, if 1/2 .1}  1. well-known theorems imply that H is self-adjoint
and bounded below [2~].

2 B The dressed one-nucleon state:

summary of useful properties.

We shall expand the dressed one-nucleon state ~+(7r) which belongs
to 7r)~P+(7c) = 0) and has physical energy E as :

~(7T) = 

Annales de l’Institut Henri Poincaré-Section A



257ELASTIC MESON-NUCLEON SCATTERING (I)

~F+(7r) is normalized so that the coefficient equals one. The n-meson
amplitude ... kn) is symmetric under interchanges of kl ... kn
(its E-dependence is not made explicit). We shall summarize some recur-
rence relations and bounds regarding the bn’s and the nucleon self-energy
which will be quite useful later. For brevity, we shall omit the rigorous
construction of both ~+(7r) and E for small ~ 7~ I and f based upon such
recurrence relations and bounds. It can be carried out by extending directly
the proofs presented, for the large-polaron model, in [14 ]. Using
(H - E)~(7i) = 0, one finds (en’’2 = 11/2, 11/2 == 1 ) :

k 1 ... kn)

we shall introduce the L2-norms

and the following functions and continued fractions :

Vol. XXXIV, n° 3-1981.



258 R. F. ALVAREZ-ESTRADA

At least for small |03C0| and |E|, one has : i) zn  + ~, n  1, by virtue of
assumption a), ii) Tn ~ 0 as n  oo. Then, all Zit and Z~ converge and are
positive for any n  no (no depending on f ), by virtue of some classical
theorems about the convergence of continued fractions [21 ]. Here, we
shall assume that f is suitably small (recall assumption b) in subsection 2. A)
so that all Zn and Z;, converge and are strictly positive for n  1. Some
direct L2-majorations of Eq. (2 . B . 3) yield (they generalize those in sec-
tion 4 of [7~]):

with the conventions = 1. !!~o(~i)!t2 = 0. We stress that (2.B.ll)
is new, as it was unnecessary for the studies carried out in [14 ]. One proves
that the three-term recurrences of inequalities (2.B.10) and (2 . B .11) are
satisfied by the following inequalities (by using techniques sketched in
sections 4 and 5 and Appendix C of [14 ])

Annales de ’ Henri Poincaré-Section A



259ELASTIC MESON-NUCLEON SCATTERING (I)

The bound (2 . B .12) implies that ~bn~2 ~ 0 as n ~ oo. By virtue of
the above property ii) of the the series on the right-hand-side of (2 . B .13)
converges. Since II bo(~i) !!2 = 0, Eqs. (2 . B . 7) and the bounds (2. B 12-13)
imply the existence of some continuous and positive functions 
such that :

The second Eq. (2 . B . 4), the bound (2.B.12) for n = 1 and ~b0 112 = 1

imply the following bound for the self-energy M(E) :

3. ELASTIC SCATTERING
OF A MESON BY A DRESSED NUCLEON

We shall study the low-energy elastic scattering of a boson by the dressed
nucleon, which had small threemomenta 1 respectively, in the
remote past, at infinite relative separation. According to Wick’s time-
independent formulation [22 ], the incoming state is a + (l)03A8+( - 7) and the
full (Schrodinger) state is ~+(7; - 1) = ~(7)T+( - t) + TJ7; - !), Tj7; - I)
being an outgoing ket generated by the interaction. The total energy is

E+ == + E( - 7). Since (H - E+)~+(7; - 7) = 0, a simple calculation
yields (for similar developments in the static Chew-Low model, see Schwe-
ber [ 6 ]) :

By generalizing Eq. (2. and noticing that 7) = 0, we
shall expand 1~ formally as

yn is the probability amplitude for finding n  0 bosons in and is
symmetric under intercharges of ~i 1 ... k". It depends on I and E +, but
these dependences will not be made explicit. Upon combining Eqs. (3.1-2),

Vol. XXXIV, n° 3-1981.



260 R. F. ALVAREZ-ESTRADA

(2. A 1-2) and (2. B .1-2), one derives the basic recurrence for the yn’s
(compare with Eq. (2 . B . 3)) :

where all 1, are regarded as known. Unlike the coefficient of 
in Eq. (2 . B .1), which equals one by virtue of the normalization condition

here yo has to be determined from the recurrence (3.3), like all
other 1. Eqs. (3.3) have only a formal sense in principle, since
some en’s could vanish and, hence, the Yn’s should exhibit typical scattering
singularities.
We shall add the assumption : d) y, and l = ~ I ~ are so small that

and E+  203C90 hold. These conditions imply respectively that

for n  1 and any k1 ... kn, &#x3E; 0 and en(E+, 0; kl ... kn)  0
for n  2 and any /(1 1 ... kn and allow for e 1 (E +, 0; k 1 ) to change sign and
vanish as k 1 varies. Notice that, at least for small f and l, E(O)  0 and E( - 7)
increases and becomes less negative (and, perhaps, even positive) as Z
increases. Then, the elastic scattering threshold is

We are restricting ourselves to small l such that only elastic scattering
occurs and boson production is energetically forbidden.
The above statements and some preliminary study of the recurrence (3 . 3)

indicate that all 0, can be determined rigorously through the fol-
lowing three-step construction, which constitutes the plan of our work :

1) Solve partially the set of all Eqs. (3. 3) for n  2 and obtain y2 in terms
of y1 and all bn’s, n  2, treated as known inhomogeneous terms. Since en  0

for n  2, the kernels for such a set are free of scattering singularities, but
one has to cope with an infinite number of equations. The recurrence rela-
tions and bounds summarized in subsection 2 . B will be quite useful.

Moreover, a detailed study and majoration of all contributing Feynman
diagrams (presented in a separate paper) will be required.

l’Institut Henri Poincaré-Section A



261ELASTIC MESON-NUCLEON SCATTERING (I)

2) Consider Eq. (3 . 3) for n = 1, plug into it the solution for y2 in terms
of Yl 1 obtained in step 1 and the expression for yo implied by Eq. (3 . 3)
for n = 0 and solve for y 1. Here, one has to deal with one integral equation
displaying elastic scattering singularities.

3) Extend the work started in step 1 so as to complete the construction
of yo and all yn’s, n ~ 2, once Yl has been determined in step 2.

4. PARTIAL SOLUTION OF EQS (3.3)
FOR n  2 IN TERMS OF y1 1 (STEP 1)

4. A. An alternative formulation of Eqs (3 . 3) for n  2.

For later convenience, let us divide Eq. (3 . 3) for n  2 by

and introduce

Vol. XXXIV,n" 3-1981.



262 R. F. ALVAREZ-ESTRADA

Then, the set formed by all Eqs. (3.3) for n  2 becomes the following
inhomogeneous linear equation for Y :

where and are regarded as given inhomogeneous terms and W is
the corresponding kernel, which is unambiagously defined through the
right-hand-side of Eq. (3.3) for ~2, the division by en ~2 and Eq. (A. 4.1).
One has, in a formal sense, at least :

where ’0 denotes the corresponding unit operator.

4 . B . Rigorous construction of d~ 1 ~.

Since none of the 2, appearing in Wand vanish for any
~i 1 ... kn, a suitable extension of the techniques sketched in subsection 2 . B
will allow to construct d(1) rigorously. Thus, a posteriori, we shall realize
the interest of having introduced y’n (Eq. (4. A.I)). Notice that 2,
satisfy the following recurrence relations :

In fact, if = 0, then d~2~ = 0 and one has Y = = + 
whose explicit form is (4 . B .1 ). Upon introducing the L2-norms ~ [d(1)n(k1) 112
and [ ( dnl ~ [ [ 2, n &#x3E; 2, through Eqs. (2 . B . 5) with bn replaced by and

Annales de l’Institut Henri Poincaré-Section A



263ELASTIC MESON-NUCLEON SCATTERING (I)

carrying out majorations similar to those leading from Eq. (2 . B . 4) to
(2 . B .10) and (2 . B .11 ), one finds

where the actual 2n and 6n are still given by Eqs. (2 . B . 6) and (2 . B . 7), but
with E replaced by E + . The recurrences (4. B. 2) and (4. B. 3) have structures
similar to (2 . B 10) and (2 . B .11 ) respectively. Then, by applying the same
arguments which led from (2 . B 10), (2 . B .11) to (2. B .12) and (2. B .13)
respectively, one arrives at the following explicit recurrences of bounds
for B12 (which satisfy the recurrences (4 . B . 2) and
(4. B. 3), respectively) :

Let f be so small that all Zn and 2, are finite and strictly positive
(this agrees with and makes explicit assumption b) in subsection 2. A).
Then, by using the properties of !! bn~2 and ~bn(k1) 112 established in sub-
section 2. B, and using similar techniques, it is easy to prove that

a) both series on the right-hand-sides of (4 . B . 5) and (4 . B . 6) converge

Vol. XXXIV, n° 3-1981.



264 R. F. ALVAREZ-ESTRADA

c) there exist continuous and positive functions ~n2~(k 1 ) such that

c2) cr~(~) is bounded for any k1

On the other hand, by expanding (~ - W)-1, one gets

It is obvious that the series for each 1 ... ~), ~ ~ 2, which results
from (4 . B . 7) coincides with the one obtained by successive iterations of
(4. B .1). By majorizing directly such a series for (via Minkowski and
Schwartz inequalities, etc.), one finds two majorizing series for 
and which, in turn, can be summed up into the right-hand-sides
of (4. B. 5) and (4. B. 6), respectively. The detailed check, term by term,
of the last statement is not difficult, but rather cumbersome, and will be
omitted (compare with section 4 of [14 ]).

Notice that the recurrences (4. B. 2) and (4. B. 3) provide a particularly
convenient method for majorizing all which avoids the detailed

study of the individual terms of the series (4. B. 7). We stress the fact that
the bounds (4. B. 5) and (4. B. 6) establish the convergence of the series
(4 . B . 7).
We shall assume that the boson energy is such that

small or vanishing |03C0| at the given b(E  E+), then

for any k1 1 ... 2, (1(3) being a positive and finite constant.
/)for the given E+, ~i(E+,6;~)=[~i-~(E+)].~(~i) where

kBO)(E+) &#x3E; 0 and 0 for any k1  0. These assumptions are auto-
matically fulfilled by the typical non-relativistic boson energy

For a relativistic meson energy, namely,

the corresponding e i°~(k 1 ) may have its own zeroes, generically denoted
by xl, which would violate assumption f ). One can still allow for the rela-
tivistic cv(k), provided that f ) be replaced by

f ’) v(k) vanishes identically for k &#x3E; jco being smaller than att x 1,
so that the only effective zero of ~(E+,6;~i) below xo is ~~(E+). It is

always possible to choose so that assumptions h), f ’), and g) (to be

l’Ijrstitut Henri Poincaré-Section A



265ELASTIC MESON-NUCLEON SCATTERING (I)

formulated in subsection 5 . B) hold simultaneously and, hence, the main
results of this work remain valid.

By applying ~k1 to the whole recurrence (2. B. 3), one generates a new
recurrence for ... ~), ~ ~ 1, which also contains bn, and

Upon majorizing this new recurrence by using assumption e)
and techniques similar to those leading to (2.B. 11), one gets a three-term
recurrence of inequalities of the type

Here,

and ~l "(l:l ), I ~ L whose expressions are omitted for brevity, depend on v,
and !!~(~i)!!2- In turn, the latter two are regarded as

known, by virtue of (2 . B 12-13). By applying to the recurrence (4. B. 8-10)
methods analogous to those yielding (2 . B .13) and the results a), b) and c)
at the end of subsection 2. B, one arrives at

where ~~i~(kl), i = 4, 5, are continuous, positive and bounded for any k1.
Similarly, by taking Vkl 1 in the recurrence (4. B .1) and majorizing (using
again assumption e)), one derives the analogue of (4. B. 8-10) for

Finally, by extending the methods which led from (4. B. 8-10) to (4. B .11 )
and using (4. B. 8-11), one derives

6~i~(kl ), == 6, 7 being also continuous, positive and bounded for any k 1.
The bounds (4. B 11-12) will be useful in section 5.

4 . C . An expression for in terms of Vi.

Our next task is to construct mathematically the first component
of(D - W) - 1 y~O). Unfortunately, it is difficult since depends

on y 1, which contains elastic scattering singularities, so that the maj oration

Vol. XXXIV, n° 3-1981.



266 R. F. ALVAREZ-ESTRADA

techniques used in subsection 4 . B for ~2, cannot be extended
to d22~ and other methods have to be applied. Let us consider all possible
contributions to ~(~2) which arise from the formal expansion

(through a detailed analysis for n = 1, 2, 3, 4 and a suitable induction for
larger n). Then, one shows without difficulty that

. 

a~ there exist, in a formal sense at least, four functions si, i = 0, 1, 2, 3
such that

b) all si, = 0,1, 2, 3, are free of 03B4-functions of threemomenta.

Since = d~°~(k2k1), the properties cl), c2) and c3) imply

The structure of (5.C. 1) suggests that the st can be regarded as a kind of
Green’s functions.

Let f be sufficiently small (recall assumption b) in subsection 2. A).
Then, one can establish rigorously the existence of the four functions si,
i = 0, 1, 2, 3 satisfying the above properties a), b) and c) and the following
ones

is continuous and bounded for any k1, k2 -

Annales de l’Institut Henri Poincaré-Section A



267ELASTIC MESON-NUCLEON SCATTERING (I)

d4) ,S2,M and S3,M are positive, continuous and bounded for any
k 1, k2, k 1, k2.

3

where ~ ~  + oo, all positive, continuous and bounded

i= 1 _ _
for any k2, k2 and so on for ~i 1 .

3

where ~ ~  + oo and all are positive, continuous and bounded

i= 1

for any 
d8) each si, i = 0, 1, 2, 3, is really a function only of the scalar products

of the vectors which appear as its arguments (no privileged directions exist).
Thus, So depends only on ki, k2, k2 and so on for the others.

Notice that all si, i = 0, 1, 2, 3, depend on E + and, through it, also 
and that they do not have an additional and explicit t-dependence. In fact,
i ) they are uniquely determined by the kernel W, which depends on E +
and which does not have an explicit 7-dependence, ii) E + depends on 
and E( - l) both of which only depend 
The proof of the above results, which are essential for the rigorous

construction of yl, requires a careful study and majoration of all Feynman

Vol. XXXIV, n° 3-1981.



268 R. F. ALVAREZ-ESTRADA

+ x

diagrams which, arising from H + W" contribute to the func-

M=i 1

tions si, i = 0, 1, 2, 3. Such a proof, which is rather lengthy, and explicit
estimates will be given in a forthcoming paper. Our methods also provide
the basis for an effective construction of all si, i = 0, 1, 2, 3, in the form
si + where si,F is the sum of a finite number of Feynman dia-
grams (say, all perturbative contributions to si up to some order f2N) and
Si~R ~1S the remainder. In fact, the techniques to be presented in such a forth-
coming paper will allow to majorize all |Si,R|..

5. THE ELASTIC SCATTERING INTEGRAL EQUATION
FOR y 1 (STEP 2)

5 . A. Derivation of the elastic scattering integral equation.

Let us consider Eq. (3 . 3) for n = 1 and replace in it by

where, in turn, is to be substituted by the right-hand-side of
Eq. (4 . C .1) is a known function (as it is given by the conver-
gent series which results from (4. A. 5) for n = 2 and (4. B. 7) and it depends
only on completely known functions). Moreover, let us express in terms

of y1 via the second Eq. (4. A. 3), use Eq. (3 . 3) for n = 0 in order to eliminate
Yo in terms of y~ and rearrange terms. Then, Eq. (3.3) for n = 1 yields
finally the following inhomogeneous, linear and singular integral equation
for y1 :

Afniales de l’Institut Henri Poincaré-Section A



269ELASTIC MESON-NUCLEON SCATTERING (I)

Remarks. 1 ) Since e 1 (E +, 0 ; k 1 ) vanishes for some k1 1 (recall assump-
tion d) in section 3)) and in order to ensure the correct elastic-scattering
singularities and outgoing wave behavior for we have replaced

by ~(E+,0;~i)+f8 (E -+ 0+), according to the general
prescriptions of scattering theory [1 ].

2) By virtue of properties dl), d2) and d4) in subsection 4. C and assump-
tion a) in subsection 2.A; is bounded for any evanishes if kl -+ OCJ

and, for any becomes as small as desired if f is suitably small.
3) The results dl)-d4) in subsection 4 . C imply

where k 1 ) is bounded for any k1, k i and vanishes if k1 or k i approach
infinity. Moreover, A becomes as small as one likes, provided that / be
adequately small.

4) By using

and the results a) in subsection 2 . B (between Eqs. (2 . B .13) and (2.B. 14))
and cl) in subsection 4 . B (between (4 . B . 6) and (4 . B . 7)), one gets

where Di i)  bounded for any ~i 1 and vanishes if ~i 1 --+ oo.

Vol. XXXIV, n° 3-1981.



270 R. F. ALVAREZ-ESTRADA

5) By using assumption a), the results dl)-d4) in subsection 4 . C, the
results obtained for b 1 (subsection 2 . B) and } (subsection 4 . B) and

Eqs. (5. A 4), (5. A. 6), it is easy to prove that d3K1 I Ð1(k1) 12  + 00

and d3k1d3k’1|A(k1, ki) (2  + oo.

6) From Eqs. (5. A. 3), (5. A. 5) and (2. B. 2) for 03C0 = 0, the result d8) and
the comment just after it in subsection 4 . C, it follows that D2(k1) and,
hence, only depend on A:i and E + (but not on the direction ofk1).

Let ~’ be suitably small (recall assumption b) in subsection 2. A). Then,
by using assumption ~’) in subsection 4. A, the above remark 6), and noti-
cing that becomes as small as desired for suitably small f, one has

where ~(E+) &#x3E; 0 and D’(k 1 ) ~ 0 for k 1 &#x3E; 0. Notice that :
i) ki(E+) - ki°~(E+) and D’(kl) - being the same

as in assumption f )) approach zero as f 2, if / -~ 0,
ii) D‘(k 1 )/e i°}(k 1 ) -~ 1 as k 1 ~ oo, since 02(~1) -~ 0 (recall remark 2)

above). 
,

We shall introduce

so that Eq. (5 . A .1) becomes the desired elastic scattering integral equation

Using standard abstract notation and manipulating, Eq. (5. A. 9) reads

where (03B8’1,03B8’1) and (03B8"1,03B8"1) are the polar angles determining k’1 and k 1.
de l’Institut Henri Poincaré-Section A
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5 . B. Rigorous solution of the elastic scattering integral equation.

Some time ago, Lovelace presented a compactness proof for the Lipp-
mann-Schwinger equation in two-particle potential scattering [23 ]. As
we shall see, it is possible to extend such a proof to Eq. (5. A. 9). We shall
give the essential arguments and bounds for that purpose, and omit certain
details which can be found in [23 ]. Let us consider the Banach space C1
of all complex functions ~(ki) such that both ~(kl) and are conti-
nuous and bounded in magnitude for any The norm in Cb which makes
the latter a Banach space, is

(1(8) being a strictly positive constant such that both terms in Eq. (5. B .1)
have the same dimensions (for instance, (1(8) = &#x3E; 0).
We shall make the following additional assumption : g) i?(k) is such that

are true uniformly for any k1 and ki, (1(i), i = 9, 10 and 11 being certain
non-negative constants, with (1(9) &#x3E; 0 strictly, and

g2) both

are uniformly bounded for any k1 and 
By recalling the second Eq. (5. A. 8), majorizing it and Eq. (5. A. 6),

recalling Eq. (5. A. 7) and the comments below it and using the results d1)
to d7) in order to make v and ~kv appear, one concludes that there always
exist cut-off functions v such that both gl) and g2) hold. We shall not
write down the resulting conditions on v and Okv, which are straight-
forward but rather cumbersome. Notice that gl) and g2) generalize, respec-
tively, the conditions named (2 .11 ) and (2.14) in Lovelace’s paper [23 ].
Moreover, both 6~ 1 °~ and 6~ 11 ~ become arbitrarily small, if f is suitably
small.
The main steps necessary for solving Eq. (5. A. 9) in Ci are the following.
1) Assumption c) and our previous results in subsections 2 . B and 4 . A

(recall the result a) in subsection 2 . B, the result cl) in subsection 4 . B,

Vol. XXXIV, n° 3-1981.
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the bounds (4. B 11-12) and Eqs. (5. A. 2) and ( 5 . A. 4)) imply that b 1 ( - l; ~ 1 ~,

and all belong to C1.
2) If C belongs to C1, so does and one has

uniformly in k;’, where

This bound implies that A(~ = 0) = 0.
3) Step 2) and assumption gl) imply

uniformly in ~ c/~ being a positive constant (compare with (2.10)
in [2~]).

4) If I&#x3E; belongs to Cb so does 1&#x3E;. Moreover, by virtue of assump-
tion g2), one has I&#x3E; ::::; III I&#x3E; III, uniformly in where

5) Steps 2) and 3) imply the following Holder conditions :

and 0 (J06) being £ positive " constants (compare " with [23 ]).

Annales de , l’Institut Henri Poincare-Section A



273ELASTIC MESON-NUCLEON SCATTERING (I)

6) belongs to C 1, Â I&#x3E; also belongs to Moreover, Eqs. (5. A. 10-11)
and steps 2), 3), 4) and 5) yield :

ko being an arbitrary finite momentum, with ko &#x3E; ~(E+)-

ii) if E + is such that ~(E+) = 0 and ko is arbitrary but strictly positive

Notice that the two integrals appearing in (5 . B . 6) and (5 . B . 7) converge
and that i = 13, 14, 15 and 16 become as small as desired as f ---+ 0.

From the above properties, and extending Lovelace’s arguments [23 ],
it follows that : a) A is a compact (and, hence, a continuous and bounded)
operator in C1, b) A can be arbitrarily closely approximated by an operator
of finite rank and, hence, Eq. (5. A. 9) can be approximated by a finite
matrix equation as accurately as desired, c) for suitably small f, the series
for formed by all successive iterations of Eq. (5. A. 9) converges
in Ci 1 (as the two constants multiplying ( on the right-hand-sides of
(5 . B . 6) and (5 . B . 7) are less than unity). Further results can be obtained
by applying to the kernel A and Eq. (5. A. 9) other standard properties of
compact operators. For brevity, we shall omit them.

6. CONSTRUCTION OF yo 2 (STEP 3)

Using Eqs. (5. A. 7) and the first Eq. (5. A. 8), Eq. (3 . 3) for n = 0 becomes

Here, (8, ~p) are the polar angles of k and yi(k) is the solution of Eq. (5 . A . 9),
which exists and belongs to C 1 (at least, for small f ). By extending the
techniques used to establish step 5) above, one proves easily that the sin-
gular integral in Eq. (6.1) converges, which implies the finiteness ofyo’

Similar methods allow to establish the convergence of all integrals

Vol. XXXIV, n° 3-1981.
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in Eq. (5. C .1), when is expressed in terms of yi via the second Eq.
(4 . A . 3). This implies that D(~i).D(~).~(~i~2) and

are continuous and bounded for any kb k2. This, by virtue of the results
obtained in subsection 4. Band Eq. (4. A. 5), completes the characteriza-
tion of y2.
Once yo, yl and y2 are known, the construction of yn for n  3 poses

no problem of principle, although it is rather cumbersome. We shall sketch
the determination of y3 only. Let us consider all Eqs. (3.3) for n  3 and,
using Eq. (4. A .1 ), cast them as

where (j, h) = (2, 3), (1, 3), (1, 2) for i = 1, 2, 3. Y’ and Y1~°~ are given by the
right-hand-sides of Eqs. (4. A. 2) respectively, with the first component
omitted and W’ is the corresponding new kernel. The construction of

(H - VV’) -1. Y i °~ proceeds by generalizing directly that of d~ 1 ~ in sub-

section 4. B. Clearly, y3 equals the first component of (0 - W‘)-1. Yi °~,
plus that of (D - ~V‘) -1. YZ °~. In turn, the latter is given by the genera-
lization of Eq. (5.C. .1), with : i) new functions s’j, j = 0, 1, ..., 8, instead
of Sb which can be constructed by generalizing the techniques to be pre-
sented in a separate paper, ii) replaced by the non-vanishing component
of Y~B which is already known. The elastic scattering amplitude could be
determined, in principle, in terms of 7), by generalizing directly
the developments given in Schweber [6 ].
We stress that the techniques used in this and the following paper provide

basis for : i) elective reductions of the actual elastic scattering problem in
a field-theoretic model to n-body problems (as they control the contri-
butions of all possible Feynman diagrams), ii) non-perturbative studies,
for increasing values in f, (following the spirit of subsection 5 . C of [14 ]).
In order not to make this work longer, we shall omit them and the discussion
of some op-en problems.
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