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SectionA:

Physique ’ théorique ’

ABSTRACT. - In a preceding paper we have developed the Predictive
Relativistic Mechanics of systems of particles with spin. In this paper we
apply our general results to the case of systems of spinning, electric poles-
magnetic dipoles. As a test of our formalism we derive the classical version
of Breit’s Hamiltonian.

1. INTRODUCTION

In an earlier article [1], which we shall hereafter refer to as BM, we have
expounded the theoretical foundations of Predictive Relativistic Mechanics
(P. R. M.) of isolated systems of particles with spin in interaction. The
object of the present work is to apply the results of that article to electro-
magnetic interaction. For this purpose we shall assume that the particles
in the system are electrically charged and possess a magnetic moment
considered to be associated with a spin or intrinsic angular momentum in
the standard form. Hereafter we shall use the term electric pole-magnetic
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232 L. BEL AND J. MARTIN

dipole to designate this type of particles. Furthermore the term motion,
with reference to such an object, will include both space-time motion and
the evolution of the magnetic moment.

Section 2 discusses the results obtained from Classical Field Theory
for the interaction of two EP-MD’s. To this end we shall divide this Section
into three Subsections, the first of which will be concerned with calculating
the electromagnetic field created by a EP-MD undergoing a known but
arbitrary motion. The second will consider the equations of motion of a
EP-MD subject to the action of an external electromagnetic field. These
equations involve two coupled systems of differential equations ; the first,
of the 2nd order, determines the space-time motion of the particle and is
obtained by adding to the Lorentz force the force exerted by a field on a
magnetic dipole ; the second system, of the first order, determines the evo-
lution of the magnetic moment and is a trivial generalization of the well-
known equations of Bargmann, Michel and Telegdi [2]. Finally, in the third
Subsection we assume that the external electromagnetic field in the previous
Subsection is precisely the field calculated in the first one i. e., that which

creates another EP-MD in arbitrary motion. We examine then the possi-
bility of obtaining equations of motion for the system of two EP-MD’s
in interaction. As in the case of two simple electric poles, we conclude that
the Lienard-Wiechert type of equations thus obtained are only useful

as « boundary conditions ».
In Section 3 we study the interaction of two EP-MD’s (assumed to be

isolated from the rest of the objects in the Universe) from the point of view
of the theory expounded in BM. For this purpose we first consider that this
interaction is described by a Projectable System in the sense of the defi-
nition 3.2 in BM. We then suppose that both the 4-accelerations and the

« 4-precessions » of the particles are developable in power series of the
parameter which is the product of the electric charges. In this way, as in the
case of particles without magnetic moment [3], it is possible, using the
« boundary conditions » considered in Section 2 to obtain unique expres-
sions for these quantities. In the present work we shall limit ourselves to the
first-order calculation of these series for reasons of simplicity, and because,
as we shall see, this is already a significant approximation. We believe,
nevertheless, that the second-order calculation, even though exceedingly
laborious, could lead to results of great interest.

Section 4 constitutes a direct application of the results obtained in the
last part of BM. To this end, we make use of the first-order expressions for the
4-accelerations and « 4-precessions » calculated in the previous Section,
to obtain, likewise in the first order of approximation, the expressions for
the total Linear Momentum and Angular Momentum of the system of
two EP-MD’s. We also calculate in the same order of approximation the
corresponding simplectic form.

Finally, in Section 5, we carry out a development in power series of 1/c
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233PREDICTIVE RELATIVISTIC MECHANICS OF SYSTEMS OF N PARTICLES WITH SPIN. I.

(c = speed of light in vacuum) of some of the quantities relative to the
Projection (see BM) of the approximate Projectable System of previous
sections. This process leads in particular to the obtaining of the classic
version of the well-known quantized hamiltonian of Breit [4, 5]. We consider
this result as a good test of reliability for the more general ones which are
presented in this paper.

2. INTERACTION OF TWO EP-MD’S
IN CLASSICAL FIELD THEORY

A. Field created by a EP-MD.

Let us consider Minkowski’s space time referred to a Galilean sys-
tem of coordinates { (fx, 03B2, 03BB, ,u, ... = 0, 1, 2, 3), where x0 = ct repre-
sents the time coordinate and { (i, j, k, ... == 1, 2, 3) the space coordi-
nates. Let there be then a EP-MD performing a known but arbitrary motion,
whose space-time part is described by the following curve of 

where the subindex a’ serves to individualize the object and where we
choose 1" in such a way that :

being the metric tensor of JIt 4 and ma. the mass of the particle consi-
dered [6]. Let us assume also that the evolution of the magnetic moment
is described by the following functions :

where M~ is, for each value of T, an antisymmetrical tensor orthogonal
to the trajectory of the particle [7], i. e.:

Thus MQ~ is in a one to one correspondence with the following 4-vector,
which will play the role of magnetic moment,

r~~‘~"~ being the Levi-Civita tensor [8]. Note that, according to (2.5), the
4-vector M~ is trivially orthogonal to the trajectory and so space-like.

Let us now see what is the electromagnetic field created by the previous
Vol. XXXIV, nO 2 - 1981.



234 L. BEL AND J. MARTIN

EP-MD. For this purpose we first consider the associated current, of which
the expression in any point of M4 is as follows :

Moreover, using the Lorentz gauge and taking into account Maxwell’s
equations, the electromagnetic potential is, as is well known, determined
in each point of M4 by the following expression :

where :

represents the volume element of ~4, and where :

represents the retarded (8 = - 1 ) or advanced (8 = + 1 ) Green’s propa-
gator, 9 being Heaviside’s step function. Let us also remark that the sub-
index a serves to distinguish between the field point and the source points.
So, substituting (2.6) in (2.7) and carrying out the integrations in the
standard manner, we finally obtain [10] :

where the following notations have been used:

’r£ (8 = ± 1) being two values of the parameter r defined as :

that is, the values of the parameter corresponding to the points of inter-
section between the curve (2 .1 ) and the half past (8 = - 1 ) or future

(8 = + 1) light cone with vertex at the point 

l’Institut Henri Poincaré - Section A



235PREDICTIVE RELATIVISTIC MECHANICS OF SYSTEMS OF N PARTICLES WITH SPIN. II.

Observe that if the particle describes a straight line of space-time and the
spin remains constant, the expression (2.10) is reduced to the following
in the appropriate referential:

where laa, is the three-dimensional vector joining the source point and the
field point and where the symbol A denotes here the usual vector product.
Furthermore we have put == V~~’. In formulae (2.13) and (2.14)
we identify, respectively, the classical scalar potential and vector potential
created by a EP-MD at rest.
From expression (2.10) we obtain the electromagnetic field tensor

8) with the usual formula :

In calculating these derivatives we should bear in mind that from (2.12)
and (2.11 d) it follows that:

with which we obtain from (2.11~) and (2.11~):

Thus, deriving (2.10) taking these results into account, we obtain [10] :

Vol. XXXIV, nO 2 - 1981.



236 L. BEL AND J. MARTIN

in which we have used the following notations :

By substituting (2.18) in (2.15) we arrive at the desired expression of
the electromagnetic field tensor at point (xa). Observe that in this expression
we encounter as new elements with respect to the potential (2.10), the super-
acceleration and the « superprecession » M 03B1aa, of the EP-MD in the
retarded (8 = - 1 ) or advanced (8 = + 1 ) position.

B. Action of an external field on a EP-MD.

Let us now consider a EP-MD subjected to the action of an external
electromagnetic field which we shall designate The object of the present
Subsection will be to expound and comment on the equations of motion
of this object for such a situation.

Regarding space-time equations of motion, we shall use the following :

where xa represents the position of the particle and ea its electric charge,
and also make use of the notation 1t~ == - Furthermore the vector Ma
represents the corresponding magnetic moment, which is assumed to be
orthogonal to the object’s trajectory, in other words,

whereby it has no time component in its own instantaneous referential.
Note that, in view of the structure of the second member of (2.21 b), the
quantity ~a is trivially a first integral of system (2.21), to which we shall
always assign the value :

ma being the mass of the particle. This choice of value for is equivalent
to interpreting the parameter r so that the product maz is the proper time.
The justification of equations (2.21) offers no dimculty once the rela-

tions (2.22) and (2.23) have been imposed. In fact, writing (2.21 h) in the
particle’s proper referential, we obtain trivially :

Annales de l’Institut Henri Poincare - Section A



237PREDICTIVE RELATIVISTIC MECHANICS OF SYSTEMS OF N PARTICLES WITH SPIN. II.

where va represents the velocity of the particle and where (Ei, Bj) are the
electric field vector and magnetic field vector respectively; as can be seen,
the second member of (2.24) coincides with the classic force exerted by an
electromagnetic field on a EP-MD at rest. Thus the second member of
(2.21 b) is, except for one factor, the sum of the usual Lorentz force and
another term representing the covariant expression of the force exerted
by a magnetic field on a magnetic dipole.
Now let us deal with the equations of motion relative to the magnetic

moment. Here let us assume that the EP-MD considered possesses an

intrinsic angular momentum or spin described by a vector Sa, to be related
to the magnetic moment vector M~ by the standard formula :

03BBa being the giromagnetic coefficient of the particle. We shall use then as
equations of motion the so-called equations of Bargmann, Michel and
Telegdi [2, 77], which can be written as follows :

where, naturally, ~ca is given by the second member of (2.21 b). Let us
observe that (2.26) allows us to deduce immediately that the quantity

= is a first integral, and this result fits in with hypotheses (2. 22)
and (2.25). What is more, in consequence of this, it turns out that the quan-
tity :

is also a first integral of (2.26), i. e., the modulus of spin is a constant of
motion as was to be expected. For this reason from here on we shall not use
the spin vector Sa but the corresponding unitary vector y~, so that :

Let us point out, finally, that by writing equation (2.26) in the particle’s
own instantaneous referential the following is obtained :

which is the well-known classical equation of spin evolution.

C. Lienard-Wiechert equations for two EP-MD’s.

Let us now consider an isolated system of two EP-MD’s in interaction
and analyze the « equations of motion )) given by Classical Field Theory.
Vol. XXXIV, nO 2 - 1981.



238 L. BEL AND J. MARTIN

To obtain these equations it is enough to assume that the electromagnetic
field tensor which appears in equations (2 . 21 ) and (2 . 26) in the previous
Subsection, is precisely the tensor E) calculated in Subsection A,
making subindices a and a’ necessarily take the values ( 1, 2) with ~ 5~ a’ .
The formal result thus obtained, taking into account expression (2.18)
and equations (2.21) and (2.26), is the following:

where Wa and ZQ are known functions of their arguments, in which the
4-vectorial Greek index has been omitted to simplify writing. What is more,
the following evident notations have been utilized :

where, in line with (2.28), (2.25), and (2. 5) functions Bf:,(-r) are such that:

or inversely :

It should be pointed out that the supersuperacceleration 03B8aa, and the super-

superprecession in equations (2.30) arise from the derivative of the
tensor field, which appears in the right-hand member of (2.21 b) and
consequently also in (2.26). This derivative was not explicitly calculated
in Subsection A, since it gives rise to an expression of excessive length.
Nevertheless it will be calculated in the next Section to a certain approxi-
mation.

Equations (2.30) are not equations of motion in the ordinary sense,

but rather a differential system with retarded (e = - 1 ) or advanced

(8 = + 1) arguments and also of the so-called neutral type, for which the
existence and uniqueness theorem is not verified. This situation is not new
as it already appeared in the case of simple electric poles, but the compli-
cation is now greater due to the presence of first and second derivatives

of and 
The interest of equations (2. 30) arises, however, as in the case of spinless

particles [3], from their utilization as « boundary conditions o. That is to
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239PREDICTIVE RELATIVISTIC MECHANICS OF SYSTEMS OF N PARTICLES WITH SPIN. II.

say, for the determination of ordinary equations of motion whose solutions
will satisfy these equations of motion. It is in this way that they will be used
in the following Section.

3. FIRST ORDER PREDICTIVE INTERACTION
OF TWO EP-MD’S

As before, let us consider an isolated system of two EP-MD’s in inter-
action. We will now assume that this interaction is governed by a Projectable
System in the sense of theorem 3.2 of BM, that is, by a differential system of
the following type (with obvious notations) :

where functions ea and Oa must satisfy the two following groups of equa-
tions :

As we know, equations (3.2) imply that the six quantities 7~ == - 
and Ya = 03B303C1a03B3ap are first integrals of system (3.1). Regarding

the last four, we shall always assign to them the following values :

so that the number of independent initial conditions is reduced to 20.
As for the first two integrals 03C02a, these will be interpreted a posteriori so that
the quantities :

will represent the masses of the particles.
We shall also assume that functions Ba and aa are developable in power

Vol. XXXIV, r° 2 - 1981.



240 L. BEL AND J. MARTIN

series of the product g == eaea, of the electric charges of the two EP-MD’s,
i. e.,

where both functions have been made to be zero for g = 0.
We will limit ourselves to the first order calculation of series (3.6),

making use for this purpose of the supplementary condition that the solu-
tions of system (3 .1 ) should verify the « boundary conditions » (2.30)
of the previous Section. To this end we shall begin by writing out these
equations (2.30) to the first order of approximation in g, that is, obtain
functions ~Va~ 1 ~ and Z:(1) (with obvious notations).

In accordance with (2.18), (2.19) and (2 . 23) we have :

where the symbol ~ denotes equality excepting higher order terms in the
electric charges. Now, substituting (3 . 7) in (2.15) we get :

Let us now calculate the derivative of (3 . 7) with the same order of approxi-
mation. Taking (2.16) and (2 .17) into account, we find :
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where, to simplify writing, these notations have been used :

We could now simply substitute (3.8) and (3.9) in the second members
of (2 . 21 b) and (2 . 26) to obtain the desired functions Wa~ 1 ~ and Z:(1).
Note that the presence of the tensor in the second term of the right
hand side of (2.21 b) makes the antisymmetrization of (3.9) unnecessary.
Now let us consider equations (3 . 3) to the first order in g. In view of (3 . 6)

we have the trivial result :

Our object, then, is to solve these equations (3.11) with the « boundary
conditions )) imposed by functions and Z~~ 1 ~. Now, as is already
known [12], there exists a unique solution of (3 .11 ) satisfying these « boun-
dary conditions o, which is given by :

* *

where W:(l) and Z~ are obtained from W:(l) and Z:(l) respectively
by making the following substitutions:

where we have made :

Note that, in particular, we have :

whereupon, looking at (3. 8) and (3.9), we may assert that functions (3 .12)
do not depend on 8, i. e. in the order considered the result is independent of
whether we have taken retarded or advanced potentials.

Carrying out the substitutions (3.13) and (3.15) in (3.8) and (3.9),
Vol. XXXIV, nO 2 - 1981.



242 L. BEL AND J. MARTIN

and bringing this result to (2.21 b) and (2.26), we finally obtain, after a
tedious calculation, the following expressions for 8a~ 1 ~ and A:(1):

where the following definitions have been used :

Annales de l’ Institut Henri Poincaré - Section A



243PREDICTIVE RELATIVISTIC MECHANICS OF SYSTEMS OF N PARTICLES WITH SPIN. II.

Note that with these new variables quantity (3 .14 b) is written as follows :

We should also point out that in the construction of ~~ and A:(1) we
have already taken into account relations (3.4) in order to simplify writing.

4. CONSERVED MOMENTA
AND FIRST ORDER SIMPLECTIC FORM

As we stated in the introduction, the purpose of this Section is to construct
the Linear Momentum, the Angular Momentum and the Simplectic Form
corresponding to the dynamical system defined by expressions (3.16).
As this involves a direct application of the results and methods put forward
in the last Section of BM, we refer the reader to the said article for any
matters of theory or detail which may remain unclear in the present work.
We would also point out that the final explicit results are excessively long,
for which reason we shall limit ourselves to writing them out in the most
compact possible form. To be precise, we shall write the final expressions
in a simple integral form, a table of the integrals involved in the expressions
being given in Appendix 1. Thus the reader will be able to analyze the
behaviour of the required quantities without great difficulty.

A. Linear momentum.

Let us suppose that the total Linear Momentum or Energy Momentum
vector P"~ of the system being considered admits of a development analogous
to (3 . 6), that is :

where the zero order corresponds to the Linear Momentum of free particles :

Then, using (4.2) and formulae (4.45) and (4.46 b) of BM, order one
of series (4.1) is written as follows :

where represents the « reciprocal image » transformation [13] of trans-
formation cpz defined by :

Vol. XXXIV, n~ 2 - 1981.



244 L. BEL AND J. MARTIN

To carry out the integrations in (4.3) it should be remembered that, in
general, if 03C6 is a transformation of a manifold V onto itself andf(y) repre-
sents a function on V, the function defined as follows :

Consequently, the integrands of (4. 3) will be obtained from (3 .16 a) by
carrying out the substitutions indicated by (4.4). Now, since the variables
(~ yb) remain unchanged, only the quantities in (3 .16 a) containing the
variables xa will change, that is (za, But according to (3.17 b, c)
and (4 . 4), the following is trivially obtained :

and consequently, following (3.18),

It turns out, then, that if we designate symbolically the second member
of (3 .16 a) by expression (4 . 3) of total Linear Momentum
to the first order is rewritten as follows :

It would now be sufficient to carry out the corresponding integrations in
order to obtain explicitly the required result. Observing (3.16 a) it can be
seen that these integrals are all immediate and converging, yet we shall
write them out in Appendix 1 for a rapid visualization of the behaviour
of 

Note, finally, that at the order under consideration the calculation of
Linear Momentum does not require the knowledge of the « precessions »
(3 .16 b).

B. Angular momentum.

As with Linear Momentum, let us assume that the total Angular Momen-
tum = - of the system of two EP-MD’s admits of a development
in series of the following type :

where represents the Angular Momentum relative to a system of
free particles, which, according to formula (4.20 c) of BM, is written as
follows :

Annales de t’Institut Henri Poincare - Section A



245PREDICTIVE RELATIVISTIC MECHANICS OF SYSTEMS OF N PARTICLES WITH SPIN. II.

with:

In view of this, and of the techniques developed in the last part of BM [l4],
we conclude that the formula analogous to (4.3) for Angular Momentum
is the following [15] :

If we now utilize (4.4) and the results in (4.6) as well as the considerations
previously made for Linear Momentum, we find the following expression
for first order Angular Momentum :

Again we only need to carry out all the integrations in order to obtain
explicitly the required result. Here too, observing (3.16), it is seen that
all the integrals are immediate. However, there appears a small difficulty
respecting the convergence of the second term of (4.12). In fact, some of
the integrals in this term are divergent if considered one by one, but the
sum over the two particles leads to a finite result. To illustrate this pheno-
menon let us consider the following expression extracted from the second
term of (4 .12) :

It is obvious that each of the integrals by itself is divergent, yet a simple
calculation shows that the whole expression takes the value:

C. Simplectic form.

This time we start out from hypothesis (4.41) of BM adapted to the
present situation, namely, the assumption that the simplectic form Q asso-

Vol. XXXIV, nO 2 - 1981. 10



246 L. BEL AND J. MARTIN

ciated with our dynamic system admits of a development in series of powers
as follows :

where is the simplectic form associated with a system of free particles,
given by expression (4.16) of BM, i. e.:

Now using trivially equation (4. 44) of BM, we get the following expression
for the simplectic form to the first order of approximation :

represents the Lie derivative operator and Ha~ 1 ~ the following
vector field :

Let us first calculate the Lie derivative appearing in the integrand of (4.17).
Taking into consideration (4 .18), (4 .16) and (4 .10), as well as the fact
that the Lie derivative commutes with the external differential, we have the
following result [7d]:

where the following notation has been used :

In accordance with this, and considering that the transformation ~pz also
commutes with the exterior differential [16], we find that the expression (4 .17)
of can be written as follows:

Annales de l’Institut Henri Poincare - Section A
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where, in according to (4 . 20), the following obvious notation has been used :

As previously, we need only to carry out all the integrations appearing
in (4.21) to obtain explicitly the required result. Again, as in the previous
Subsection, the convergence of the second term of (4 . 21 ) is assured if taken
as a whole, that is, the sum over the two particles.

5. DEVELOPMENTS
IN 1/c. BREIT’S CLASSICAL HAMILTONIAN

Let us use F to designate an arbitrary function of the arguments
7~, Y~) relative to the two particles of the dynamic system being consi-

dered. Following the terminology and interpretations of Section 3A of BM,
we shall call projection of F, designated F, the restriction of this function
to the following values of its arguments :

where ma represents the masses of the particles considered, and where
represent the velocities and instantaneous spins respectively of these

particles (see Section 2 of BM). So we shall have by definition :

The basic purpose of this Section is to show that the results of the pre-
vious Section lead, in particular, to obtaining the non-quantic version of
Breit’s well-known Hamiltonian [4]. To this end we shall consider first the
projection --_ Put °~ + according to definition (5 . 2), of the Energy
Momentum vector at the first order, given by formulae (4.2) and (4.7). A
somewhat laborious but direct calculation shows that if we carry out a deve-

Vol. XXXIV, n° 2 - 1981.
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lopment in power series of 1 jc of this projection the following results
are obtained for the time component and the space components respectively
(see Appendix 2) :

where the symbol ~ represents an equality up to higher order terms in
1/c and where the standard three-dimensional vectorial notation has been
used. We have also taken :

The expression (5.3 a) represents the Energy of the system to the order
being considered, and in it may be observed the kinematic contribution
and the interaction contribution. The latter is composed of an independent
spin part [17] and another part due to the presence of the spins, in its turn
composed of a spin-orbit contribution and a spin-spin contribution. Ana-
logous considerations can be made in relation to the expression (5. 3 b),
which represents the Momentum of the system to the order considered.
Note, however, that in this case there is no spin-spin contribution.

Let us consider the restriction, in line with (5.1), of the simplectic form
QEi] = + given by formulae (4.16) and (4.21). A calculation
similar to that which has allowed us to obtain (5.3) shows that up to the
order 1/ C2 a possible subset of canonical coordinates (see Section 4A of
BM) of the said restriction ~2~1 ~ is given by :

Annales de l’Institut Henri Poincare - Section A



249PREDICTIVE RELATIVISTIC MECHANICS OF SYSTEMS OF N PARTICLES WITH SPIN. II.

where once again the standard three-dimensional vectorial notation has
been used. Note first that (5. 5 a) does not contain the coupling constant g,
that is, it is an expression independent of the interaction. It is in fact the
development of the corresponding expression for a system of free particles
[see formula (4.24 b) of BM]. Note also that if we add (5 . 5 b) for the two
particles of the system we obtain the Momentum (5.3 b). 

-+ -+

Let us now write out Energy (5. 3 a) in terms of variables Up to
the order considered, we get from (5 . 5) :

where we have taken

Now substituting (5. 6) in (5.3 a), and designating this expression H, we
finally obtain :

As can be seen, if we here make 03BBb = 2 = 203C0h is Planck’s

constant) we formally obtain Breit’s Hamiltonian [4] except for Darwin’s
contact term [18]. Note that in this context the classical equivalent of the
quantum mechanical position operator is not the classical position xa
but the canonical coordinate qa given by (5. 5 a). This fact fits in with the
quantification program proposed by one of us [19] for the case of spin zero
particles in interaction, where the classical positions are not canonical
coordinates either.
An extremely interesting aspect of hamiltonian (5.8) is that in principle

it is valid for particles with arbitrary giro magnetic coefficient.
Vol. XXXIV, nO 2 - 1981.
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APPENDIX 1

Below we give a table of the fundamental integrals involved in (4 . 7), (4.12) and (4 . 21 ) :
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APPENDIX 2

Here we write the developments in series of powers of 1/c of the fundamental quantities
involved in the calculation of (5 . 3) and (5 . 5) :

where the following notations have been used :

Vol. XXXIV, n° 2 - 1981.
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