
ANNALES DE L’I. H. P., SECTION A

STEPHEN J. SUMMERS
On the phase diagram of a P(φ)2 quantum field model
Annales de l’I. H. P., section A, tome 34, no 2 (1981), p. 173-229
<http://www.numdam.org/item?id=AIHPA_1981__34_2_173_0>

© Gauthier-Villars, 1981, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1981__34_2_173_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


173

On the phase diagram
of a P(03C6)2 quantum field model

Stephen J. SUMMERS (1)
Centre de Physique Thcorique, CNRS, Marseille

Ann. Inst. Henri Poincaré,

Vol. XXXIV, n° 2, 198L

Section A :

Physique ’ théorique. ’

ABSTRACT. 2014 The phase diagram of a two-dimensional Bose quantum
field model (with polynomial self-interaction of degree six) is rigorously
verified, except in a neighbourhood of the expected critical points, by the
construction of distinct states satisfying the Osterwalder-Schrader axioms
coexisting along the expected phase transition lines of the diagram. Per-
turbation theory in the respective states is proven to be asymptotic (without
the use of a convergent cluster expansion), yielding asymptotic expansions
to arbitrary order for the generalized Schwinger functions throughout the
diagram. A strong estimate on the positions (in parameter space) of the
double and triple points is given.

RESUME. 2014 Le diagramme de phase d’un modele de Bose dans un champ
quantique a deux dimensions (avec une self-interaction de polynome du
sixieme degre) est rigoureusement verifie, sauf dans le voisinage des points
critiques attendus, en construisant des états distincts repondant aux axiomes
d’Osterwalder-Schrader qui coexistent le long des lignes de transition
de phase. On demontre que la theorie perturbative dans les etats respectifs
est asymptotique (sans utiliser « d’expansion cluster » convergente) et

conduit les expansions asymptotiques a un ordre arbitraire dans le cas
des fonctions gencralisees de Schwinger dans tout Ie diagramme. On donne
une bonne estimation des positions (dans l’espace des parametres) pour
les points double et triple.

(1) Present address : Fachbereich 5, Universitat Osnabruck, D-4500 Osnabrück, West
Germany.
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174 S. J. SUMMERS

1. INTRODUCTION

This work examines phase transitions in a particular quantum field
model, i. e., a quantum field theory with a given polynomial self-inter-
action in two space-time dimensions. We study a specific polynomial
of degree six, but the methods of analysis and proof are not limited to this
model.
The existence of phase transitions in a quantum field theory was first

proven by Glimm, Jaffe and Spencer [GJS2, 3]. They showed that
4&#x3E;2 = P(4)) models (in two space-time dimensions) have at least

two phases, when the interaction density is given by

and A is sufficiently small (the proof was given explicitly for 4&#x3E;4). This phase
transition is associated with the breaking of the discrete symmetry of the
action, 4&#x3E; ~ 2014 03C6. Later, phase transitions were proven to exist in 03C643 models,
including continuous symmetry breaking [FSS], and the methods of [GJS3]
were extended to apply to phase transitions without symmetry breaking [Fr2].
In addition, while this work was still in its beginnings, the existence of three
phases in the model we shall consider was proven [Ga], and in [CR] the
existence of three phases in a two-component 4&#x3E;4 model was established.
All of these results and the corresponding methods of proof were motivated
by conjectures based on the classical limit, mean field theory.
The model studied in this paper is determined by the following inter-

action polynomial see iig. 1 :

FIG. 1. - The graph of the interaction polynomial.
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175ON THE PHASE DIAGRAM OF A QUANTUM FIELD MODEL

This polynomial has three minima ~+,0,-? given by

At the maxima the polynomial is 0(~ ~). Thus, as ~, ,~ 0, the minima are

widely separated by a large potential barrier. Moreover, this polynomial
has a mean field limit (see [GJS2]). That is to say, expressing the polynomial
in terms of variables ~+.0,- == ~ 2014 ~+,o,- centered at the local minima,

one sees that the interaction coeSicients satisfy the following relation :

as ~, ~, 0. Thus, quantum corrections to the free field theory with (classical)
mass ~+,0,- and (classical) mean ~+,0,- are small for field values near
~+ o,-’ And field values away from small neighborhoods of the minima
should be suppressed by the large potential peaks.
Assuming that, due to the smallness of the quantum corrections, the

classical picture is approximately correct, this model has the phase diagram
indicated in figure 2. One observes that for h =t= 0, one expects the existence
of double points h) at which the + and 0 (- and 0) states coexist,

FIG. 2. - The phase diagram in parameter space for fixed,
sufficiently small coupling constant.

1981.



176 S. J. SUMMERS

and that for h == 0 and or  == 7D~, h == 0) the + and - states
coexist (Heuristically, the +, 0, - state is the state given by the small
perturbation

to the free state of mass ~+,0,- and mean ~+,0,-). ~T(~,), h = 0,
the +, 0 and - states all coexist, and at cr == o-~’’(~, h), one expects a
critical point where the classical mass vanishes and ~ + , _ == ço. Only the
phase transition at h == 0, ~  6T(~,) (for the + and - states) is associated
with symmetry breaking.
The existence of the triple point 7~) for small enough ~, has been esta-

blished in [Ga] by a construction somewhat difrerent than that used here.
However, the problems of determining the properties of the states at the
triple point and constating the rest of the phase diagram were not addressed.
In this paper we verify the phase diagram as indicated, for all o-

and |h| ~ 03BB-1/2+~, G &#x3E; 0 and arbitrarily small (see fig. 3), by constructing
distinct states satisfying the Osterwalder-Schrader axioms, including
clustering, that coexist along the expected phase transition lines. Perturbation
theory in the respective states is proven to be asymptotic, yielding expansions
asymptotic to arbitrary order in ~,1~2 for the generalized Schwinger functions.

FIG. 3. - The regions R +,0,- in parameter space.

An expansion asymptotic to third order in ~,1 ~2 for the positions (in the
parameter space) of the double points and triple point is given. Furthermore,
the phase diagram, that is to say the position of the phase transition lines,
is shown to be independent of the boundary conditions originally placed
on the system. The critical points are not within the region of parameter
space that is studied here.
The paper is constructed as follows. Chapter II gives certain basic defi-

nitions and states the major results. Chapter III presents an outline of the

Annales de l’lnstitut Henri Section A
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proof of the results, providing motivation for the technical proofs to come.
Essential vacuum energy estimates are proven in chapter IV and chapter V
uses them to prove the existence of the phase transitions indicated in figure 3,
In chapter VI the estimates on the positions of the phase transition lines
in parameter space are demonstrated. An argument appearing in [Su2]
is utilized in chapter VII to prove the asymptotic nature of perturbation
theory.
We shall work with the Euclidean formulation of quantum field theory

(see [N, Si2] for details), but all results will have a natural translation into
results on physical (Minkowski space) objects through the Osterwalder-
Schrader reconstruction theorem [OS].

2. THE MAIN RESULTS

We study the quantum field model with interaction polynomial

and we define, as well,

where E~ is chosen such that == o. We note that the classical masses
~

defined in 1.3 have the following values:

and

We define the following finite volume interacting measures :

The subscript 11 signifies that the quantity is integrated over the (bounded)
space-time region A c R2 ; : : denotes Wick ordering with respect to a
Gaussian measure with covariance (- .A + 2) -1 and mean zero (A is the
Laplacian in two dimensions) ; d,u(~ 2014 ~+ ,o , -)a signifies a Gaussian measure

Vol. XXXIV, nO 2 - 1981.



178 S. J. SUMMERS

with covariance (2014 A + and mean ~+,0,-. The choice i == 1, 2 is
made for the sake of convenience in the later estimates ; of course, the
normalized expectations defined below will not depend on this choice nor
on the constants c~’’, which are chosen so that the vacuum energy
densities C: ,0,- defined below are equal.

In the measures (2.3), the second term of the exponent cancels the mass
and the mean of the Gaussian measure in the region A and leaves an external
field of strength ç + o - in R 2B/B. Formally, the infinite volume limit of
(2 . 3) is

where the +, 0, - signifies the boundary conditions at infinity. The primary
motive for the definition of the +, 0, - measure is to assure that, when the
polynomial is expressed in terms of + o _, the interaction exponent will
be a small perturbation to the free field theory with classical mass m+,0,-
and mean (in terms of 03C6) 03BE+,0,-, as indicated in the Introduction.
We define the vacuum energy densities corresponding to the measures (2 . 3)

as

and

It is known that this limit exists We comment that the classical

energy densities E+ ,0,- defined in (1. 3) have the values

and

(~+~(0)=~+~(A=0)). Finally, for F(/» a function of the field 4&#x3E;,
we will define the following expectations (if they exist) :

Occasionally, we shall place subscripts on the expectations to emphasize 
’

certain interaction parameters.

Annales de l’Institut Henri Poincare - Section A



179ON THE PHASE DIAGRAM OF A QUANTUM FIELD MODEL

If we define the following function spaces

we know from [GJl] that the infinite volume Schwinger functions

exist and are moments of a unique measure d~ + ~° ~ - on 9"’(R 2). Moreover,
they satisfy the Osterwalder-Schrader axioms [OS], excluding possibly
clustering and Euclidean invariance (however, time-translation invariance
holds). In addition, if 1  ~ : 6, the generalized Schwinger functions

n

are continuous as multilinear forms on and are functional

i=1 1

derivatives of

which is bounded and analytic in fi~L1 ,6/6 - j. This is the basic existence
theorem we shall use to insure that the infinite volume expectations appearing
below exist. The indicated restriction on the degree of the Wick monomials
in the generalised Schwinger functions (which does not, however, restrict
the total degree of the product) will be tacitly assumed in the rest of the
paper.
We will state the primary results of this work. Let us define for some

K &#x3E; 0, 8 &#x3E; 0 and fixed 03BB, h,

THEOREM 2.1. For fixed K &#x3E; 0, 8 &#x3E; 0, there is a 8) &#x3E; 0 such

that for all o  ~,  Ào and h ~ I  ,~ -1 ~2 + ~, ~.D(~, h) exists and is independent
of the (classical) boundary conditions placed on the expectation
 : /12 : (A) ).
We define the following regions of parameter space :

(see fig. 3).

Vol. XXXIV, nO 2 - 1981.



180 S. J. SUMMERS

THEOREM 2.2. - Given G &#x3E; 0, there exists a )~o &#x3E; 0 such that for all
0  À ~ ~,

satisfy all the Osterwalder-Schrader axioms (in particular, with clustering,
except possibly the 0 state at 6 = h == 0).

In other words, the states defined at the phase transition lines are pure
states, with the possible exception noted. We comment that the +, 0, - state
at the phase transition lines is defined through a limit see section 5.22014
of +, 0, - states as er, h are suitably manipulated. These limits are formally
unnecessary (the boundary conditions produced by the ~+,0,- external
field in the measures (2. 3) should sufhce to pick out the correct pure state),
but we cannot do without them at the present. In [SuI] it was shown,
through the convergence of a mean field cluster expansion, that the addi-
tional limits are indeed unnecessary (and that there is a nonzero mass gap
(exponential clustering)). But the convergence is not known in a small

neighbourhood of the triple point Or(~)’ In appendix 2 the generating
functionals of these limit states are shown to have the previously
stated analyticity properties and the existence and continuity of their

generalized Schwinger functions are proven.
The next theorem states that the perturbation series for the generalized

Schwinger functions is asymptotic to arbitrary order.

THEOREM 2.3. For 0  ~ ~ Ào, for any n, ~ m } and r positive integers,
and 6, h E R+,o,-~

The /!)} are independent of À and continuous
in ~, h. They are, in fact, precisely those given by perturbation theory
calculated about the minimum ç + ,0,-’ ~(~,r + 1 I 2~ depends on N(A) ==E~=i~
and on r.

Thus, in particular,

THEOREM 2.4. - For all 0  ~  ~ and ~, 

Annales de t’Institut Henri Poincare - Section A



181ON THE PHASE DIAGRAM OF A P(!/J)2 QUANTUM FIELD MODEL

( . &#x3E;T denotes the truncated (connected part of the) expectation value.
~+,0,- is the bare mass of the +, 0, - state (see above). The functions,

G~’~", N~’" are bounded and continuous in ~, (including ~==0),
... , ~ and ~, (one-sided limits taken at boundaries).

 . &#x3E;; ,0,- is the expectation in the Gaussian measure ~(~2014~+o~-)~ ~
Remark 2014 A quick glance at ( 1. 2) and (i ) above shows that the +, 0

and - states are indeed distinct, and their coexistence along the phase
transition lines indicated confirms the phase diagram shown in figure 3.

We comment that because the 0 state at (or(~ 0) is not necessarily pure,
it could a priori be a convex superposition of the + and - states. However,
theorem 2.3 entails that at (or~)? 0),

which, with (i ) above, excludes that possibility.
Finally, the positions of the phase transition lines can be rather precisely

determined :

THEOREM 2.5. For 0 ~ ~ ~ Ao and h ~ I  À-1/2+E, the double point
is given by

The h-dependence can be calculated more precisely, see chapter VI.
The next chapter sketches the proof of these results.

3. OUTLINE OF PROOF OF RESULTS

Because the proofs are somewhat involved, an outline is given here in
order to organize and motivate beforehand the many technical details
to follow. For the sake of clarity, we will sketch the approach to attain the
indicated results only in the region of parameter space defined by the condi-
tion h ~ I  À 1/2. The arguments to establish the above mentioned claims
in the rest of R + ,0, - are not essentially different, but keeping track of the
effect of large external fields will serve only to lengthen and obfuscate this
outline of the essential points.

In order to establish the validity of the phase diagram, it is shown that

Vol. XXXIV, n~ 2 - 1981. 8



182 S. J. SUMMERS

one can construct three states  . &#x3E; + ,0, - from the finite volume interacting
measures in (2.3) that yield the following theorem.

THEOREM 3.1. - There exists a ~,° &#x3E; 0 such that for all 0 ~ À  Ào,
~ I ; ~,1~2, there is a ~D{~,, h) so that if .A is an arbitrary unit lattice square,

for some K &#x3E; 0, independent of À, o-, h and A.

Note. - In i)-iv), 03BB and h are viewed as fixed; 03C3 is varied. Thus, at

r === ~D(~,, h), h &#x3E; 0 (h  0), the distinct + and 0 (- and 0) states coexist;
at 6 = 03C3T(03BB), h = 0, the distinct +, 0 and - states coexist, and for
o-  03C3T(03BB), h = 0, the distinct + and - states coexist. This theorem thereby
expresses the existence of the indicated phase transition lines and provides
some relatively crude bounds on the first two moments of the coexisting
states.

This result was established in [Ga] for h == 0 and with replaced
by a strictly positive and small constant 5. We have extended and reimed
the arguments in that work to apply to I  À -1/2+£, E small and positive,
and then have utilized this theorem as indispensable input to the proofs
of the results described in chapter II.
The proof of this theorem involves showing that for all small enough ~.

and all (7 and h as above,

(Àç~ == D~ == 1 - 7/2 + 0(~’2) + 0(~~)), which is expected because

fiel d values lying outside the wells of the polynomial (fig. 1) are strongly
suppressed by the potential peaks. This is shown by establishing, with
vacuum energy estimates and the chessboard estimate [FS] (see section 5.1 ),
that

uniformly in Da and Ap and in the parameters ~ and h, and that, for 0  o-o,

and

the subscript indicates the sign in the interaction polynomial). However,

Annales de l’Institut Henri Poincaré - Section A



183ON THE PHASE DIAGRAM OF A QUANTUM FIELD MODEL

because o-, h) is convex in 03C3 and h, it is continuously differentiable
in 03C3 and h at all but (at most) countably many locations in parameter space.
This is significant because, among other reasons, wherever the vacuum
energy density is differentiable in h [Gu2],

and where it is differentiable in 03C3 [Ga],

Thus, wherever ~, h) is differentiable in cr, (3.1) establishes our claim.
Moreover, if we define, for fixed h and fixed, sufficiently small A,

(3 . 2) entails that S~ h ~ - is nonempty and (3 . 3) entails that it is bounded
from below. Therefore,

exists. And because the second Griniths’ inequality entails that

is monotone decreasing in o-, we have for any ~° &#x3E; 7~~’ (~, h),

and, for any ~°  ~D ’ °’ - (~,, h),

by taking limits through o-n’s at which the vacuum energy density is diffe-
rentiable. We mention that with (3.4) and (3. 5) and convexity atguments,
we show that

and, in fact, ~D(~,, h) is independent of the (classical) boundary conditions
that are placed on ( : ~2 : (A) ) (see lemma 5.2.2 and appendix 1).
Arguments related to those establishing (3 .1 ) are used, along with (3 . 5),

to show, for /? &#x3E; 0,

Vol. XXXIV, n° 2 - 1981.
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uniformly in da and d~. Using the convexity in h of the vacuum energy
density and the fact that ( 4&#x3E;(A) &#x3E; is monotone increasing in h (monotone
decreasing in r), we can conclude that for every ho &#x3E; h,

choosing {hn} ~ h such that ~03B1+(03BB, 03C3, h)/~h exists at each h" (hn  ho).
By defining the +, 0, - state at (cr~, h), h) to be the appropriate limit,
(3.4)-(3.7) and the /!  0 counterpart of (3.7) prove the theorem 3.1.
The estimates of theorem 3.1 will be used to prove the following bounds

on expectations of the spin characteristic functions x + , o, - (0) (see (4 . 3)),
that hold the average value of the field to lie within the corresponding
potential well around ç + ,0, - 1) :

for some K &#x3E; 0. In addition, an input to the proof of (3.1) and (3.6),
proven by a Peierls’ argument and the Gaussian domination bound [FSS]
is : whenever o-(Da) ~ ((7(A) = -~-, 0 or -),

for some c &#x3E; 0, uniformly in da, 4~, 6 and h. Moreover, it will be seen that
it is possible to redefine the +, 0, - states (actually, only the 0 state at
6T(~,) need be redefined, see section 5.2) at the phase transition lines as

limits of -p, 0, - states ( . &#x3E;: ,0,- in the +, 0, - region of parameter
space, R + ,0, -, such that 6, h)n (the vacuum energy density corresp ond-
ing to the state ( . &#x3E;:,0,-) is differentiable in h for each n. Let us consider
such a limit for the 0 state :

Due to a theorem by Simon [Si1], one knows that if

then the state clusters, i. e., is pure. Thus, by (3.9) for each n, we have

and (3 . 8 a) implies, for each n,

But, as

Annales de Henri Poincare - Section A



185ON THE PHASE DIAGRAM OF A QUANTUM FIELD MODEL

we conclude that

Similar arguments for the other states and correlation inequalities (see
section 5.2) entail:

THEOREM 3.2. For all 0  ~  ~ 7 real, l h ~ _ ~1~2, and .A an arbi-
trary unit lattice square, there exists a c &#x3E; 0, independent of À, y, h and A,
such that

These will be seen to be very useful bounds. They express the fact that
the probability that the average value of the field lies near the « wrong ))
minimum of the polynomial is extremely small.
A beautiful result of Frohlich and Simon [FS] informs us that whenever

the vacuum energy density is differentiable in the external field, its correspond-
ing state satisfies all the Osterwalder-Schrader axioms, including clustering,
and is independent of the (classical) boundary conditions. These properties,
except the clustering and the linear growth condition of Osterwalder and
Schrader [OS], can be seen, at once, to carry over to the limit states, i. e.,
the +, 0, - states at the phase transition lines. In fact, it will be possible
to choose the sequences ( . B such that their limits, except possibly for
the 0 state at h == 0, 7 == are continuous from the right (or left)
in h, and, thus, by employing an argument of Frohlich and Simon, it will
be possible to show that these limits also cluster. The linear growth condition
will be proven separately.
Although the limit states are independent of the boundary conditions,

they do depend (in principle) on the choice of defining sequence  . B.
Because the Schwinger functions are monotonically decreasing in (y and
increasing in h (A ~ 0), the +, 0, - state (except the 0 state at h = 0,
6 == ~T(~.)) is independent of any appropriate choice of defining sequence
(see section 5.2). For example, with /2 &#x3E; 0, the + state at 6 = o-D(~ h)
is independent of the choice of any sequence hn) ~ (6D(~,, h), h) such

eventually lies in the second quadrant of parameter space,
where (~D{~,, h), h) is regarded as the origin.
We will now quickly suggest how we obtain a strong bound on the

position h); indeed, we determine its leading coefficient in /L Defining
the approximate vacuum energies as

Vol.XXXIV, n°2 - 1981.



186 S. J. SUMMERS

and noting that theorem 3.2 implies

we can prove with the chessboard estimate (5.1.1) that for r, hER + ,0, - ,

Moreover, one has the lower bounds :

and the upper bounds :

and

Thus (3.11) and (3.13 a) entail, when /! &#x3E;: 0, r == ~D{~,, h),

(by (3.12)). This implies, since Eo = O(À) whenever I h ~ I : ~,1 ~ 2 and

E + ~6D(~~ h)) = h) ~ /!)’))/~ - h~ + (h == 0) + o(h2)~ that

Similarly,

implies that

Thus, (3.14) and (3.15), with a similar calculation for /! ~ 0, imply that

(This can be calculated o somewhat more precisely, see chapter VI). This
rather exact knowledge of the position of the double (and o triple) points

Annales de l’Institut Henri Poincaré - Section A



187ON THE PHASE DIAGRAM OF A QUANTUM FIELD MODEL

is of interest not only of itself, but is essential in the proof in [SuI] of the
convergence of the cluster expansion in most of parameter space and is
believed by the author to be essential in the proof of convergence in the
small neighborhood of the triple point that the results of [SuI] ] do not
include.

Referring back to (1.1), it is easy to see that the classical triple point
occurs at (7=0, h == 0. À h I ç +(0) above is the leading classical contri-
bution of the external field to the position of the double points. The term
In 4 j~ - 3 j4~, which is the difference in Wick ground state energies (at
h = 0) between the -p, 2014 state and the 0 state (determined solely by the
classical masses of the three states), is the leading quantum term. The higher
order quantum effects (and the next highest order classical contribution,
which is 0(~,h2)) are subsumed in 0(~~).
To close this chapter, we discuss the proof of the asymptotic nature of

perturbation theory. Although we have elsewhere [Su2] presented the

essential points of this argument, in application to the ~2 model deep in
the two-phase region, and have there considered its application to all

P(~)2 models with mean field limits, we will review the approach briefly
for the benefit of the reader not familiar with [Su2].

Because integration by parts is permitted in the infinite volume limit
for P( 4»2 theories [GJ1], i. e., for a theory with interaction polynomial P
and bare mass mo,

we may apply it to the generalized Schwinger functions of the +, 0, - state.
Repeated integration by parts, as described in chapter VII, yields, e. g.,

where the second term on the right-hand side is a finite sum over expectations
of quantities of the form of derivatives of the original product of Wick
monomials, contracted through the free covariance to products of deriva-
tives of the polynomial 03A36i=3c+i : 03C8i+ : (themselves possibly contracted to
each other). The integration by parts is carried out until at least M poly-
nomials have been brought down into each term Rz(~+). The constants ai
are those generated by the perturbation theory about the minimum ~ + .
The crux of the matter is, of course, to show that the remainder term is
O(ÀM/2). Here we shall consider a simple example and shall ignore a few
technical fine points.

Vol. XXXIV, i~2- 1981.



188 S. J. SUMMERS

We examine the following term :

Let Ox(By) denote the unit lattice square centered at x(y). Using the identity
(see chapter IV)

at each square A~ Ay, we see

where r(A) takes the values +,0, - ; the sum is over all possible choices
of We apply Holder’s inequality to each term in this sum that
contains xo(0) or x _ (4), estimating its absolute value by

The one term with == a-(oy) == + is spared this dissection.
Thus, we are interested in estimating expectations of the form

where is a Wick monomial of the field ~+, localized in a unit lattice
square Di. However, because restrains to lie close to we

will be able to bound such expectations by the following :

where N(Fi) is the total degree of Fi(di) and K is a constant uniform as

;UO. When +, t~-~~=0(A’~~). But, in that case,

we have from (3.18) and theorem 3.2 the strong suppression factor

exp{ - }. When (7, == +, the i-th contribution in (3.19) is 0(1).

Remarking that the interaction coeincients c+,p,...i satisfy the following
bounds :

Annales de l’Institut Henri Poincaré - Section A



189ON THE PHASE DIAGRAM OF A QUANTUM FIELD MODEL

we obtain an estimate for (3 .17) :

where 32 - 1 comes from the sum over choices ofcr(.), and we have recalled
that x is fixed, so that the integral over y is 0(1).

In the general case (3 .16), if has M polynomials in it, the one term
in the spin configuration sum that has == +, for all i, gives a contri-
bution 0(~,M~2), and all the rest give contributions of the order

proving that perturbation theory is indeed asymptotic in the coupling
constant.

4. VACUUM ENERGY ESTIMATES

In this chapter essential vacuum energy estimates that are uniform as
~, ~, 0 are proven. In order to prove such bounds we must restrict our atten-
tion to subsets of path space (c9"(R2)). To understand this, we point out
the fact that, if ~x(x) denotes the ultraviolet cutoff field, the ultraviolet
cutoff interaction density (e. g., for the + state),

is not uniformly bounded from below as ~, ,~ 0. In fact, when ~-,
(4.1) is - 0(;T~ since P2(Ç-) = E_ - E~, which does not provide the
necessary control. However, when 4&#x3E;l( &#x3E;: ~+, (4.1) is uniformly bounded
from below as Å t 0. Thus, we define the following « spin )) characteristic
functions. Let

and let

Vol. XXXIV, n° 2 - 1981.
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We define the average field in a unit lattice square A (A is a unit square
from a lattice with bonds of unit length which covers R 2) to be

Then, we write

Note that

We also wish to define a « spin configuration )) function 7(.), which is
constant on unit lattice squares and takes values in { +, 0, 2014 }. The

holds the average value of the field in A to lie in a neighborhood
of Ça(A) that excludes the other minima of the polynomial. Of course, only
the average value of the field is restricted, and

so it will be necessary to control an error term due to the high momentum

part ~ ~ .
In fact, occasion will arise to consider path space in yet smaller pieces.

We define the « shrunken» spin characteristic functions that restrain the
average value of the field to lie very close to the minima of the polynomial:

The « peak )) characteristic functions are :

We shall prove the necessary vacuum energy estimates in the subset

of parameter space defined by

where e &#x3E; 0 is arbitrarily small and fixed. We shall not show the correspond-
ing estimates for interaction parameters lying in (R+ u R 0 u R")BT,
since T will be seen to contain the most interesting portions of the phase
diagram. In any case, all bounds in (R+ u R 0 u R -)B T are proven in full
detail in [SuI]. Whenever we speak of « sufficiently small A » below, we
shall mean all 0  À ~ where ~,o(E) t 0 as 8~0.

LEMMA 4.1. - Let 0  11 ~ 10’~, ~ &#x3E;: 102. Then there are constants
u = a(~) &#x3E; 0, b = &#x26;(0 &#x3E; 0, such that for any large K, x E A, and 
the following inequalities hold for all sufficiently small ~, and 6, h E T.
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- 1. Since restrains the field to take values where
the polynomial (2.1) is large, ii) is reasonable.

2. We subtract the factor Ee because of the inequality of the
classical vacuum energy densities, E+ _ and Eo, and in anticipation of
arguments to be made in the next chapter.

3. We use the ultraviolet cutoff of [GJS4], which has the convenient
property that /J(A) = 4&#x3E;l(A).

Proof - Denote by cK the ultraviolet cutoff Wick constant and define

== 0(ln x) is the Wick constant for ~). We therefore wish to show,
in order to prove i ), that

But for any 03B4 &#x3E; 0,

since cx = 0 (In ?;). Therefore,

since == 0(1). Thus,
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I. Pick A, fix x E A, specify == 2014. The proof will proceed by examin-
ing the four cases in which 4&#x3E;K is restricted to have a value that lies (1) within
the right-hand external well of the polynomial, (2) within the middle well
of the polynomial, (3) within the left-hand external well of the polynomial,
(4) outside of the wells altogether.

CASE 1. - I4&#x3E;K - ç+ I ~ 2~/3.
Since 4&#x3E;K == 4&#x3E;(A) + b~,~, one must have either (a) 5~ &#x3E;: 2ç +/3 or

(b) ~(A) &#x3E; 2014 ~+/3. However, for r, h E T and for the indicated range of ~,~,
we have

Therefore, as (~K - ~ _)2  9~.

In subcase (a), ~~x &#x3E;_ 4~/9, so that

for all sufficiently small ~, and &#x3E; 0 (We set 5 == 10- 3). Because
- In x _ (0) &#x3E;_ 0, (4 . 7) is confirmed. In subcase (b), ~(A) ~ 2014 ~+/3, so that
x _ (4) == 0 (~  - ~ + /3 ; see ( 1. 2)). Thus, (4 . 7) again follows.

CASE 2. 2014 ) ~ ) ~ ~+/3.
One must have either M 5(~~ ~ ~+/6 or (b) ~(A) &#x3E;: 2014 ~+/2. In sub-

case (b) /-(A) == 0, and in subcase (a) ~ ~/36. But, for 4&#x3E;K restricted
as shown,

and o (~K - ~ -)2 _ 4~. Thus,

In subcase (b), (4.7) follows at once and in subcase (a),

for
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By ( 1. 3), in this case,

by hypothesis, verifying (4.7).

CASE 4. - I 4&#x3E;K I ~ 5~+/3.
For these values of the field P2(4)K) is very large ; in fact, one can readily

see that for cr, h E T and ~ as hypothesized,

Thus, (4.7) obtains in this case.

II. For 7(A) == +, the arguments are similar.

III. Consider r(A) = 0. Then,

CASE 1. -14&#x3E;" - ç+ I ~ ~/10.
One must have either (a) ~~x &#x3E;_ ç +/10 or (b) 4J(A) ~ 4ç +/5. For the

indicated o values of 4&#x3E;",

In subcase (a),

with b3(~) &#x3E; 0, and in subcase (b), = O. Thus, (4.7) holds in this
case.

CASE 2. - ~x ~  9~/10.
Here, using ( 1. 3),

by hypothesis.
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CASE 3. - ~ + ç+ I ~ ç+/10.
One must have either M 5~ ~ - ç+/10 or (6) ~(A) ~ - 4ç+/5. The

argument is thus similar to case 1.

CASE l1ç+/10.
In this case (e. g., for /!  0)

This completes the proof of i) with the choice ~. It is clear that the argu-
ment is the same for the choice ~ _.
The proof of ii) similar. Consider I, i. e., the choice 2014. Because

/-,p(A) ~ x_ (4), the proof of cases 1, 2 and 4 above shows, in fact (note
- 0),

We will consider case 3 in several subcases :

Subcases i) and are similar, so we consider only subcase i) :

(since  0, for ~ ~ ~ - ~,1 ~4~ + I2 and the parameters as

assumed in the hypothesis)

For subcase ii), when 4&#x3E;(A) E [~_ - ,~iJ4~+, ç- + À1/4ç+], y~(A) = 0,
so that this range of average field values is excluded. We thus have either
(a) ~1~4~+l2 or (b)  - ~,1J4~+/2 (i. e. when  ç- - ÀI/4ç+
or &#x3E; ç- + À1/4ç+). The conclusion thus follows, since

(note : P2(~) ~ 0). II and o III are ’ treated o similarly. This completes the
proof of lemma e 4.1.
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We comment that the coemcients c1 ° ° ~ - of :P(~+ o - ) : 

satisfy the following bounds.

LEMMA 4.2. For all small ~, and 7, h E T,

Proof 2014 By direct calculation, using the fact that ~ ~ + o,- ! I  0(~’~).
If we define W~’’~) by the substitution 4&#x3E; -+ ø" in W~’’~) and

= WM - we have

LEMMA 4.3. - There are positive constants K and ð such that if
{ c is a set of nonnegative integers I A c R 2 }
is a set of positive numbers, then for any Y c R2,

K and 03B4 are uniform in À as 03BB ~ 0. Moreover, for q even,

~’roof. 2014 As in [DG], using lemma 4.2.
It is now possible to prove the desired vacuum energy bounds.

PROPOSITION 4.4. The are strictly positive constants a(r~), b(r~), such
that for all ~ &#x3E; 0 sufficiently small, all 03BB sufficiently small, all 7, h E T and
1  7?  1 + ~7/30, the following estimates obtain.

and
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P~oof. 2014 By Holder’s inequality, e. g., for 60 = +,

By conditioning with respect to Neumann boundary conditions [GJS4,
GRS1] on the bonds of some square lattice over R2, the second factor is
estimated by

(A is not necessarily a unit lattice square, here) (1). A standard calculation
yields for this factor (note 5~ = ~+~-):

where P0394 is the projection in L2(4) onto XA (the characteristic function of
the square A); A~ is the Laplacian with Neumann boundary conditions
on a~, the boundary of Ll. But since (1 - = 0 and because

we have

if we choose 11 = 10 ~ ~ ~ ~2~ ~ j I = 10-6 ’ (these ’ cons-

tants have ’ been chosen so that the hypothesis of lemma e 4.1 is also o satisfied).
Thus (4.9) is finite and 0 is bounded 0 by

for some constant K1.
Lemmas 4.1 and 4.3 and standard arguments permit us to bound

the first factor of (4.8) by

for a constant K2 uniform in ~,. Use of lemma 4.1 ii) entails that if 1 x + (e)
AcA

is replaced by ~J~+ p(A), the above bound is replaced by

(1) See note added o in proof.
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To complete the proof of i), one employs a perturbation argument due
to [GJS4] using the identity

In fact, with t --_ ~ t(a) ~ Y }, we have (c. g., for ~o = +):

(we choose 1  q small enough that 1 + ~/30)

(we have used (4 . 8)-(4 .11 ) and lemma 4. 3)

Thus, the proof of the proposition is completed.
We have seen in proposition 4.4 that the vacuum energy densities corres-

ponding to the measures (2. 3) are bounded uniformly as ~, ~, 0, if the integral
is restrained to be taken over only those fields whose average values lie
« close )) to the appropriate classical mean. In order to patch together these
estimates to obtain a bound on an integral over all of !/’(R2), we will use
the fact that the Gaussian measure is !/-quasi-invariant (e. g. [Fr1]) and its
Radon-Nikodym derivative is given by
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where ( .,. ) signifies the real L2 inner product. In order to define an
admissible shift that will also accomplish the desired translation of the
mean of the Gaussian measure from, e. g., ç+ to ç- in A, we define :

where

where N(a 11 ) = { A c R 2 I dist (A, 8/B) ~ L}, 1 ~ L  00 and fixed.

It is important to notice that == ç- and g(x) _ ~ + for x F 

such that dist (x, 8/B) ~ 2L.
We also introduce a space-dependent mass for a Gaussian measure,

as in [GJS4], which will permit us to shift masses between the interaction
exponent and the Gaussian measure. Here we note only that for 
satisfying

such that a - cv(x) has compact support, then for

one has

and this is the Gaussian measure with mean zero and covariance

LEMMA 4.5. - The vacuum energy densities defined in (2.6) satisfy
the following bounds :

and

for some C independent of /L
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Proof Since the half-Neumann and free boundary condition pressures
are equal [GRS2], we consider the half-Neumann vacuum energy densities.
We will place a superscript N on the Gaussian measures to denote the
presence of (zero) Neumann boundary conditions on By (2 . 3) and (2 . 6),

where

Recalling the definition of c~ (2.4), one notes that

Thus, we see that

by [GRS2].
But

where we have used Jensen’s inequality in the second line and have recalled
that the Wick ordering is always with respect to mass2 2.

Define now g+ as ghl (see above) with
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Then, using (4.12), one has

(since == ç +, by definition)

(by Jensen’s inequality)

where we have used the fact that for all x E R 2B A such that dist (x, al1 ) &#x3E;_ 2L,
g + = ço. Since the same can be done for a correspondingly defined g _ ,
one may conclude that a ~ , 2 &#x3E;_ E + , _ , which, in conjunction with the
equations (4.14) and (4.15), yields

The argument of (4.14) and (4.15) applied to yields a ~ ,1 &#x3E;_ - Eo.
In addition,

from which, writing ~ + _ ~ - ~ + and re-expressing PI (4)) in terms of

we obtain
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where I == 0(~~), ~ &#x3E; 3. Therefore, re-Wick ordering,

for some C. Use of Jensen’s inequality again gives us

Clearly, the same argument can be used to obtain

The rest of the lemma follows from the next proposition.

LEMMA 4. 6. = == for all À, o-, h and i = 1, 2.

Proof. Using (2.4) and the argument in the previous lemma, it is

easy to see that

Furthermore, since ~+ 2014 Ço is in the domain of - 4 e (in fact,
- ~B(~+ 2014 ço) = 0, and writing go as ~ 1 with

we have

by (4.12). But with Neumann boundary conditions on the Gaussian
measure and the integral factor across 8/B. Since
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(4.16) is equal to

Thus, taking the limit and using (4.14), = x~. A si milar
argument for (x~ completes the proof.

5. THE PHASE DIAGRAM

Using the vacuum energy bounds proven in the last chapter, we shall
verify the phase diagram of figure 3. In the first section of this chapter we
shall establish some further results that will be necessary.

5.1. Technical preliminaries.

We recall the chessboard estimate [FS]. If Fa is a measurable function
of the fields with support in the lattice square Da, then

where N is some index set and

is the function with support in ~~ obtained by a series of reflections
in lattice lines and translations of the function Fa (see [FS]).

Further, for a given unit lattice square A, we define

where { ci ~n= is a set of given coefficients. We denote the total degree of F
by N(F(A)) = We wish to show

PROPOSITION 5.1.1. 2014 Let { be a collection of localized functions

such that W j E for some q &#x3E; 1. Then for any collection
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there exist constants K, c &#x3E; 0 such that for all small enough A and 7, h E T,
if K(N) == KNN !, one has the following estimate :

for any p &#x3E; 1.

Proof. By the chessboard inequality, e. g., for the choice of the + state,

where we have used lemma 4.6. For arbitrary A,

We note that the same spin characteristic function is multiplied
throughout A.

If == +, we estimate (5 .1. 5) through Holder’s inequality :

By proposition 4.4, the second term is estimated by

if we choose /? ~ 1 -E- 10 - 6 (and require that p’ is even). The first term
of (5.1.6) can be estimated, using the checkerboard estimate [GRS1, 2],
by
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If = +, this is bounded by

p &#x3E; 1, using a standard argument on Gaussian integrals [DG]. This bound
is uniform in 11 and the interaction parameters. If, however, or 0,

t == 0(~’~), the same argument on Gaussian integrals
leads to the bound

This bound is uniform in A and 6, h E T.
If = 2014 or 0, we must shift the mean of the Gaussian measure (and

that of the second term of the interaction exponent) in order to employ
the uniform bound of proposition 4.4. Let us consider the case a~2,~ _ - ;

== 0 is treated similarly.
Defining g(x) = ghi(x), with hl as specified after (4. 13), we can rewrite

(5 .1. 5) as

(using (4.12) and the fact that == ç-)

where

and
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Recalling (2.2), one has from [GRS2] that

uniformly for ~, ~, 0 and o-, h E T (which is also true of the analogously
defined We thus concentrate on

With the earlier indicated choice of p, the second term is estimated by using
proposition 4.4, since n == ~n2 and &#x3E; 0, for all x, so that a minor
modification of lemma 4.3 (see e. g. [GJS4]) suSces to yield the bound :

(It is easy to see that because g A = 03BE - and g is continuous, it is indeed
valid to make use of proposition 4.4). Holder’s inequality applied again to
the first term on the right-hand side of (5.1.12) yields the bound

Because, in differs from ç + only in a strip along aA, one observes
that the second term is dominated by

where C depends on À. And the first term is estimated, using the arguments
utilized previously, by
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if 03C3 j== + or 0. These estimates, with the analogous bounds for the
choice o-~==0, (5.1.7)-(5.1.9) and lemma 4.5, yield the proposition.

LEMMA 5.1.2. There exists a b &#x3E; 0, such that for all sufficiently small ~,,
all o-, h E T, and any set Y composed of unit lattice squares A, the following
bound obtains :

where the expectation is in either the +, 0 or - state and the choice of the
spin configuration function ~( . ) is arbitrary.

Follows directly from the chessboard estimates, proposition 4.4,
lemma 4.5, and arguments in the previous proof.

LEMMA 5.1.3. There exist strictly positive constants K, c, such that for
all sufficiently small all 0~ h E T and any collection

of functions of the form (5 .1. 3) one has the following estimate :

The expectation is in either the +, 0 or - state.

Proof This follows readily from the argument of proposition 5.1.1,
lemma 4.5 and proposition 4.4 ii).
We are now in a position to prove the essential estimate (3.9).

PROPOSITION 5.1.4. There exists a c &#x3E; 0 such that for all aa, ~~, all
small enough ~, and cr, h E T,

whenever 
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Proof. Using 1 == x + (0) + + every 0  11 o, where A o
is a large square containing Aa and 4~, we have, e. g. for the + state,

where the sum is the sum over configurations 7(.) such that 7(AJ = cr~
and r(A~) == ~~. Following [GJS3, Fr2], we estimate (5.1.14) by

where N( y) is the set of nearest neighbor pairs of unit lattice squares border-
ing on a certain minimal connected contour y, consisting of unit lattice
lines, separating Aa and ~~ (see [Fr2] for further details). Following [GJS3,
Fr2] this proposition will be proven once one establishes that

for some 03B4 &#x3E; 0, where N( y) is a given set of I y neighboring pairs of unit
lattice squares and We note that, in fact, I y I ~ 4. We may
assume that all pairs in N(y) are mutually disjoint (separating them with
Holder’s inequality if they are not) and that r(A’) 5~ 0. Then we recall
xo === xo,S + ~0,p (see (4.5) and (4.6)), so that

where Ey. runs over the subsets of y such that the pairs (A, 
satisfy == 0. But

’5 B .. 1 17) cjJ(A»- a(A’gu(ð,’) + a(A ’)c;o + Àl/4c; ’ ,

and if we choose functions he,a. as in [Fr2] such that

we have, using (5.1.17) and the Gaussian domination bound [FSS, Fr2],
i. e.,
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that

~’ &#x3E; 0. Thus, with lemma 5.1.2, (5.1.16) yields (5.1.15) and the propo-
sition.
Next we shall prove (3 .1)-(3 . 3) in the more general formulation that

accomodates the large external fields that are permitted in T.

THEOREM 5.1.5. There is a finite constant K such that for all sufficiently
small all o-, h E T, and every Da, A~:

For 0  10-1,

where the subscripts indicate the sign of 6o in the interaction polynomial
and cr3+ ,o, - == ~~o,-’ Furthermore, there exists a C &#x3E; 0 such that

Proof. 2014 We have adapted and extended arguments of [Ga] to prove this
proposition.
To prove (5.1.22), we note

by proposition 5.1.1, since

We will now prove (5.1.19 a) ; (5 .1.19 b) is shown similarly. We rewrite
(5.1.19a)):
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The absolute value of the first term is estimated by

by proposition 5.1.1, using : 4&#x3E;2 : (AJ 2014 ~ == : V1~ : (AJ + 
in the first factor (ço = 0(h)) and inserting 1 = + + 
in the second factor and estimating each term in the resulting sum by 0( 1 ) .
The absolute value of the second term in (5.1.23) has the bound

The first factor is estimated by 0( 1 ), using proposition 5.1.1, since one can
again insert 1 = /+(AJ -}- and estimate each term. A
further application of proposition 5.1.1 yields a bound to the last factor
in (5 .1. 25) that is 0(1) ,since

by proposition 5.1.1. However, for 6, hE T,

Because E _  0 for all 1 and I ~ 10 -1, the above
is bounded by 0(1). For h &#x3E;_ 1, E_  h~_(o) j2 = - A~+(0)/2,
and the above is again majorized by 0(1). As this is the worst term in (5 .1. 26),
the assertion is confirmed.

Finally, the third term in (5.1.23) is bounded by

for some c &#x3E; 0, by propositions 5.1.1 and 5.1.4. Therefore, (5.1.23) is
bounded by 0(~,1 J 2 + ~) + ~,1 / 2 0( 1 ~ + exp { - } = 0(,~1 ~ 2 ), proving
(5.1.19a).
Turning our attention to (5.1.20), we see that

By proposition 5.1.1, the second term is bounded by
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for c &#x3E; 0 and ~, small enough (we have used the fact that

for small 6 (see (2 . 7)), that hET entails A ~ ~, - i l2 + ~, and that 0

for all values of 03C3 and h). Proposition 5.1.1 bounds the first term of (5.1.27)
by ~,O(~, -1 + 2 E), Therefore, (5 .1. 20) is verified.
To prove (5 .1. 21 ) we note

for c &#x3E; 0, using proposition 5.1.1 (here we have used the fact that (e. g. when
h ? ~) E, (-~o)=~(-~o+0(~))-/~(0)+0(/~), when h E T

and À is small enough. In the first term, (5.1.26) was again employed).
Finally, we observe that ~ ! ~ - ~(0) B == O(A’).

This completes the proof of theorem 5.1.5.

5.2. The triple point and the double points.

The necessary prerequisites being established, we can now follow the
outline of chapter III to confirm the validity of the phase diagram in figure 3.
Recalling the well-known fact that the vacuum energy density (2.6) is a

convex function of any parameter appearing linearly in the interaction
density (2 .1 ), we conclude that h) is convex in 03C3 and h . Thus,
it is a continuous function of these parameters and its derivatives with

respect to h and 03C3 exist at all except at most countably many values of 6
and h. With this in mind, we state a theorem from [Ga] that is itself an
extension of a theorem from [Gu2].

LEMMA 5.2.1. 2014 If ~(~ y, ~)/~7 exists, then

clusters in mean.

As in [Ga]. See, however, the appendix for technical remarks
dealing with the possible lack of translation invariance in the states provided
by the compactness construction of [OJ1].

Remarks. - 1) The theorem of [Gu2] states that if the derivative of

oc + ~ ° ~ - (~,, r, h) with respect to h exists, then ( ~(~a)~~0~) ~ + , o , - clusters

in mean.

2) Due to lemma 4.6, if the derivative of 03B1+~ with respect to 03C3 or h exists,
l’Institut Henri Poincaré - Section A
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then the corresponding derivative exists. Thus, lemma 5.2.1 or Guer-
ra’s theorem can be applied to the +, 0 and - boundary condition states
simultaneously (see, furthermore, Appendix 1 and proposition 5.2.5).

3) The arguments to follow make good use of the proof in [Ga] of the
existence of the triple point.
Lemma 5.2.1 and (5.1.19) of theorem 5.1.5 entail that whenever 

exists, À  : 4&#x3E;2 : (A) &#x3E; + ,0,- cannot lie in + K~,1 ~ 2, 0~ - KÀ 1/2] (here
we take h &#x3E;_ 0; the argument for /!  0 is similar). And (5.1.20) and (5.1.21)
imply that for 0  Co  10 -1 and small enough À,

and

Therefore, if we define, for fixed h and fixed, small enough À,

this set is nonempty, is bounded from below, and possesses an infimum :

As previously commented, the second Griffiths’ inequality (see, e. g. [GRSI,
Si2]) entails that ~ : 4&#x3E;2 : (A) &#x3E; + ,0, - is monotone decreasing in 6 (monotone
increasing in h). Thus, the monotonicity of ( : 4&#x3E;2 : (0) ~ in (y and the almost
everywhere differentiability of give

and (when /! &#x3E;: 0)

LEMMA 5.2.2. 6D (~,, h) _ ~D(~,, h) _ uj)(À, h) for all sufficiently small ~,
and all | h | I ~ a, -112 + 8.

Proof. We show in Appendix 1 that whenever /a6 exists,

and ( 4&#x3E;2 : (A) &#x3E; + ,0, - is independent of A (i. e., translation invariant).
But by lemma 4.6, this entails that at such values of 6 (~,, h fixed),

Let us assume, e. g., h) &#x3E; ~(~? h). Then there exists a 6o E h),
h)) such that 110 exists. Thus,
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but since o-o  h), 03BB : 4&#x3E;2 : (0394)&#x3E;+03C30 ~ 03C92+ - K03BB1/2, for small 03BB,
which implies that

However, since

o
for 0’0 &#x3E; 03C30D(03BB, h), we conclude from (5.2.6) that

for small /L, which contradicts (5 . 2 . 4). Thus, ~D (~,, h) _ ~S(~ h). A similar
argument may be applied to yield A) &#x3E; ~(~, h). The same argument
yields the rest of the lemma.

Note. - We comment further that, due to the independence of the
vacuum energy density from (at least) the classical boundary conditions

this argument entails that the location of the double point h)
is, for given ~, and h, independent of boundary conditions (see Appendix 1).
That is to say, independently of boundary conditions, the quantity
~ : 4&#x3E;2 : (A) &#x3E; is discontinuous in 6 at ~(~~ h) (the magnitude of the dis-
continuity is also an invariant). This completes the proof of theorem 2.1.
We shall now prove the estimates (3. 8) (and, in passing, the rest of theo-

rem 3.1 ) in R~’’B(3R~’’, i. e., in R + ,0, - excluding the phase transition
lines themselves, at which we shall directly construct the +, 0, - state
through the limits discussed in chapter III.

PROPOSITION 5.2.3. There exists a K &#x3E; 0 such that for all small enough À
and (7, h E T,

The 8 appearing in the estimates is that which occurs in the
definition of T.

P~oof. We demonstrate i ) first. By (5 .1. 22) and (5 . 2 . 4), we have
for all 03C3 &#x3E; 03C3D(03BB, h):

But
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(using x t (0) &#x3E;_ x± ,S(4) and definitions (4.5)). Moreover, A(1-/L~)~=0(1)
and o ~_+~+)~A(1+0(~)-~)~., so that (5 .2. 7) and

(5.2. 8) imply

since, for all 03C3, h E T, 03C920 == 0(03BB2~). Therefore, (5.2.9) implies

That completes the proof of part i ).
We will prove ii) explicitly ; iii) follows in a similar manner.

(by lemma 5.1.3)

But

entails with (5 . 2 .10) :

But (5.2.5) and (5.1.22) imply that for cr  ~(A, h),

so that, by (5 . 2 .11 ), we have

Therefore
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for small 03BB, since 03BB(03BE0 + 03BB1/403BE+)2 = 0 (03BB2~) and 03C92+=1+03C3+0(03C32)+0(03BB1/2h).
Using (5.2.13) in the right-hand side of (5.2.10), we have

Thus, with (5.2.12),

so that

We now remark that

The third term in (5.2.15) may be estimated by

(by (5.2.13)). We note that we can estimate the last terms in (5.2.15) by

by propositions 5.1.1 and 5.1.4. Therefore,
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(by proposition 5.1.4)

using (5.2.14). By the theorem of Guerra, by choosing a sequence of posi-
tive hn converging to h such that exists at each h~, (5 . 2 .17) implies
that for all h &#x3E; 0 and a~  ~D(~,, h),

(note is monotone increasing in h, by Griffiths’ second

inequality). This confirms theorem 3.1 iii) in the interior of R + .
We see that for h &#x3E; 0 and 03C3  h),

where we have used (5.2.13) in the last inequality. Using

(5.2.19) yields

so that by using (5.2.18)

Therefore, by (5.2.20) and (5.2.13)

for h &#x3E; 0, 6  ~D(~,, h). This completes the proof of the proposition.
We now wish to define the +, 0, - state at the phase transition lines.

By the monotonicity of ( : /J2 : (0394)&#x3E; and ( 4&#x3E;(A) &#x3E; in 03C3 and h, it is clear
that the slope (in parameter space) of the phase transition line ~D(~,, h),
for fixed 03BB, is strictly positive in the h &#x3E; 0 half-plane (and, by symmetry,

~) == ~-D(~., - ~))? as previously remarked in [GJ2]. Thus, because
cr, h) at each given (A, (7), is continuously differentiable in h at all but

_ 

at most countably many values of h, it is clear that one can find a sequence
. 

{ (~(~ ~)A) }~’’ converging to (7,~ h), h) (or for 7~), A = 0,
a sequence { (-o, ~n) }~’ converging to 0) such that
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and such that

exists for each n. The only exception the 0 state at (0’~)? reached

by a sequence {(03C3n, hn )} ~ R 0 converging to (03C3T(03BB), 0), at each point of
which the vacuum energy density is differentiable with respect to the external
field. Such a sequence, again, exists. However, the « canonical )) sequence
~ (6n, 0)} ~ (or(~ 0) used by Gawedzki [Ga] is not necessarily such a

sequence. The +, 0, - state at the point (~°, h°} E aR+ ~ ° ~ - is defined by

In fact, in appendix 2, it is shown that the generating functionals

(see (2 . 8)) converge uniformly to a functional Z + ’ ~’ - ( f i )~~.o ,,,o} analytic
in fl eLi~/5 ~ Y"(R2), which determines a unique measure 
!7’(R2), whose generalized Schwinger functions exist and are continuous
on TI2 P,1: ::&#x3E; 

Thus, the estimates in proposition 5.2.3 extend to the phase transition
lines, and we have proven the estimates (3 . 8) and theorem 3.1. In preparation
to prove theorem 3.2, we introduce the following objects :

(the dependence on 03C3 and h is in 03B6+,-, see (4 . 2)). Then we have the following
lemma :

LEMMA 5.2.4. There exists a c &#x3E; 0 such that for all small enough A,
all 6, h E T, all A and any r(A),

- This follows trivially from proposition 4.4 since

We shall also need the following slight generalization of the result of
Frohlich and Simon mentioned in chapter III.

PROPOSITION 5.2.5. 2014 If the Schwinger functions of a state are continuous
from the right (or from the left) in the external field, then the state satisfies
the Osterwalder-Schrader axioms, including clustering, and is independent
of the classical boundary conditions (free, Dirichlet, Neumann, periodic,
half-Dirichlet, etc.).
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Proof - Implicit in the proof of theorems 4.1, 4.2 and 4.4 of [FS].
See also [Sul].

Remark. 2014 If the vacuum energy density is difrerentiable in h, then it is
continuously differentiable, and it follows that proposition 5.2.5 is appli-
cable.
As we have seen in chapter III, propositions 5.1.4, 5.2.5 and 5.2.3 imply

that (7, A e T) :

Griffiths’ second inequality implies that ( x + (B) -{- X:(A) )0 is monotone

decreasing in 6 (~ o , - (0) was defined to be independent of a~ and h), and
the FKG inequalities entail that ( + is monotone decreasing
in h. And because lemma 5.2.4 and the chessboard estimate tell us that

throughout T,

(5.2.22) implies theorem 3.2.
Because 1 == ( /+(A) ) +  xo(0) ~ + ( x - (4) ~, an immediate corol-

lary is :

COROLLARY 5.2.6. There exists a K &#x3E; 0 such that for all small enough ~,,
all 7, h E T and all A,

Because we have defined the limit states (with the exception of the 0 state
at (or(~ 0)) to be right (or left) continuous in the external field, we may
apply proposition 5.2.5 to yield the balance of theorem 2.2. Since the 0 state
at (CTT(À), 0) is a limit of states satisfying the hypothesis of proposition 5.2.5,
it satisfies all the Osterwalder-Schrader axioms (excepting possibly clustering
and the linear growth condition) and is independent of the classical boundary
conditions. The linear growth condition is proven in chapter VII, but
we have no argument at present to show that the 0 state at (~T(~,), 0) is
pure.
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Although the +, 0, - state at the phase transition lines is independent
of the classical boundary conditions, it is, nevertheless, in principle dependent
on the choice of sequence used to define it. However, by the second Griffiths’
inequality, the Schwinger functions of the states are monotone increasing
in h (/~ &#x3E;: 0) and monotone decreasing in cr. Let us consider, for example,
the + state at ~D(~,, h), h &#x3E;_ 0 Or(A), h == 0). By the monotonicity
in 6 and h,

for every sequence hn) 2014~ (~D~? h), h) that is (eventually) contained
in the second quadrant of parameter space, with (o-D~, h), h) regarded as the
origin. In this quadrant, the Schwinger functions are jointly monotone
decreasing in or and h to the limit. Similarly, for /x ; 0 the - state at ~D(~,, h)

~T(~,), h == 0) is independent of the choice of sequence lying in
the third quadrant of the axes with origin at (~D(~,, h), h). Whenh &#x3E; 0 (h  0),
the 0 state at ~D(~,, h) is independent of the choice of any sequence lying
in the fourth quadrant (first quadrant). Thus, the 0 state at (6D(~,, h), A 4= 0)
coincides with the « canonical » limit (see [GJ2]) (6n, A =)= 0) t (~D(~,, h)
~ =~= 0). Only the 0 state at (7r(A), 0) depends a on the choice of the

sequence { R 0 that converges to it, without the benefit of large
regions of equivalence.

6. THE POSITIONS OF THE PHASE TRANSITION LINES
IN PARAMETER SPACE

The aim of this chapter is to prove theorem 2.5, as outlined in chapter III.
As a first step, we note

LEMMA 6.1. 2014 If we define (x~’~’(/+~,-) as in (5 .1. 2), the following
inequalities hold :

moreover, there exists a K &#x3E; 0 such that if o-, h E R + ~ ° ~ - n T,

~’roof. i) is trivial, since x+ ,0,_(A) ~ 1. By the chessboard estimate

But for or, hER +, we have from corollary 5.2.6 that

The 0, - case in R 0, - is proven similarly.
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LEMMA 6.2. There exists a K &#x3E; 0 such that for all small enough /).

and all 7, h E T,

Proof.

by proposition 4.4. The 0, - case is proven similarly.

Proof of theorem 2.5. - If (r, hER + n T, lemmas 6.1 and 6.2 imply

(using lemma 4.5 in the last inequality), which entails that

If we write E+(h = 0) =E ~, -1 (~ + ~+(r)), then

y, h) == 0(h3~,1~2) (see (2. 7)). /+(~ o-, h) can, in fact, be calculated
to arbitrary accuracy in h (see [Sul]). But (6 .1 ) and (6 . 2) imply

When 03C3, h ~ R0 ~ T and h &#x3E; 0, lemmas 6,1, 6.2 and 4. 5 imply

so that, again,
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(6. 3) and (6.4) give, with the same calculation for h  0:

(12
One sees at once that (because ~+(0-) == - - + 0«(13)) whenever

where we have used (2.2) and (2.4).

7. PERTURBATION THEORY IS ASYMPTOTIC

We have shown in [Su2], in the specific example of ~2 deep in the two-
phase region, that with the counterparts of theorem 3.2 and proposition 5.1.1
one can prove that the expansions generated by perturbation theory about
the appropriate classical field value (the appropriate minimum of the poly-
nomial) for the generalized Schwinger functions are asymptotic. Thus,
we shall be somewhat telegraphic in this presentation of the proof of theo-
rem 2.3 and shall rely heavily on [Su2]. Readers wishing to see all the details
worked out specifically in the context of this model are referred to [Sul].
As previously mentioned in chapter III, we shall use the following result

of [GJ1].

THEOREM 7.1. The following formula is valid :

where

We shall outline " the proof of theorem 2.3 for the + state ’ in R+ n T.
The argument is similar for the other cases.
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The object of study is a typical generalized Schwinger function :

where we shall require that suppt. ai, ai a unit lattice square,
i == 1, ..., n. The general case of unrestricted support is recovered as a
sum over A1, ..., ~,~ of such localized monomials. Repeated integration by
parts, applied to all the linear factors of the original product of Wick mono-
mials and to the linear factors of the subsequent derivatives of the inter-
action polynomial : P(~ + ) : (( 1. 4)) brought into the integrand and continued
until each term in the resultant sum either is a constant on path space or
contains at least r + 1 (derivatives of the) polynomials : P(~+) :, yields
the following expansion for (7.1):

where a typical term in the finite sum over ( RK(t/J +) &#x3E; + is of the form

and M &#x3E; ~ + 1, P~°‘u~ is the ocu-th derivative of P, and

denotes the characteristic function of the unit square A, and 
is a product of N ~ M factors where
C = (- ~ + m + ) -1. It is easy to see that the constants 0~(0’, h) are exactly
those given by perturbation theory about the minimum ~ + .
Each term in the sum &#x3E; + can be represented graphically,

with the lines of the graph due to the free covariances and the vertices
provided by the derivatives of the original Wick monomials and of the
interaction polynomial. The basic point is to estimate the vertices uniformly
as ~, ,~ 0 and to control the integration over vertex positions by the expo-
nential decay of the free covariances. Here, we shall give short shrift to the
latter point and concentrate on the former.
For each term (7.3) we shall assume that not only every linear factor

of the original product of Wick monomials has been integrated out, but
that no two vertices with derivatives of the interaction polynomial are
contracted to each other, unless one or both of them have been completely
integrated out, i. e., unless one or both are constants on path space. For any
factor that does not satisfy this assumption, one continues integrating
by parts the nonconforming vertices until each term in the resulting sum
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fulfills the requirement. This merely increases M and the number of terms.
Then, by performing a localization sum

at each vertex, one obtains for (7.3):

where M == M1 + M2, 0(~~~) contains the interaction coefRcients of the M1
completely integrated interaction vertices (recall lemma 4.2) and

Here we have subsumed by x also the position variables of the comple-
tely integrated vertices. Each J=={~}~=i=={(7v,i. 
denotes a choice of unit lattice square localizations for the M vertices

(and thus the N covariances in v(x, y)). Next, at each square one per-
forms the spin configuration expansion 1 == X + ( .) + Xo(.) + X - ( . ), so

that (7.3) becomes

where the sum E6~ .~ is over the possible choices of = 1, ..., M28
Finally, because there are no covariances in v(x, y) (in the expression

for that join the vertices that are not completely integrated to each
other (by the assumption described above), (7.3) is of the form :

where f~~(y~~) === and is the corresponding constituent
of (see [Su2]).
Each term in (7.4) is now in a form to which we may apply proposi-

tion 5.1.1. A given term with at least one differing from + is estimated
by Holder’s inequality :
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where Oo == 0 or 2014. Application of proposition 5.1.1, lemma 4.2 and theo-
rem 3.2 yields the following worst-case bound for (7.5):

Proposition 5.1.1 and lemma 4.2 yield the following bound for the single
term in the sum over spin configurations for which = +, ~ == 1, ...,
M2:

Thus, (7.4) is estimated by

The factor 3M2 is the number of terms in the sum By the exponential
decay of the free covariances, the sum in the last factor has the bound
[DG, GJS1, Su2]

And because N ~ + 5 M, the total degree of the Wick monomials
that have been brought into the integrand, we have the bound

where depends on M and N(A). Thus, theorem 2.3 is proven.
Similarly, a localization and spin configuration sum, in conjunction with

proposition 5.1.1 and theorem 3.2, entail that

where |fi|p = 03A30394~LAcR2 &#x3E; 1, with K uniform in 03BB (03BB ~ 0) and in
y, T. Because it is easy to see that |fi|p ~ K|ft 1.9" 1.9’
a suitable Schwartz space seminorm (see [SuI]), one can directly verify
the Osterwalder-Schrader linear growth condition, thus filling in the last
gap in the proof of theorem 2.2.
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APPENDIX 1

BOUNDARY CONDITIONS
AND EUCLIDEAN INVARIANCE OF ( : 4&#x3E;2 : (A) &#x3E;

In this appendix we treat a technical problem that arises from the fact that the states
that are obtained through the infinite volume limit of the normalized finite volume inter-
acting measures in (2.3) are not known to be Euclidean invariant (their construction
through a compactness argument does not yield total Euclidean invariance, only time
translation invariance). However, at a few crucial points in section V.2 the Euclidean
invariance of a few objects is tacitly employed. In order not to interrupt the main flow of
the ideas of that section, we place the proof of the necessary properties, along with the
technical results needed to show that o~(A, h) is independent of the (classical) boundary
conditions, in the format of this appendix.

PROPOSITION A.I.I. - If O’, h) j~-6 exists,

for every x.

Proof. - We note that the chessboard estimates (valid for free and half-Dirichtet [FS]
and periodic [Fr2] boundary conditions) imply for every x &#x3E; 0,

Therefore, if one subtracts by 1, divides and lets~ 2014~ 0, one obtains

where D~ is the derivative from the right (resp., left) with respect to cr. When the derivative
of the vacuum energy density with respect to o- exists, one has, thus,

Because the free, periodic and half Dirichlet pressures are equal [GRS2], one has at such
points

for every A. The Euclidean invariance of the half-Dirichlet state [GRSI] implies the pro-
position.

Note. - Because the state ( . )+,0,- has free boundary conditions, lemma 4.6 and

proposition A.I.I yield the Euclidean invariance of ( : ~2 : (x) )+,°,- (wherever
o-, exists), which was used in the proof of lemma 5.2.1. Furthermore, the

proof of proposition A. 1 . 1 entails that
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which was used in the proof of lemma 5.2.2. Because the validity of this argument is
limited to those states with boundary conditions for which the chessboard estimate is
known, we will need to introduce some further ideas in order to justify the note following
lemma 5 . 2 . 2.

Let G be the set of functions on R’~ (n arbitrary) that are sums of functions of the form

where g is a positive, increasing, polynomially bounded function on (0, oo) and e(~( f ))
== 1 or sign 03C6 ( f ). If dv1 and dv2 are probability measures on J’(R2), we say VI  v2(GKS)
if and only if

for any F ~ G, any n and any positive f1, ..., f’n 
We next recall a construction from [FS]. Let P(x) be a semibounded polynomial and

= P(x) ~ hoox, where hoo is large enough that the infinite volume probability measure
corresponding to Q. can be constructed via Spencer’s [Sp] large external field cluster

expansion. Then we define the following measures for ~A j ~ 

These measures exist and obey all of the Osterwalder-Schrader axioms (including clustering)
and are independent of the choice of Aoo [FS]. Furthermore, = (Xoo(P) and the
chessboard estimate is known to be valid for these states. Thus, letting the P above be that
in (2 .1), wherever the vacuum energy density is differentiable in 6,

We prove the following.

PROPOSITION A .1. 2. - cr, h) is differentiable in o~, then ( : l/J2 : (0) ) is inde-
pendent of the classical boundary conditions.

Proof. - The program for proving this proposition is the same as the proof
of theorem 5.2 of [FS]. Given some boundary ’;conditions yo, we will find another set
of boundary conditions y~ such that

where has interaction P in A, P =F in and y  boundary conditions
on ~-~’, and that for fixed A,

(A. 1.3) implies that  . ). = lim (lim  and (A. .1. 2) gives us, thus,

Vol. XXXIV, nO 2 - 1981.



226 S. J. SUMMERS

Therefore,

and (A.1.1) yields  : (jJ2 : ~yo = ( : ~2 : )::l:. (A.1.2) and (A.1.3) are proven
in [FS] for y0 equal to the classical boundary conditions. We should point out that although
(A. 1.2) is proven in [FS] in the « FKG » sense for general polynomials, because the
interaction polynomial is even (excepting the external field), the « GKS » sense of
the inequality (A .1. 2) is maintained [GRSl]. It should, furthermore, be mentioned that,
in order to maintain the validity of the GKS inequalities, only even boundary conditions
can be admitted, which includes all of the classical boundary conditions, including the
half-Neumann, half-periodic, etc., boundary conditions treated by Frohlich and Simon’s
multiplicative B. C.-perturbation (the latter point follows because, if one re-Wick-orders
our polynomial from yl B. C.-ordering to y2 B. C.-ordering, one finds

where is an even polynomial in QJ. Thus, the GKS inequalities are retained under a
perturbation due to 
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APPENDIX 2

EXISTENCE OF THE LIMIT STATES

In this appendix we shall outline the proof of the existence of the limit states (their
measures, generating functionals, and generalized Schwinger functions) at ù-R +,0,-, as
required in section V. 2. We will discuss explicitly the proof for the 0 state at (c~(~), 0) ;
the arguments for the other limits are similar. We have from [GJ1] that

is bounded and analytic in f1 ~ Ll,6/s. In particular, this is true at each point hn) of the
sequence {(y , ~ (6T(~,), 0) chosen to define the 0 state at (~(~ 0). Moreover, it is
known [FS] that whenever the vacuum energy density is differentiable in h, the state
constructed by the compactness argument incorporated in the proof of the existence
theorem we have quoted from [OJ1] in Chapter II coincides with the state generated by
the Frohlich-Simon large external field boundary conditions construction. But for the
latter state it is known that 0) is monotone increasing in h, and it is easy to
see it is also monotone decreasing in o~. Therefore { } is a uniformly bounded
family of analytic functionals (bounded, in fact, by which, by Vitali’s
theorem converges uniformly on Ll,6/5 (possibly through a subsequence) to an analytic
limit 

Moreover, one sees that the limit determines a unique measure on Y"’(R 2). The measure
is obtained from Minlos’ theorem [Mi] once it is remarked that the uniform convergence

~ Z°( f1) entails that = satisfies

i ) jo(0) = 1,
ii) J° is continuous on 9’(R 2),

JO is of positive type.
i)-iii) follow from the corresponding properties of the The measure then

generated is the unique measure for which

To establish the existence of the generalized Schwinger functions of the limit states,
we note that since we have already been assured of the validity of theorem 3.2
in R +,0, -B ()- R +,0, -, we may employ theorem 3.2 i) and proposition 5.1.1 to conclude, as
in Chapter VII (no integration by parts is necessary), that for fixed j and N,

where K is a constant uniform in { hn) ~ is given by
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Denoting the Banach space defined with this norm by ~p,E, one notes that

(A . 2 .1) entails that the family is uniformly bounded and equi-
continuous on Jj,03A3. Thus, it converges (possibly through a subsequence) to a limit

continuous on ~~,~. Because there are only countably many ~JN~, one can
find a subsequence so that exist.

We comment that, once the existence of the generalized Schwinger functions has been
established, as above, one can copy the argument of [GJ1] to prove that one can integrate
by parts in the limit states, i. e., theorem 7. is valid for the limit states. The argument
proceeds through the sequence of states at (on, (for which theorem 7. holds) instead
of through a sequence of finite volume states as the volume grows to infinity.

Note added in ~roof.~ We remark that because the lattice used in the proof of propo-
sition 4.4 must coincide with the lattice used to define a~, the proof given here does
not suffice for a unit lattice. A (more lengthy) proof of the vacuum energy bounds
valid for a unit lattice is given explicitly in [Sut]. But in any case, one can just as well
have started with a lattice composed of squares of area 10-6. No results or arguments
in the paper change; one must simply carry the normalization factor |0394|-1 1 with

every F(~)(A).
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