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Institut fiir Astrophysik,
Karl-Schwarzschild-Strasse 1, 8046 Garching, FRG

ABSTRACT. — For asymptotically flat spacetimes containing isometries
we establish relations between asymptotically defined quantities and quan-
tities describing the structure of the sources as defined by Dixon. In parti-
cular, for stationary spacetimes we derive a mass formula and in axisymme-
tric spacetimes we prove the equality of asymptotic and local angular
momentum.

RESUME. — Pour des espaces-temps plats a 1’infini on établit des relations
entre des quantités asymptotiquement définies et des moments multipolaires
selon W. G. Dixon décrivant la structure des sources. On déduit une for-
mule de masse pour des espaces-temps stationnaires et on prouve 1’égalité
des moments cinétiques asymptotique et local pour des espaces-temps axi-
symétriques.

§ 1. INTRODUCTION

It has been emphasized in [/], [2], [3] that a more complete description of
isolated systems in General Relativity requires a combination of several
parts of the theory which have been carried out rigorously but which have
not been related to each other so far. Such distinct aspects are the descrip-
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146 M. STREUBEL, R. SCHATTNER

tion of the structure and motion of bodies, the asymptotic analysis of asymp-
totically flat gravitational fields in terms of the structure at null or spacelike
infinity, the characteristic and the Cauchy initial value problem.

In this paper, we take the first step towards the combination of the former
two aspects. We restrict ourselves to cases where the spacetime modelling
an isolated system admits a group of motions and we apply the results of [4]
(in the sequel referred to as paper I) to spacetimes which are asymptotically
flat to obtain formulae relating asymptotic quantities like the Bondi mass
and angular momentum to the corresponding local (Dixon-) quantities.
In the stationary case (§ 3 b) it is shown explicitly how apart from the local
(inertial) mass the rotational energy and the gravitational potential energy
contribute to the total mass of the system. In the axisymmetric case (§ 3 ¢)
we show that the asymptotic and the local angular momentum agree, i. e.
that the cravitational field is no source of angular momentum contrary to
the case of the masses.

This work is regarded as a prerequisite for the treatment of the analogous
but more difficult problem when no symmetries are present. This will be
dealt with in a later paper.

§ 2. ASYMPTOTICS

The concept of an isolated system used in this work involves the existence
of future null infinity #* in the sense of asymptotic simplicity as defined by
Penrose (see, e. g. [5]). This provides an invariant geometric formulation of
asymptotic flatness of a spacetime. Spacetimes being (weakly) asymptoti-
cally simple and empty possess the same global asymptotic structure as
Minkowski spacetime. In particular, there exists an asymptotic symmetry
group which arises as the invariance group of the universal geometrical
structure inherent in # *. This is the BMS-group. Now there are also physical
fields defined on the manifold representing future null infinity. Similarly to
the standard procedure in special relativistic field theories, one can try to
combine these fields with the asymptotic symmetries also defined there to
obtain integrated quantities like energy-momentum and angular momentum
which are characteristic of the system as a whole, being part of the invariant
asymptotic description of the physical behaviour of an isolated source.

There is a compatibility criterion for the construction of such quantities.
If the physical spacetime admits a Killing vector field Z° one also has
available the Komar integral [6]

Cy(Z) = ‘% 92 vezZhdSy, 2.1

where S is any smooth two-sphere surrounding the matter sources. In fact,
by Einstein’s vacuum equations, C4(Z) is independent of the choice of S in
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FOR ISOLATED GRAVITATING SYSTEMS WITH ISOMETRIES 147

the vacuum region and therefore represents a conserved quantity. On the
other hand, since every Killing field admits a smooth extension to .#, one
can evaluate Cg(Z) on a two-sphere cross section of £ in a conformally
rescaled spacetime. Thus a quantity of the type referred to above must reduce
to the Komar integral if the BMS vector field from which it is constructed
arises from the extension of a Killing vector field on spacetime. In this paper,
we will therefore adopt the following assumption and definitions.
In addition to the assumptions (Al), (A2) of I we demand

(A3) The spacetime (#, g) is asymptotically simple and empty in a
neighborhood of #* and (.#, g, T) is a solution of Einstein’s equations.

(2.1) DErINITION. — a) In a stationary spacetime satisfying (A3) with
Killing vector field £ (normalized to unity at infinity), M : = Cy(&) is called
the total mass of the system if S is any two-sphere cross section of 4 *.

b) In an axisymmetric spacetime satisfying (A.3) with Killing vector field
n whose orbits are closed curves with parameter length 2z, J : = %Cs(n) is

called the total angular momentum of the system if S is any two-sphere cross
section of #*.

Remarks. — In a stationary spacetime, M agrees with the Bondi mass
(see, e. g. [7]). In an axisymmetric spacetime, J agrees with the definition of
Tamburino and Winicour [8]. If (4, g) is also asymptotically flat at spatial
infinity in the sense of Ashtekar and Hansen [9], then M and J also agree
with the definitions available there if the corresponding symmetries are
present (see [10], [11]).

§ 3. THE CONNECTION
BETWEEN LOCAL AND ASYMPTOTIC STRUCTURE

A relation between the asymptotic and the local conserved quantities
will first be established for a general group of motions and hereafter we will

specialize to some physically significant cases. All notations follow those of
paper 1.

a) General group of motions.

We recall Lemma 4.2 (I) and we suppose the assumptions (Al), (A2),
(A3) and (S1) to hold. In other words, we are given an isolated body repre-
sented by an asymptotically flat spacetime in which a unique center-of-mass
line exists and the system is invariant under a group of motions generated
by a Killing vector field Z. We have
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148 M. STREUBEL, R. SCHATTNER

(3.1) ProposITION. — Suppose (Al), (A2), (A3), and (S1). Then

Cy(Z) = 2B4(Z) — x L Tds

where
T : = T,
Proof.

lo

F1G. 3.1. — W = convex hull of supp T,

By Stokes’ theorem, Cg(Z) may be written as

C(2) = 4ln f | Tvezvas, 3.1)
N

since S = (N U X) (see fig. 3.1).
From the Ricci identity
1

VisVZ® = 5 R,Z°
one obtains
V,ViZ + v, V2 = v,v°Zb = v°V,Z" + R%,Z°

which, by Killing’s equation, reduces to
V,Vezh = R*,Zb = Sn(T“,, - %T(S“,,)Z". (3.2)

The last step made use of the field equation. We insert (3.2) in (3.1), use
the defining equations (3.2 (I)) and equation (4.4 (I)). This yields
the result. a

The equation obtained in the foregoing proposition may be rewritten as
follows.
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FOR ISOLATED GRAVITATING SYSTEMS WITH ISOMETRIES 149

(3.2) Lemma. — Cy(Z) may be expressed in terms of the values of Z and
VZ at the centre of mass (with Z,u* = «, see (4.3 (I))):

Cs(2) = Zku"(2MD - f TdS) + V,Z,SH.
z

Proof. — This is an immediate consequence of Proposition (3.1), equa-
tions (3.3 (I)) and Lemma (4.2 (1)). O

Next we use (3.21 (I)) to express the integral over the trace of T* in
terms of mass, angular momentum and higher order moments.

(3.3) ProprosiTiIoN. — Under the hypotheses of proposition (3.1),

Cy(2) = K(MD - f T™G,, + G"X,)DX

Tzs)(A) s
- - ’ < Aab 4 > + V,Z Skl
ds (v)> Sab L )

v=1

Proof. — We apply equation (3.21 (I)) for ¢,, = g, The first term yields
the Dixon mass Mp, while the second term vanishes. Hence all that has to
be done is the evaluation of A,,. Since Vg = 0, we see from (3.15 (I)) that 1,
has to be an ordinary Jacobi field, i. e. it is given by (3.1 (I)). Inserting the
initial conditions (3.16 (I)), we find

— k1 _ -1k —
Aa__Haagkl_a a Ox = 0,

and therefore
Am(z, X) = Ham)‘a(z’ €Xp. X) = - O'm(Z, €Xp, X) = Xm'

Insertion of the whole expression into the expression given in Lemma (3.2)
yields the result. O

This is as far as we can get without further assumptions concerning the
nature of the isometry group.

b) Stationary group of motions.

In this subsection, we will obtain a mass formula relating the total mass M
to local quantities.

(3.4) THEOREM. — The total mass of a stationary isolated system is given
by
M=xk(Mp — 20 — ¥ — 4E,,)
where
1

®: =5 f TG, ,DX
2 Tz(s)(M)
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150 M. STREUBEL, R. SCHATTNER

v = f THG™X, DX
Tz(s)( M)

Erot: = - 417(: vkélskl;
K is the red shift factor, @ is the gravitational potential energy introduced
in [12]. E,, is interpreted to be the rotational energy, which is motivated
as follows: in a stationary spacetime, the principal directions of the inertia
tensor may be chosen in such a way that they are Lie-dragged with respect
to the Killing field & (if the eigenvalues of the inertia tensor are mutually
distinct, no other choice is possible). Then

1
Erot = Z Wklskl

where W* is the angular velocity of the principal directions (cf. § 3 (I)).
According to proposition (5.8 (I)) and definition (5.6 (I)) we obtain

1
4
if the motion is quasi-rigid and the principal moments of inertia are mutually

distinct. This expression agrees with Dixon’s definition of rotational energy
in [12].

Erot = lesk,

Proof. — Using definition (2.2 («@)), proposition (3.3) and corollary
(5.1 (I)), we find

3
M= K(MD - 20 — \P) - 4KErot - K;(i) <At(13)’ Eab >‘

v=1

But the { A{}), g,, » are scalar fields along /, depending only on the metric g.
Therefore

d, . a
3}<A(.’z’), gab> = $¢(A(f), g =0.

This proves the first part of the Theorem.

Using Proposition (5.7 (I)) and the center-of-mass condition yields the
remaining statement. a

¢) Axisymmetric group of motions.

In this case we can derive a relation between angular momenta:

(3.5) ProposITION. — The total angular momentum and the angular
momentum at the center-of-mass of an axisymmetric isolated system are
equal:

J=1L.
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Proof. — Using Definition (2.2 (b)), Lemma (3.2) and the fact that [pro-
position (6.1 (I))]
k=0,
we find using (6.5 (1))

1 1
J= 3 Cs(n) = 5 vk'hskl = L. a

This result is surprising, when compared with theorem (3.4). In the sta-
tionary case, the total mass M of the system is not equal to the inertial
mass M, of the sources. One may interpret this fact by saying that the extra
terms appearing in the mass formula represent the contribution to the mass
from the gravitational field. On the other hand, in the axisymmetric case,
it is clear that the component of angular momentum in the direction of the
Killing field is not radiated to infinity; but this does not yet explain why the
corresponding angular momenta are equal. Instead, by this result one is
forced to conclude that the field itself is no source of angular momentum
whereas it is one for the mass. A possible explanation for this might be the
absence of torsion from the affine connection in Einstein’s theory of gravi-
tation; only torsion could be a source of angular momentum. However,
this hypothesis would have to be explored in more detail.

§ 4. DISCUSSION

In this work we have established relations between source quantities and
those asymptotic quantities which are defined by the existence of an iso-
metry in spacetime. Einstein’s vacuum equation together with Killing’s
equation ensure that these relations do not contain terms arising from the
integration over hypersurfaces connecting the source region with the asymp-
totic regime. However, in general this cannot be expected any longer if the
quantities to be considered are not linked to isometries but are defined by
other means. The next simplest case of this kind would be the relation of
angular momenta in a stationary but not necessarily axisymmetric spacetime:
the asymptotic angular momenta (in the null as well as the spatial regime)
are defined and compared in [/7]. What is their relation to the sources? The
answer to this would also shed light on the conjecture mentioned at the end
of § 3 ¢ whose verification would require that the intermediate hypersurface
terms would vanish also in this case even if by different reasons.

Having learnt about this problem one would proceed to general non-
stationary spacetimes in which one definitely has to deal with field contri-
butions from intermediate zones. For the purpose of establishing an energy
balance between the radiation field and the sources, these field energy terms
have to be estimated against the mechanical energy terms, for instance by
defining a near zone. This has still to be achieved but there is some reason
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152 M. STREUBEL, R. SCHATTNER

to hope that an exact framework as the one set up here offers a possibility
to relate the asymptotically observed energy flux to the motion of the
sources by making controlled approximations. This must be an aim of
general relativistic mechanics.
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