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Properties of extended bodies
in spacetimes admitting isometries
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D-8046 Garching b. München, FRG

Ann. Inst. Henri Poincaré, ’

Vol. XXXIV, n° 2, 1981,

Section A :

Physique theorique.

ABSTRACT. Dixon’s centre-of-mass description of extended bodies is
analyzed for spacetimes admitting isometries. In particular, we treat sta-
tionary, axisymmetric and stationary and axisymmetric spacetimes. In the
last case, a new coordinate system is constructed which is based on the centre-
of mass world line lo and we obtain in the case that lo is a geodesic (a suffi-
cient condition for this is given) a new restriction on the energy-momentum
tensor.

RESUME. 4n analyse la description des corps etendus selon W. G. Dixon
pour des espaces-temps admettant des isometries. On considere particulie-
rement des espaces-temps stationnaires, axisymetriques ainsi que station-
naires et axisymétriques. Dans ce dernier cas on construit un nouveau sys-
teme de coordonnees fonde sur la ligne d’univers du centre de masse lo et on
trouve une nouvehe restriction sur Ie tenseur d’energie-impulsion si 10 est
geodesique (une condition suffisante pour cela est obtenue).

§ 1 INTRODUCTION

In [7], we started a programme aimed at establishing an energy-momen-
tum balance between material sources and the gravitational radiation field
for isolated systems of extended bodies in General Relativity. Our approach
uses only covariantly defined concepts so as to render possible going beyond
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118 R. SCHATTNER, M. STREUBEL

merely formal approximations. One such exact framework employed in our
approach is Dixon’s theory of the local structure and dynamics of extended
bodies [2]. A review of its basic structures will be given in this paper.
By principal reasons, in [1] we were also led to consider stationary as well

as axisymmetric spacetimes representing isolated bodies within Dixon’s
framework. In this first of a series of papers we complete and extend these
investigations to spacetimes which are both stationary and axisymmetric,
representing e. g., isolated rotating stars. In the second part, these results
will be applied to such spacetimes which are also asymptotically flat to
obtain a connection between the asymptotic and the local description of
isolated symmetrical bodies.
As far as this paper is concerned, besides several new local results presented

in the following sections, in Section 7 we obtain a global condition res-
tricting the multipole structure of objects of the type considered here if

their center-of-mass moves on a geodesic. Up to this point no field equations
are used, all results follow from the local balance equation V’T = 0 for the
matter distribution together with several technical assumptions.
To be more precise, in Section 3 we present a short review of Dixon’s

theory. In Section 4, we state our assumptions in detail and prove local
geometrical properties of an isolated system in a spacetime admitting a
group of motions. In the following three sections, these results are then
applied to the special cases of spacetimes which are stationary, axisymmetric
and both stationary and axisymmetric, respectively. In addition, Section 7
contains the geometrical construction of a new coordinate system based on
the centre-of-mass world line of the body. In particular, there is a canonical
time function in these spacetimes (up to the choice of origin).

Finally, the last section treats « dynamical )) properties of such bodies,
starting from the introduction of one further assumption which ensures the
centre-of-mass world line to be geodesic. We first show that force and torque
(in the sense of Dixon) exerted on the body vanish and then derive an inte-
gral condition on the energy-momentum tensor which would have been
hard to obtain without the use of Dixon’s description of isolated bodies.

§ 2. NOTATION AND CONVENTIONS

We put c = 1 = G. Signature of the metric g : :(+,2014,2014,2014). Round
and square brackets stand for symmetrization and antisymmetrization,
respectively. V denotes the covariant derivative. The curvature tensors of
Riemann and Ricci are defined by

~abcd denotes the completely antisymmetric tensor (volume form) satisfying
~0123 = ~ in an oriented orthonormal tetrad.

Annales de l’Institut Henri Poincaré - Section A



119PROPERTIES OF EXTENDED BODIES IN SPACETIMES ADMITTING ISOMETRIES

The Dixon theory uses bitensors (two point tensors) extensively. For a
bitensor function of the pair of points (x, z) one must distinguish indices
at x and those at z. We shall use a, b, c, ... for indices at x and i, j, k, ...

for indices at z, also with respect to ordinary tensors.

§ 3. SHORT REVIEW OF DtXON’S THEORY

A detailed account of the theory is given in [2]. We will be very concise
here.

Basic auxiliary quantities of the framework are the world function
biscalar 6(z, x) and the Jacobi propagators Kak and Hak. The world function
is defined as follows: let x(u) be a geodesic joining the points x(0) = z and
x(u) = x. Then

Covariant derivatives of 6 are denoted by the corresponding sufRxes,
e. g. It is easy to see that

The Jacobi propagators arise by considering solutions of the equation
of geodesic deviation (Jacobi equation) along x(u):

where Du = is absolute differentiation along x(u). The solutions of
this differential equation are determined by the values of ç and Duç at the
point z. Since the equation is linear, the dependence of the solution on the
data is linear. Therefore there exist bitensors K and H such that

It can be shown (see e. g. [2]) that they satisfy

Geometrically, H represents the differential of the exponential map

where X E 
All these bitensors are well defined in a neighbourhood N of the diagonal

set of M x M such that ~~~, y~ E N iff there is a unique geodesic joining x
and y.

Vol. XXXIV, nO 2 - 1981.



120 R. SCHATTNER, M. STREUBEL

Now, it is easy to see that

defines the unique vector field which is a Jacobi field along all geodesics
emanating from z and satisfies

If the spacetime M admits an isometry generated by a Killing vector
field 03BEa, then 03BEa is a fortiori a Jacobi field along all geodesics and satisfies
therefore (3.1) with respect to all z E M.

Next consider a system of isolated (1) bodies in a spacetime admitting an
isometry generated by a Killing vector field ~°. Let E be a spacelike hyper-
surface and dSa the vector element of volume on E. Tab denotes the energy
momentum tensor of the matter satisfying = 0 = Va Tab. Then

is independent of the hypersurface E. In view of (3.1) we rewrite E1: as a
bilinear functional on the (Jacobi) data of the Killing field in a point z E E
(the « generators of the isometry group ))):

where

and

In analogy with flat spacetime Pk and Skl are called (Dixon’s) momentum
and angular momentum. The essential point is that these quantities are inde-
pendent of the existence of a Killing field ~a and may therefore be chosen as
definitions of momentum and angular momentum in a general spacetime
where no symmetries are present. The quantities defined by (3.4) and (3 . 5)
depend on both the hypersurface E and the point zeE. Given a point
z E M and a timelike future directed unit vector uk E we define momen-

tum and angular momentum with respect to (z, u) by choosing X to be the
geodesic hypersurface orthogonal to u, i. e.

(1) By this we mean supp 0 (Tab) n S is compact for all spacelike 
" hypersurfaces S.

Annales de l’lnstitut Henri Poincare - Section A



121PROPERTIES OF EXTENDED BODIES IN SPACETIMES ADMITTING ISOMETRIES

Now, to reduce arbitrariness further, we impose the condition

It has been shown in [3] that an energy condition together with weak
conditions on the curvature of spacetime and the size of the bodies ensure
the existence of an unique timelike future directed uk satisfying (3.6) in a
neighbourhood of supp (T). These conditions are also sufficient to show
(see [3]) that there exists exactly one time like curve lo == z(s), the centre-
of-mass, such that the mass dipole moment mk, defined by

vanishes. If we introduce a spin vector Sk by

we find from the centre-of-mass condition that

We normalize the parametrization of 10 by

In virtue of (3.6) there exists of course a scalar function M~ the Dixon
mass, along lo such that

MD is positive. Note that uk is not necessarily tangent to lo.
As a consequence of the local law of motion,

Pk and Skl have to satisfy (ordinary) differential equations along lo, Dixon’s
integral laws of motion :

The form of equations (3.10) and (3.11) does not depend on the particular
choice of lo and ~(s), but Fz and Li’ do. They are well defined only if the
world-line, its parametrization and the family of hyper surfaces are specified.
Therefore we will in the future always adopt the above choices of lo --_ z(s)
and ~(s), i. e. a centrc-of-mass description.

In order to evaluate the gravitational force pk and torque Lkl explicitly,
one needs another structure, the so-called « energy momentum skeleton ».

Together with Pk and Sk~ it provides a complete description of the bodies
(i. e. it is equivalent with Tab) but it is not subject to any differential equations
Vol. XXXIV, nO 2 - 1981.



122 R. SCHATTNER, M. STREUBEL

along lo as a consequence of (3.9). The details are as follows : Tab is comple-
tely determined knowing the linear functional

for all smooth symmetric tensor fields of compact support. Dixon has
shown that for any smooth Tab with spatially compact support satisfying (3.9)
there exists a tensor distribution on the tangent space the energy
momentum skeleton, such that

T~ is zero unless z E 10 and has compact support contained in the hyper-
surface orthogonal to ~k in 
DX = ’B/- 11 dX1 A dX2 11 dX3 is the volume element on

is the pull back of to by the exponential map, i. e.

G~ is the pull back of the linear connexion, i. e.

and Am is the pull back of the two point co-vector field ~(z, x) which satisfies

along all afnnely parametrized geodesics through z. It is fully determined
by imposing the initial conditions

It has been proven by Dixon that T~ is unique if one imposes the further
conditions

One may define an extended skeleton by

and the 2n-pole moments at E lo

Annales de l’lnstitut Henri Section A



123PROPERTIES OF EXTENDED BODIES IN SPACETIMES ADMITTING ISOMETRIES

It can be shown that

Tk~ contains only quadrupole and higher order information about the body.
Using the energy momentum skeleton, Dixon gave explicit formulae

for Fk and L,kl: given a Jacobi field ç, the conventions being as in (3.1),
these representations of Fk and L kl are in fact equivalent with

for all initial values ~k, ~k~~ _ - Gk~ is the pull back of the metric,

It is important to note that these explicit expressions do not contain zk so
that, surprising as it may seem, (3 .10) and (3 .11 ) together with (3 . 6) can
be solved with respect to z algebraically. This has been achieved by Ehlers
and Rudolph [4]. Finally we quote a theorem which shows that there are
no further restrictions on (P, S, T) in view of (3 . 9) :

THEOREM (Dixon [2]). - If a smooth (2) symmetric tensor field satis-
fies (3 .12) for some choice of (P, S, T) satisfying (3.17), then

In other words, one has succeeded in finding variables describing the bodies
completely, which are such that they satisfy ten ordinary differential equa-
tions being equivalent to the four partial differential equations ~bTab = O!
Thus the situation for a given spacetime metric is very similar (3) to Newto-
nian dynamics : momentum and angular momentum have to be given at an
instant of time, the higher order moments at all times (i. e. in general know-
ledge about the internal structure of the bodies is required in addition).
These data determine the motion.
For the following it will be useful to have a formula which expresses

integrals of Tab over the hypersurfaces E(s) by the skeleton. To obtain it, we
define a time function ~ by

(2) This condition may be weakened, cf. [2] and [5]. For the question of existence of
such a T see [5].

(3) In fact in this regard they are the same. All preceeding theorems may be proven
using only structures common to both theories ([6]).

Vol. XXXIV, nO 2 - 1981.



124 R. SCHATTNER, M. STREUBEL

and a vector field va the local flow of which maps the hypersurfaces :E(s)
onto other such hypersurfaces,

Then

is a scalar 3-form (volume element) associated with the foliation { }, and

We shall use the auxiliary fields t, va, dS throughout this paper.
In particular, it has been shown that there exist tensor valued distribu-

tions v = 1, 2, 3, on the hypersurfaces E(s) depending upon 
and gab only such that

for all smooth tensor fields with compact support.
We shall finish this section with a discussion of angular velocity and the

relativistic inertia tensor.

Let (u, E) be an orthonormal tetrad along lo. Then the tensor
«

obeys the equation

Annales de l’Institut Henri Poincare - Section A



125PROPERTIES OF EXTENDED BODIES IN SPACETTMES ADMITTING ISOMETRIES

and  is characterized  by it. Dkl is, from (3.22), the angular velocity of (E k)
oc

with respect to any quasiparallel base, quasiparallelity being ’ defined  by

(3.1) LEMMA. Dkl is antisymmetric and spacelike, i. e.

- Since (M, E) is an orthonormal tetrad along /o,

Therefore

which proves the first assertion. Furthermore

Using the relativistic inertia tensor defined by

a dynamical angular velocity of the body may be introduced as follows :
it can be shown under conditions similar to those guaranteeing existence
and uniqueness of the centre-of-mass line that

and

with

and

and

Therefore, Mkl has matrix rank 3 and a solution f~ of

Vol. XXXIV, nO 2 - 1981.



126 R. SCHATTNER, M. STREUBEL

always exists. ~~ will be called the dynamical angular velocity vector. The
dynamical angular velocity is then defined by

Now, we may define an orthonormal tetrad (uk, ek) along 10 whose timelike
oc

vector is the dynamical velocity uk and whose spatial vectors rotate with
the dynamical angular velocity A body is said to be dynamically rigid
(quasirigid in the sense of [4]) if its multipole moments of order n ~ 2
have constant components w. r. t. such a tetrad field. Formally, this may be
expressed as follows : the motion is quasirigid, iff there exists a vector
field Y satisfying

If the body is quasirigid, the principal moments of inertia (Ek) can be chosen
x

to rotate with the dynamical velocity Q, if the 03B8 are mutually distinct, the {E)k
IX x

are unique (except for enumeration) and rotate with the dynamical velocity

§ 4. PROPERTIES OF AN ISOLATED SYSTEM
IN A SPACETIME ADMITTING A GROUP OF MOTIONS

Now, as in the following chapters, we consider a spacetime (M, and
a symmetric energy-momentum tensor Tab with the following properties :

(Al) M is a connected Hausdorff C~-manifold which is spatially and tem-
porally-oriented ;

(A2) (gab, Tab) are such that a unique centre-of-mass line 10 : z(s) exists
and the (Dixon-) momentum P is timelike (4).
In addition we assume throughout this chapter :

(Sl) There exists a group of local motions G leaving (M, g) invariant,
which is generated by a vector field Za on M such that = o.

(S2) Tab possesses the same symmetry as (M, g), i. e. = 0.

If (M, g, T) is a solution of Einstein’s equation, then (S2) is of course a
consequence of (S I).

(4) For a definition of these quantities see § 3. Sufficient conditions for (A2) to be valid
may be found in [3].

Annales de l’ lnstitut Ilenri Poincaré - Section A
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(4 .1 ) LEMMA. Suppose condition (3 . 6), but not (3 . 7) holds, i. e. we
have specified the moments completely apart from choosing the centre-of-
mass description. This means that momentum Pk and angular momentum S~
may be considered as tensor fields in a neighbourhood of the support of
Tab. Then

Proo,f: 2014 The assertion follows immediately from the fact that Pk and Sk~
are geometric objects constructed from gab and Tab. D

(4.2) LEMMA. The centre-of-mass line z(s) is a group orbit or a line of
fixed points of the group action, i. e. there exists a constant x such that

and

Proo_f: Let ~t be the local flow of Z. The images of the centre-of-
mass line lo : z(s) are again time like curves which can be used as reference
lines to construct Pk, along each of them (confer Lemma 4.1). On the
other side we get, using (4.1),

which is equivalent to

Therefore

i. e. mkmk is constant along 03C6t(z(s)) for fixed s. Since = z(s) and
(mkmk)(z(s)) = 0 for all s, we find that = 0 for all t and s,
hence

i. e. for fixed but arbitrary t the curve is a centre-of-mass line. By
uniqueness it must coincide with lo. This implies (4.2) and (4.3). It follows
from Lemma 4.1 that

hence, in view of (4.3),

(4.2) yields now

x being continuous this implies x = const. 0
Since the curve z(s) is timelike, one immediately has

(4.3) COROLLARY. - A spacetime containing an isolated body does not
admit any everywhere space like (« translational ))) isometry. 0

Vol. XXXIV, no 2 - 1981.



128 R. SCHATTNER, M. STREUBEL

(4.4) LEMMA. The image of the geodesic hypersurface under the
local flow of the Killing field Z, is again a member of the family of hyper-
surfaces f E(s) ~ M }. Furthermore one finds

and

~’roof. Lemmata (4 .1 ) and (4 . 2) imply

l/J, is an isometry and maps therefore geodesics orthogonal to u(z) into
geodesics orthogonal to This completes the first part of the proof.
This, together with (4. 2) and (4. 3), yields

Finally, (4.2) tells us, that

which implies (4.5). D
This is as far as we can get without further assumptions concerning the

nature of the isometry group. In the following chapters we will treat some
physically significant special cases.

§ 5. PROPERTIES OF AN ISOLATED SYSTEM
IN A STATIONARY SPACETIME

We assume again (Al), (A2), (SI) and (S2). In addition we require the
following :

(S3) (M, g) is invariant under an action ~ : [?(1) x M -~ M of the one
parameter group !?(!), such that the trajectories are timelike curves.
The corresponding Killing vector field shall be denoted by ~, i. e. the results

of § 4 apply for Z = ç.
The following are simple corollaries of Lemmata (4.1) and (4.2):

(5.1) COROLLARY. The centre-of-mass line lo is an integral curve of ç. D

(5.2) COROLLARY. The Dixon-mass MD and the parameter

are constant along o. D

Annales de l’lnstitut Henri Poincaré - Section A
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(5.3) PROPOSITION. 2014 If the eigenvalues of the inertia tensor Mkj are
mutually distinct, then

where the Ek are the eigendirections of the inertia tensor, as defined in (3 . 24).
0[

Proof. Since ç is an isometry, 0.

Applying 2 to (3.26) yields

Transvection with Ek yields
a

Now equation (5.2) implies that is an eigenvector of M to the eigen-

value 0. The non-degeneracy entails

But Ek is normalized. Therefore
1%

Next we recall from (3.23) that
3

~,~uk - 0 = together with (4.2) are " equivalent with
IX 

Therefore

(5.4) PROPOSITION. 2014 If the eigenvalues of Mk~ are mutually distinct and
the motion is dynamically rigid (cf. § 3), then

Proof - (3 .27) implies

Vol. XXXIV, nO 2 - 1981.



130 R. SCHATTNER, M. STREUBEL

therefrom we deduce as in the proof of Proposition (5.3) that

(5.1) yields now (5.4).

(5.5) REMARK. (5. 5) is equivalent to the relation

We may use (5.6) as definition of a ((geometrical angular velocity)) in general
(in non-dynamically rigid non-stationary situations). This suggests the

following definition :

(5.6) DEFINITION. 2014 If the eigenvalues of the inertia tensor are mutually
distinct we define the geometrical mean angular velocity by

We know from § 3 that Wkl is a « reasonable )) angular velocity satisfying
the properties of Lemma (3.1). Propositions (5.3) and (5.4) may be refor-
mulated in the following way :

(5.7) PROPOSITION. 2014 If the eigenvalues of the inertia tensor are mutually
distinct, then

(5.8) PROPOSITION. 2014 If the eigenvalues of the inertia tensor are mutually
distinct and if the motion is dynamically rigid, then dynamical and geome-
trical angular velocity are equal,

§ 6. PROPERTIES OF AN ISOLATED SYSTEM
IN AN AXISYMMETRIC SPACETIME

We assume again (Al), (A2), (Sl) and (S2). In addition we require the
following :

(S4) (M, g) is invariant under an effective action ~ : SO(2) x M -+ M
of the one parameter cyclic group SO(2).

Annales de [’Institut Henri Poincaré - Section A
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The Killing vector field corresponding to the action 03C8 shall be denoted
by ’1. We normalize 11 such that = x, i. e. we describe the elements

of SO(2) by an angular coordinate running from 0 to 27r in the usual way.

(6.1) PROPOSITION. 2014 The centre-of-mass line lo is a set of iixed points
of.p .

Proof. 2014 Putting Z = 17 in Lemma (4.2) we find that for some constant ?;*

But ~k is spacelike and z is timelike. Therefore

(6.2) PROPOSITION. 2014 There is an imbedded 2-surface A, the axis of ~,
which is the fixed point set of ~.

Proof - Carter [7] has shown, that (S4) implies Proposition (6.2), if

the action ~ has fixed points, but this is guaranteed by Proposition (6.1). D

(6.3) PROPOSITION. A is timelike and totally geodesic.

Proof. 2014 A proof of the first assertion is given in [7]. For the second part,
we proceed as follows : let z E A and such that V is tangent to A.
Then = V for all o E S0(2). Let V be such that expz V is well defined.
Then

i. e. all geodesics starting from a point z E A tangentially to A remain
within A.

(6.4) PROPOSITION. 2014 There is a unit vector wk orthogonal to uk such that

Proof - From Lemma (4.1) it follows in view of Proposition (6.1) that

Therefore there exists a unique vector wk satisfying

such that (6 .1 ) holds, namely

Now, let xa(r, s) be a geodesic emanating from z(s) E 10 such that

Vol. XXXIV, n~2-1981.



132 R. SCHATTNER, M. STREUBEL

and

where. = 
~ ~r and r being the arc-length. Then for all 0 E [0, 27r]

is also a geodesic satisfying £ (6.2), (6 . 3) and 0 (6 . 4). For fixed 0 (r, s)
E [0, (0) x IR,

describes a circle of « radius )) r. Its length is given by

But, by definition,

Furthermore it follows from (3.1) and Proposition (6.1) that

therefore

where G~~ has been defined in (3.19). It may be shown, cf. [3], that there
exists a regular bitensor field ykl depending on the curvature, such that

whence

y being some regular function of  and s. Therefore

Finally we get

Since (M, g) is locally euclidean this equals unity.

(6.5) PROPOSITION. 2014 Let

be the (conserved) angular momentum. Then

Annales de l’]nsti!ut Henri Poincaré - Section A
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Proof. From the definition of Dixon’s angular momentum tensor S it
follows that

In view of (6 .1 ) and (3 . 8) this is equivalent with

On the other hand, we also have

or

r~k is a Killing field, i. e. is antisymmetric. Looked at as a linear map it
has therefore either rank 4 or rank 2 or rank 0. The first case is ruled out

by (6.6), the last case cannot apply, since ’1 7~ 0. Therefore has rank 2,
which means that w, S, and u are linearly dependent. Since both  and S are
orthogonal to u, we find for oc =~ 0

Transvection with wk yields

§ 7. PROPERTIES OF AN ISOLATED SYSTEM
IN A STATIONARY AND AXISYMMETRIC SPACETIME

Now we assume (Al), (A2), (Sl), (S2), (S3) and (S4). We also assume the
two Killing fields to commute which is no restriction of generality as shown
by Carter [7]. For the rest of this chapter we also assume

(S5) The action of G2 is orthogonally transitive.
This means that the two-dimensional cylindrical (!? x 51) group orbits

are orthogonal to two-surfaces in M. It has been shown by Carter [8] and
Schmidt [9] that (S5) is equivalent with

(S5’) There exists a discrete isometry o- which

i) maps each orbit of G2 onto itself;
ii) satisfies g03C3g = r for all g E G2;
iii) has a fixed point on each orbit 0 of G2.
Kundt and Trumper have shown that for a wide class of field equa-

tions the orbits of the isometry group defining axial symmetry and statio-
narity admit orthogonal 2-surfaces. The field equations covered by this
result include those of a perfect fluid.

Vol. XXXIV, nO 2 - 1981.



134 R. SCHATTNER, M. STREUBEL

(7 .1 ) PROPOSITION. - The 4-velocity tangent to the

centre-of-mass line lo.

Proof - On the orbit lo, let z(0) be a fixed point of the discrete isometry o-.
Then, since in view of Lemma (4.4)

we find

and also

hence

Next we notice that because of the presence of the axisymmetry, uk has to
be tangent to the 2-dimensional axis being a time like 2-surface. Otherwise
there would be a preferred space like direction not tangent to the axis.

Finally, since, under cr, normal directions of ES are mapped into those of
E-~, we have (1. : uk 2014~ 2014 uk. From this it follows that

where ak is tangent to the « spatial axes » being the intersections of ortho-
gonal 2-surfaces with the 2-dimensional axis.

If p = z(o) (the fixed point of 6), we obtain

On the other hand,

for all S E IR. This shows that ukak = 0 everywhere " on lo. D

Annales de l’ lnstitut Henri Poincare - Section A
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(7.2) COROLLARY. 2014 The vector w introduced in Proposition (6.4) is

tangent to the intersections of orthogonal 2-surfaces with the axis A. 0

(7.3) COROLLARY. 2014 The hypersurfaces ES contain the spacelike 2-sur-
faces which are orthogonal to the group orbits of G2.

Proof. Let V be any of the geodesic vector fields spanning Es. The
functions g(~, V) and g(r~, V) are constant along V. They even have to be
zero, since they vanish at /0 by propositions (6.1) and (7.1). Hence V is
orthogonal to all group orbits 0 of G2. Therefore all geodesics starting
orthogonal to ~ at a point of lo remain in orthogonal 2-surfaces. D
Another consequence of more general interest is

(7.4) LEMMA. If the unit 4-velocity ya of the matter stream (i. e. the
unit timelike eigenvector of Tab) is tangent to the group orbits and invariant
under the group action, then Vk - uk at 10, whence /0 is a streamline.

Remark. 2014 For a perfect fluid distribution it can be deduced from the
orthogonal transitivity assumption that VQ does satisfy these conditions.
Thus the centre-of-mass line is a streamline of the fluid.

Proof of Lemma (7.4). 2014 The assumptions imply that Va is of the form

with functions A, S2 being constant on the group orbits. Since VaVa = 1,
and uk - zk, ukuk = 1, the result follows. 0

Next, we turn to the introduction of coordinate functions.

(7. 5) LEMMA. The time function ~ satisfies

Locally, there exists also a function r~ satisfying

= K follow from Lemma (4 . 4). Corollary (7 . 3)
implies = o. Secondly, dragging orthogonal 2-surfaces along ç
yields timelike hypersurfaces which are chosen to const. Then it
follows analogously that ~ satisfies the properties stated above. 0

(7.6) REMARK. The functions t and 03C6 are determined uniquely up to
arbitrary additive constants.

Vol. XXXIV, n~2- 1981.



136 R. SCHATTNER, M. STREUBEL

Another two coordinate functions being constant on the group orbits
are constructed as follows.

Let p E 10. Then p E We first construct a coordinate system
= (x, y, z) in around p. For this purpose, we define an ortho-

normal triad of spacelike vectors E k at p:
the unit vector tangent to the geodesic n A (cf. Lemma

(6 . 3) !).
( 1)
Ek : is tangent to the geodesic through p which starts orthogonal to wk

and lies in the orthogonal 2-surface ~ = 0 in (cf. Corollary (7.3) !).

FIG. 2. - Orthogonal 2-surfaces in FIG. 3. - The axis A.

Let Np be a normal neighbourhood of p and let q E Np n Then we

define

so x" are normal coordinates.

By repeating the construction in each slice 03A3s, it is immediately clear that

the triad field E obtained that way along 10 satisfies

Since, in particular, ~ is a Jacobi field, we have
= 0 (see [2], p. 184) and therefore.

~~x°‘ - 0. It then follows together with assumption (A2) that the system
(t, is well-defined within supp (Tab).
We are now ready to prove

(7.7) LEMMA. i) Define the function p : = +’1~x2 + y2. The functions
p and z are constant on the group orbits 0 of G2.

ii) The inverse transformation is
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Proof - i) We want to show

and

The first two equations are obvious from the construction of (x°‘). By the
same reason as above, we also have

Furthermore,

Hence we also have

Finally,

(1) (2)
Since the geodesic 2-surface spanned by the bivector E*- E "’ is invariant
under the action generated by ~ and since

it follows that

From this it is easily deduced that

whence

ii) Equations (7.3) can be written as

with

From Lemma (7.5), ~ - a~ with ø E [0, 2?c]. Therefore the above system
of differential equations has the solutions

Since ~ has to be periodic, we must have y = 1. This completes the proof. 0

Altogether we have shown that the metric can be written in the form
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where all the functions depend on p, z only. They are well behaved within
supp (Tab) including the axis where p = 0 and at the center-of-mass line
where p - 0, z = 0. The information about p and z to be normal coordinates
on the hypersurfaces t = const. is coded in the functions /1, v and j8 in the
following way.

(7. 8) LEMMA. In the interior of supp (Tab), the necessary and sufficient
condition for p and z to be normal coordinates on t = const. hypersurfaces
is that the following relations hold :

and

where a is a constant.

Proof. - During the proof, we will need spherical polar coordinates
defined within supp (Tab) by

The equations for the geodesics known to exist in the t = const. hyper-
surfaces read

where we have put

They follow from (7 . 4) by noting that 03C6 2014 03C9t = 0 for all geodesics passing
through the axis and that for the geodesics in question t = 0 and hence

ø = o. Since p, z are normal coordinates, the geodesics starting at 10 are
given by p(u) = pou, = zou with constants po, Zo and they must solve
the above equations. I. e. we must have

and similarly for the second equation. Multiplying by u2 and observing
that any point in supp (Tab) can be connected with lo by such a geodesic,
we obtain two differential equations for the functions f, g, /?. They can be
written as
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They are solved as follows. Adding them after multiplication with p and z,
respectively, yields

which, by using the coordinates r, 9, reads

Integration gives

By rewriting the first equation (7. 5) and by using (7.6) to eliminate 0-deri-
vatives as well as g itself, one gets after several manipulations

which can again be integrated to yield

with some function y. However, since f and 03B2 are regular at r = 0, we must
have y = 0. Moreover, ~3 even vanishes at r = 0 and also by regularity, we
have to have

It follows that x + ~ cot Ba’ - const., the only regular solution of which
is a = const. Together with (7. 6), this is the result. 0

In addition to the previous assumptions we now postulate the existence
of another family of discrete isometries acting on the rotation axis. For this
purpose, we recall from Proposition (6.4) the vector wk given by

It is tangent to the geodesic A representing the axis in t = const.
(S6) The spatial axes of rotation, the geodesics yr(u) _ ~ f n A (t E ~8,

u being an affine parameter such that E 10) are reflection symmetric
w. r. t. the centre-of-mass, i. e. for each t E IR there exists a discrete isometry

~ t r~ A ~ ~ n A such that Xf(yf(M)) = u) .
In the canonical coordinates (t, x, y, z), oc~ is given by at : (t, 0, 0, z)

~ (t, 0, 0, - z). In the sequel, we write = = ukOk. We can now
prove

(7 . 9) PROPOSITION. 2014 The ccntre-of-mass line is a geodesic : M~ = 0.

Proof. 2014 From Section 2, we know that
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From Lemma (4.2) and Proposition (7.1) we have

Therefore we can write

or

By construction, the coordinate functions x, y, z are smooth on the axis.
By imposing axis regularity conditions on the metric functions in (7.4), the
metric can be rewritten in a form which is manifestly regular on this axis.
This will not be done explicitly here. Then one finds that ak log rc = 
Now the regularity of the axis implies !p=o = 0; the existence of the

discrete isometry at implies = O. Hence uk - 0. D
In order to deduce a first consequence of this, we also need the following

results.

(7.10) PROPOSITION. 2014 The spin vector Sk is parallel along the geodesic
/o : S’ = 0.

Proof 2014 The centre-of mass condition ukSk = 0 together with the geodesy
of lo (Proposition (7.9)) entail

Since the norm SkSk is constant along lo, we have

By a symmetry argument, Sk must be tangent to the two-dimensional axis A.
Since it is orthogonal to uk, it must be parallel to wk and hence to Sk (Pro-
position (6.5)) whence Sk - 0. 0
We will now approach a statement about the structure of the body. It

will first be expressed in terms of Dixon’s notions of force and torque,
quantities which depend on quadrupole and higher moments only (i. e. they
are determined by the energy-momentum skeleton). Only in a second step,
the statement will be reexpressed in termes of the energy-momentum tensor
itself.
We recall Dixon’s laws of motion
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(7.11) THEOREM. For a body embedded in a spacetime satisfying
assumptions (A 1), (A2), (Sl) to (S6) the force and torque vanish :

Proof 2014 Proposition (7.1) implies = 0. Proposition (7 . 9) and (7.10)
imply that = 0. (3.11) then yields Lij = 0.

Corollary (5.2) together with Proposition (7.9) entail P’ = 0. The vanish-
ing of the Riemann tensor term in equation (3.10) follows from the axis
regularity conditions as well as from (86). The proof requires a calculation
of the Riemann tensor of (7 . 4). Having done this, we also find Fi = 0. 0
Theorem (7 .11 ) imposes certain restrictions on the multipole structure

of They are most easily expressed in terms of the energy momentum
skeleton.

First we formulate the following

(7.12) COROLLARY. Let’ be a Jacobi field along all geodesics emanating
from the centre-of-mass z, such that 0{k ~ l~ = 0, let Tz be the skeleton of T,
and let G : = Then

Proof 2014 This follows immediately from (3.18), (3.19). 0
From this we deduce similar integral equalities for the energy-momentum

tensor T itself :

(7.13) THEOREM. Let ( be a Jacobi field as in Corollary (7.12). Then

Proof. It follows from the definition ofTB (see e. g. [2], [5]) that

if X) = 0 for all X E where 03C8 is given by

~, being determined from cp according to (3.15), (3.16). But

whence
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Therefore, putting

where 03C8 is now to be constructed from ~(03B103B6b): substituting ~(a03B6b) ~ 03C6ab, we

find

where

i. = 0. This implies

But, by definition,

and

whence

The Ricci-identity yields

whence

and therefore

This implies ~~ = 0, hence the conclusion. [J

§ 8. SUMMARY

The results which we have obtained in the general, the stationary and the
axisymmetric cases are in agreement with the behaviour that one would
expect for momentum, angular momentum, centre-of-mass, etc. on the basis
of plausibility arguments. One should not forget, however, that these terms
are only names which have been chosen for certain mathematical objects,
whose definition is analogous to the definition of these terms both in classical
mechanics and special relativity. Therefore one should interpret these

results as giving further support to Dixon’s definitions. The last theorem
restricting the multipole structure of a body in a stationary axisymmetric
spacetime is somewhat unexpected and would have hardly been obtained
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without the use of Dixon’s theory. This result as well as the coordinate
system with its preferred time coordinate introduced in § 7 might be helpful
in finding a realistic interior solution for the Kerr metric.
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