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SectionA:

Physique ’ théorique.

SUMMARY. Dynamics of free and charged extended objects is formu-
lated in gauge invariant phase spaces derived from the geometric inter-
pretation of gauge fields obtained in an earlier publication [11 ].

RESUME. 2014 Nous formulons la dynamique des objets etendus neutres
ou charges. L’espace de phases pour cette dynamique est invariant par la
jauge; sa construction est basee sur 1’interpretation geometrique des

champs de jauge obtenue dans notre article precedent [77].

1. INTRODUCTION

Extended objects : strings and membranes, were introduced in an attempt
to solve certain problems in elementary particle physics. Space-time tra-
jectories of free extended objects are minimal submanifolds. Charged
extended objects interacting with gauge fields have also been considered.
A geometric interpretation of gauge fields was given in [11 ].

In the present paper the dynamics of free and charged extended objects
is studied as an example of a multisymplectic formulation of systems of
partial differential equations describing physical systems. The present
study is closely related to symplectic formulations of particle dynamics
and field theory. By multisymplectic geometry we understand the geometry
of k-cotangent bundles and related spaces.
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26 W. M. TULCZYJEW

Gauge independent dynamics of particles interacting with gauge fields
is formulated in reduced symplectic manifolds [3 ], [4 ], [J], [7], [12 ].
Reduction of multisymplectic spaces has not been defined. Consequently
our formulation of dynamics of extended objects is based largely on analogy
with the dynamics of charged particles reviewed in Section 3. It is hoped
that the example of reduction considered here will help to develop a general
definition of reduction of multisymplectic spaces.
The kernel-index method of Schouten [6] ] is used in local coordinate

representations.

2. DYNAMICS
OF RELATIVISTIC PARTICLES WITHOUT CHARGE

Let X be the space-time of general relativity with a covariant metric
tensor

and a contravariant metric tensor

The components of the two metric tensors with respect to a coordinate
system = 0, 1, 2, 3 will be denoted by and g"~ respectively and
the associated metric connection will be represented by Christoffel symbols

The phase space of a relativistic particle is the cotangent bundle P = T*X.
The cotangent bundle projection will be denoted by

The symplectic structure of P is defined by the canonical 2-form co 
where () is the canonical 1-form on P. Coordinates (x") of X induce coordi-
nates (~, of P such that

The velocity space of a particle is the tangent bundle TX with the pro-
jection mapping

The projection of the tangent bundle TP onto P will be denoted by

The part of the phase space P accessible to a particle of mass m is the
mass shell

Annales de Henri Poincare-Section A



27GAUGE INDEPENDENT FORMULATION OF DYNAMICS

In coordinates p~,) the mass shell is described by the equation

It is interesting to see that the mass shell determines completely the dyna-
mics of the particle..

Let 03C9m denote the form úJ restricted (pulled back) to Cm :

Since the codimension of Cm is 1 the characteristic distribution

of 03C9m is 1-dimensional. Integral manifolds of this distribution are the phase
space trajectories of a particle of mass m. The characteristic distribu-
tion (2.11) can be written in the form

where M 2 is the function

In order to distinguish between particles and antiparticles we will orient
trajectories by restricting the Lagrange multiplier 8 to positive values.
The infinitesimal symplectic relation [3] ]

represents the dynamics of a particle of mass m in infinitesimal terms.
Lagrangian and Hamiltonian representations of D’m are discussed in [10 ].
A curve

is a parametrized trajectory of a particle if the image of its prolongation

is contained in Dm. Let ,!

be the coordinate expression of f in the coordinate system p~). The
coordinate expression of the function M2 is

The equation

with

Vol. XXXIV, n° 1-1981.



28 W. M. TULCZYJEW

is equivalent to the system

or the system

Taking into account the mass shell constraint

we derive the relation

The condition G = 1 is usually imposed on the parametrization.

3. DYNAMICS
OF CHARGED RELATIVISTIC PARTICLES

Let ~ : Z -~ X be a principal fibre bundle. The base X of the bundle is
the space-time and the structural group Go is the additive group of real
numbers. The Lie algebra of Go is the algebra of real numbers. The
action of the structural group is represented by the mapping

We denote by ys the mapping

The fundamental field corresponding to 1 E will be denoted by W.
In addition to the gravitational field represented by the metric tensor

in X we have the electromagnetic field represented by the 2-form

where a is a connection form on Z satisfying

and

Annales de l’Institut henri Poincare-Section A



29GAUGE INDEPENDENT FORMULATION OF DYNAMICS

The above conditions imply the existence of a 2-form F on X such that

The form F represents the electromagnetic field in X.
We will use in Z adapted coordinates ~x", y) such that

In terms of these coordinates we have local expressions

and

where is the electromagnetic potential and

is the electromagnetic field.
The phase space of a charged particle is the cotangent bundle R = T*Z

with the projection

the canonical 1-form ,u and the canonical 2-form v = d,u. Coordinates
(x", y, p~,, q) such that

will be used in R. Each element r E R is decomposed into the horizontal part

interpreted as the charge, and the vertical part

representing the space-time momentum of the particle. We introduce
mappings

and

defined by

where u is a vector at ~(p(r)), w is the horizontal lift of u and w’ is any lift
of u to The number q = h(r) and the covector p = v(r) provide
convenient representations of the charge and the space-time momentum
respectively.
The action y of the structural group Go induces an action

Vol. XXXIV, n° 1-1981.



30 W. M. TULCZYJEW

of Go in R. The mappings

are determined by conditions

and

The generator of y is the vector field W satisfying

and

Mappings 03B3s preserve the decomposition of elements of R into their hori-
zontal and vertical components :

Consequently

and

We denote by

and

the tangent bundle projections.
The part of the phase space R accessible to a particle of mass m and

charge e is the submanifold

where

and

In terms of coordinates (x", y, p~,, q) the submanifolds Km and Ke are
described by equations

and

respectively. Trajectories of the particle in the phase space R are integral
curves of the characteristic distribution

Annales de l’Institut Henri Poincaré-Section A



31GAUGE INDEPENDENT FORMULATION OF DYNAMICS

of the 2-form

In certain respects it is appropriate to consider integral manifolds of the
characteristic distribution as trajectories of the particle. These integral
manifolds are in this case 2-dimensional.

In order to prove integrability of the characteristic distribution (3.34)
we must show that is coisotropic [3 ]. Let M2 and E be functions

and

Since

and

in order to prove that Km,e is coisotropic it is sufficient to show that the
Poisson bracket

vanishes [2 ]. From

and the identity

it follows that

Hence,

and

follows from (3.26).
The characteristic distribution (3 . 34) can be represented in the form

As in Section 2 we orient the trajectories by restricting 8 to positive values.
The infinitesimal symplectic relation

represents the dynamics of particles in the phase space R.
Let

Vo1. XXXIV. n° 1-1981.



32 W. M. TULCZYJEW

be the coordinate expression of a curve

We impose on the tangent vector

the equation

The coordinate expressions of the functions M2 and E are

Hence,

or

where

Together with

equations (3.54) characterize trajectories of charged particles in the phase
space R.

Dynamics of charged particles formulated in the phase space R has
gauge invariant Lagrangian and Hamilton-Jacobi descriptions. If these

descriptions are not used a gauge invariant formulation of dynamics in

Annales de l’Institut Henri Poincaré-Section A



33GAUGE INDEPENDENT FORMULATION OF DYNAMICS

the phase space P = T*X can be obtained by reducing the symplectic
manifold (R, v) with respect to the coisotropic submanifold Ke.
The characteristic distribution

of the 2-form

is the set

It follows that the integral manifolds of the characteristic distribution are
orbits of the action of the structural group in Ke. The integral manifolds
can also be characterized as the fibres of the mapping

Consequently the quotient manifold is canonically diffeomorphic to the
phase space P. The calculation

shows that

It follows that

and

since

The form

defines the symplectic structure of the reduced phase space P. This structure
is different from the canonical symplectic structure of P.

Trajectories of charged particles in the reduced phase space P are images
by x of trajectories in R. Since

Vol. XXXIV, n° 1-1981.



34 W. M. TULCZYJEW

it is clear that trajectories in P are integral curves of the infinitesimal sym-
plectic relation

where

Let

be the coordinate representation of a curve

in a coordinate system (x", such that

The equation

with

leads to equations

or

where

Equations (3.76) together with

characterize the trajectories of the particle in the reduced 0 phase space P.

Annales de l’Institut Henri Poincare-Section A



35GAUGE INDEPENDENT FORMULATION OF DYNAMICS

It is to be noted that the coordinates p~, in P are directly components of
the space-time momentum covector whereas in R only the combination
p~ 2014 corresponds to space-time momentum.

4. DYNAMICS

OF EXTENDED OBJECTS WITHOUT CHARGE

Let X denote the space-time as in Section 2. The phase space of an exten-
ded object is the k-cotangent bundle P = AkT*X with the projection

and the canonical k-form () defined by

where w ~ kTP and

is the k-tangent bundle projection. For k = 1 the extended object is the
relativistic particle described in Section 2. For k = 2 the extended object
is a string and for k = 3 it is a membrane. The canonical (k + 1)-form
úJ = d8 defines in P a k-symplectic structure. Coordinates (x") induce in
P coordinates (x", p~~...~) such that

The velocity space of an extended object is the k-tangent bundle AkTX
with the projection

The part of the phase space P accessible to an extended object is the
submanifold

In terms of coordinates (x", p,~ 1... ~.k) this submanifold is described by the
equation

We denote by the restriction of co to Cm :

and introduce the characteristic distribution

A submanifold of Cm of dimension k is called an integral manifold of the
characteristic distribution if each k-vector tangent to the submanifold

Vol. XXXIV, n° 1-1981.



36 W. M. TULCZYJEW

belongs to the distribution. Phase space trajectories of the extended object
are integral manifolds of the characteristic distribution (4 . 9). The characte-
ristic distribution (4. 9) can be represented in the form

where M2 is the function

As in Section 2 we orient trajectories by restricting E to positive values
and represent dynamics of the extended object by the infinitesimal relation

An embedding

is a parametrized trajectory of an the extended object if the image of its
prolongation

is contained in Dm. Let k = 2 and let

be the coordinate expression of an embedding f The coordinate expression
of M2 is

then the equation

leads to the system

Annales de l’Institut Henri Poincare-Section A



37GAUGE INDEPENDENT FORMULATION OF DYNAMICS

or

where

From

we derive the relation

The condition E = 1 can be imposed on the parametrization.

5. DYNAMICS OF CHARGED EXTENDED OBJECTS

Let X be the space-time. We denote by

the (k - l)-cotangent bundle projection and the canonical (k - 1)-
form on Coordinates (x", y;yl...;k-1) such that

will be used in We denote by G the additive group of (k - 1)-
forms on X and by Go the subgroup of exact forms. The Lie algebra of G,
denoted ~, is the vector space of (k - 1)-forms and the Lie algebra of Go,
denoted by ~o, is the subspace of exact (k - 1 )-forms. The Lie bracket is
trivial since G and Go are commutative groups.

Let

be a differential fibration and let

be a X-morphism such that for each x ~ X there is a neighbourhood U
of x and a U-isomorphism

Vol. XXXIV, n° 1-1981.
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satisfying

Isomorphisms  transfer coordinates (xK, y~,l...a,k-1) from to Z.
For each s E G we denote by ys the mapping

Each element cr generates a 1-parameter subgroup of G and conse-
quently induces a vector field on Z. This vector field will be denoted by W~..
We will denote by W any k-vector field satisfying

for each cr E rs. In each coordinate neighbourhood the k-vector field

satisfies the condition (5 . 8) and a global construction ofW is easily obtained
with the help of a partition of unity.
A generalized connection form on Z is a k-form a satisfying

and

for each 6 Ergo. The (k + 1)-form c~ = 2014 da represents a generalized gauge
field. From the identity

we derive

and

Formulae (5.10), (5.13) and (5.14) are valid for each From (5.13)
and (5.14) it follows that there is a unique (k + l)-form F on X such that

In terms of coordinates (x", y~,l,..a,k-1) we have local expressions

and

where

Annales de l’Institut Henri Poincaré-Section A



39GAUGE INDEPENDENT FORMULATION OF DYNAMICS

Let

be the subbundle of AkT*Z consisting of k-covectors r satisfying conditions :

if v is a vector vertical with respect to the projection (, and

if vl and v2 are vertical vectors. The canonical k-form on AkT*Z restricted
to R will be denoted and v will denote the (k + 1 )-form We will
use in R coordinates (x", y~,1, , , ~,k -1, q) such that

The bundle R is interpreted as the phase space of a charged extended object.
Each element r E R is decomposed into the horizontal part

interpreted as the charge, and the vertical part

interpreted as the space-time k-momentum of the extended object. Mappings

and

are defined by

and

where u is a k-vector at ~(r)), w is a lift of u to satisfying

and w’ is any lift of u to 
We denote by

and

the k-tangent bundle projections.
The part of the phase space R accessible to the extended object is the

submanifold

Vol. XXXIV, n° 1-1981.
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where

and

Equations

describe submanifolds Km and Ke respectively in terms of coordinates

We denote by the restriction of v to Km,e and we consider the oriented
characteristic distribution

where M2 and E are the functions

and

An embedding

is a parametrized trajectory of the extended object if the image of the
prolongation , .

is contained in 
Let k = 2 and let

be the coordinate expression of an ambedding ~: The tangent 2-vector

Annales de l’Institut Henri Poincare-Section A



41GAUGE INDEPENDENT FORMULATION OF DYNAMICS

belongs to if equations

are satisfied together with

Equations (5.44) are equivalent to the system

where

A formulation of dynamics in the phase space P = AkT*X can be obtained
by a reduction analogous to that used in Section 3. Let .

be the restriction of the mapping v to Ke. Then

Vol. XXXIV, n° 1-1981.



42 W. M. TULCZYJEW

and

where

and M2 is the function

Trajectories of the extended object in the phase space P are integral mani-
folds of the oriented characteristic distribution

of the form

Let

be the coordinate expression of an embedding

in a coordinate system (x", The tangent 2-vector

belongs to if equations

are satisfied together with

Annales de ’ l’Instititt Henri Poincaré-Section A



43GAUGE INDEPENDENT FORMULATION OF DYNAMICS

Equations (5. 59) are equivalent to

Although both formulations of dynamics, in R and in P, are gauge
invariant, the formulation of dynamics in R is distinguished by having a
gauge invariant Lagrangian description.
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