
ANNALES DE L’I. H. P., SECTION A

J. GINIBRE

G. VELO
The classical field limit of non-relativistic bosons. II.
Asymptotic expansions for general potentials
Annales de l’I. H. P., section A, tome 33, no 4 (1980), p. 363-394
<http://www.numdam.org/item?id=AIHPA_1980__33_4_363_0>

© Gauthier-Villars, 1980, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1980__33_4_363_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


p. 363

The classical field limit

of non-relativistic bosons

II. Asymptotic expansions for general potentials

J. GINIBRE

Laboratoire de Physique Theorique et Hautes Energies (*),
Universite de Paris-Sud, 91405 Orsay, France

G. VELO

Istituto di Fisica A. Righi, Universita di Bologna,
and I. N. F. N., Sezione di Bologna, Italy

Vol. XXXIII, n° 4, 1980,

Section A :

Physique théorique.

ABSTRACT.2014We continue our study of the classical field limit as h ~ 0
of non relativistic many-boson systems with twobody interaction in the
neighborhood of a fixed h-independent solution of the classical evolution
equation. The unitary group describing the evolution of the quantum
system, after multiplication from both sides by suitable h-dependent Weyl
operators, has an expansion in power series of h1/2. In a previous paper,
we proved that this series is strongly Borel summable for bounded inter-
action potentials and small time intervals. In this paper we prove that,
for more singular potentials, this series, although probably not Borel
summable, is still strongly asymptotic. We also briefly discuss the case of
the S-matrix.

1. INTRODUCTION

This is the second paper where we study power series expansions in h1/2
for non relativistic many-boson systems with two-body interaction in

(*) Laboratoire associe au Centre National de la Recherche Scientifique.
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364 J. GINIBRE AND G. VELO

a neighborhood of a fixed ~-independent solution of the corresponding
classical field equation, namely the Hartree equation. We refer to the
introduction of a previous paper on the same subject [4] ] for a detailed
description of the problem; here we give only a brief summary.
We consider the unitary group U(t - s) (see (2.6)), describing the evo-

lution of the quantum system. After multiplication on both sides by sui-
table h-dependent Weyl operators (see (2.7)), which somehow subtract
the classical motion, one obtains a modified unitary group W(t, s) (see
(2 . 5)) which has an expansion in power series the zeroth order
term of which is a unitary group describing the fluctuations of the quantum
system around the classical motion. In [4] we proved that, for bounded
two-body interaction potentials and small time intervals, this series is

strongly Borel summable in z = h1/2 near z = 0. In the present paper we
investigate the same series for more singular potentials. For the class of
potentials considered here we obtain the same analyticity domain of
W(t, s) with respect to z as in [4 ] ; however the bounds on the coefficients
and on the remainder of the series increase faster with the order, thereby
destroying Borel summability. Nevertheless we prove that the series is

strongly asymptotic for small time intervals by obtaining explicit estimates
on the general term and on the remainder, uniform in z for z small in the
previous analyticity domain. For physical values of z (i. e. z real and posi-
tive) the same series is strongly asymptotic for arbitrary time intervals.
Furthermore under additional assumptions including a strong form of
asymptotic completeness of the quantum system and a suitable time decay
of the classical solution, the expansion of the S-matrix is also strongly
asymptotic.

This paper relies heavily on [4] ] and is not supposed to be readable
by itself. In particular we shall use freely the notation and results
of [4 ]. Proofs will be shortened or even omitted whenever similar to those
of [4 ].

This paper is organized as follows. In Section 2 we derive formally
the expansion of W(t, s) in a form suitable for the subsequent estimates of
Sections 4 and 5. Section 3 contains the operator theoretic results needed
to justify this expansion. Section 4 contains the estimates for the general
term of the expansion and Section 5 the estimates, for the remainder of
the series. Finally in Section 6 we briefly discuss the possible uniformity
in time of these estimates and its implications for the asymptotic expansion
of the S-matrix.
From a logical point of view, the formal expansion, the operator

theoretic considerations and the estimates should be done simultaneously
since each step of any of them relies on the previous steps of all three. They
have been artificially separated to make the exposition simpler. The
inter-connection between the three of them is briefly described at the end
of Section 3.

Annales de l’Institut Henri Poincaré-Section A



365THE CLASSICAL FIELD LIMIT OF NON-RELATIVISTIC BOSONS II.

2. FORMAL EXPANSIONS

In this section we recall the definitions of the various groups or semi-

groups that arise in the problem and use them to put the general term
and the remainder of the expansion of W(t, s) as a power series of z = hl/2
in a form suitable to perform the estimates. We proceed at a formal level.
The operator theoretic justification relies partly on the arguments given
in Section 3 and partly on the estimates of Sections 4 and 5. It will be sketched
at the end of Section 3.
We consider a non relativistic many-boson system in n-dimensional

space. The total hamiltonian of the system is

where

V is a real even function in and a(x) and a*(x) satisfy the usual represen-
tation of the CCR in the boson Fock space Jf. The dependence of H on ~
has been chosen in such a way as to yield the classical field limit as h tends
to zero (see [2] for a discussion of this poinf). The evolution equation for
the limiting classical field cp is the Hartree equation

The evolution operator W(t, s) is defined by

s) = C(z, - s)C(z, 

where

and is obtained by substituting ~p for a and ~p for a* in (2.3). We
shall consider W(t, s) also for complex z.

i he operator W(t, s) satisfies formally the differential equation

where H2(t) and H3(t) are defined by (1. 34)-(1. 43) of [4 ]. This differential

Vol. XXXIII, n° 4-1980.



366 J. GINIBRE AND G. VELO

equation directly leads to an expansion in power series of z for W(t, s), the
zeroth order term of which is the unitary group U 2(t, s) defined formally by

It is convenient to perform the expansion in two steps using at an inter-
mediate stage the family of operators U4(t, s) formally defined by

One of the steps consists in expanding U4~t, s) as a power series in z.

In order to make the formulas more concise and transparent we use the
short-hand notation

to denote the integral

where U # are chosen among U2, U4, U and W and the integration domain
of the variables { r } == { Ti, ..., is the set

With this notation the power series expansion ofU4(t, s) can be written as

where

and the remainder of the expansion, defined by

can be written as

We also expand W(t, s) as a power series of z :

Annales de l’Institut Henri Poincare-Section A



367THE CLASSICAL FIELD LIMIT OF NON-RELATIVISTIC BOSONS II.

and define the remainder of the series by

The following lemma, which is essentially a restatement of Lemma 6 .1
of [4 ], gives an explicit expression for s) and R p(t, s).

LEMMA 2.1. s) can be represented as

where - the sum runs over the integers ki
with ~ ~ 0 for 0 ~ ~ ~ and o

R p( t, s) can be represented as

where

the sum over {~} = {~ - - - runs over the integers ki with ~ ~ 0
for 0 ~ i  r - 1, 1 and

where k is defined by

In the case of bounded potentials that was considered in [4 ], Lemma 2.1
was a convenient starting point to perform the necessary estimates, because
the operators H3 and H4 were bounded by powers of N. This will no longer
be the case for H4 with the singular potentials that we want to consider
here. We shall nevertheless keep H 3 bounded by a power of N by taking
the classical solution ~p sufficiently regular, so that H3 can be treated as

Vol. XXXI I I, n° 4-1980.



368 J. GINIBRE AND G. VELO

in [4 ]. However, an additional trick is needed to control the local singula-
rities of H4’ For this purpose we first consider the simpler problem of the
expansion ofU(t - s) (see (2 . 6)) as a power series of z2 (which is now simply
the coupling constant) :

where

and

e remainder, defined by

can be written as

As is well known [6 ], and will be recalled later (see Lemma 4 . 2 below),
the local singularities of H4 in (2.28), if not too wild, can be controlled by
the smoothing effect of the free evolution Uo(t). The same turns out to be
true in the present case. In order to see it, it is convenient to work in a new
representation defined by

where U # can represent U2, U4, Q4,k, U, QI, W. ~, Rp, Rp or Rpj,
and by -

for 2  k  4. With these definitions, the relations (2.14)-(2.20), (2.22)-
(2.24), (2.27) and (2. 30) still hold with all operators replaced by the cor-
responding ones with tilda. For brevity, the relation obtained from rela-
tion (2. ex) through this replacement will be referred to as (2.S). The
relations (2.28) and (2. 31) become respectively

and

since obviously the definition (2.32) yields = 1.

The singularities of H4 in s) and s) will be smoothed out by
the presence of Uo. In order to control them in s) and Q4,k(t, s).
it is therefore sufficient to express these quantities in terms of U(~(r, .s)
and s). This will be done through a partial expansion, as described
by the following lemma.

Annales de l’Institut Henri Poincaré-Section A



369THE CLASSICAL FIELD LIMIT OF NON-RELATIVISTIC BOSONS II.

LEMMA 2. 2. 2014 For all k ;;&#x3E;, 1, U 4,k(t, s) and Q4,k(t, s) can be expressed
as follows

where

the integration over { L } _ ~ ~ 1, ... , is performed in the domain ar
defined by (2 .13), and the sum = { 10, ..., runs over the inte-
gers li  1 (0  i  r), lr  0, such that

where Y~(z, 1") is defined by (2 . 37), the integration over { l’ } has the same
meaning as in (2. 36), with however r + 1 variables in the second integral,
the sum la, ... , runs over the integers ~ ~ 1 (0 ~ i ~ r)
satisfying (2.38), and

Proof . The idea of the proof, as well as of the lemma itself, is to push
the factors r’) that occur in U4,k(t, s) and s) to the left by com-
muting them with the factors H4(T). This is done by repeated application
of formulas similar to

which by integration over r(~ r ~ t) yields (2. 39) for k = 1. We now
begin the proof proper. We first prove (2 . 39). Ti, .... ~ }.
Vol. XXXIII, n° 4-1980.



370 J. GINIBRE AND G. VELO

We define an operator valued function J( { T }, T) of k + 1 time variables by

for re 1  I  k, and

Clearly, J( { r }, r) is continuous in l’ (at least formally). We next define,
for 1 ~ ~ ~

It follows immediately from the definitions (2.42) and (2.43) that

On the other hand, it follows from (2.44) that for 1 ~ l  k,

where Y~ is defined by (2.37).
Similarly

Adding together (2.46) for 1 ~ l  k and (2.47), we obtain the recursion
relation

from which (2. 39) follows by iteration.
The proof of (2 . 36) is similar to that of (2 . 39), but simpler. Alternatively,

Annales de l’Institut Henri Poincaré-Section A



371THE CLASSICAL FIELD LIMIT OF NON-RELATIVISTIC BOSONS II.

(2.36) can be obtained by replacing Zl by Yh Ql by and U4 by U2
(in 2.39). The second sum thereby obtained from (2.39) yields the terms
with lr = ~ in (2.36). Q. E. D.

3. DEFINITION AND PROPERTIES
OF THE EVOLUTION SEMI GROUPS

In this section we give a precise definition of the various groups and semi
groups formally defined in Section 2 and study their properties. In parti-
cular we prove the analyticity properties of s) mentioned in the intro-
duction, the integral relations on which the expansions of the previous
section are based and various estimates that will be used later to bound
the general term and the remainder of the series of W(t, s).
For this purpose we introduce some notation. The basic space of the

theory if the boson Fock space

where N is the space of totally symmetric square integrable functions
of N variables in The scalar product in J’f is denoted by

where X = (jci, ...,~N) and

We denote the norm in ~f, by III I the norm of a bounded
operator A in by ~(A) the domain of an unbounded operator A, by
Q(A)(= f2(A 1/2)) the form domain of a positive operator, and by Q(A)*
the dual of Q(A) in the sense of the scalar product of Jf. The creation and
annihilation operators are defined, for any by

In (3 . 2-4), we follow the convention of Friedrichs [1 ]. The particle number
operator N is defined in the usual way.
We first consider the family of operators U(t) formally defined by (2. 6),

(2.2) and (2.3). We take t  0 and we assume the potential V to satisfy
the following stability condition :

Vol. XXXIII, n° 4-1980.



372 J. GINIBRE AND G. VELO

Stability of the potential: there exists a constant B  0 such that

For 0, we denote by E(r~) the region of the complex plane :

and for any ~ &#x3E; 0, we denote by the interior of E( 17) :

It will be also convenient to introduce a cut-off in the potential V as fol-
lows : for any x &#x3E; 0 we split V as

with

If + 1  p2  00, then there exists 03BA &#x3E; 0 such that for all
03BA  03BA and all pa, 1 p0  P2, Lp° and

where ~. 1 p  oo, denotes the norm in, Lp = We define
also VK = Min (V, K-), == V - VK, and H4 by

We now state the relevant properties of U(t) and of its approximants U"(t)
generated by Ho + zH (1).

PROPOSITION 3.1. 2014 Let V be stable and V~L~ + Lp2 with p2  n/2,
p2 &#x3E; 1 for n = 1, p2 &#x3E; 1 for n = 2. Then

(1) For any ~  0, for any the operator (i(Ho + Z2H4) + 
defined as a sum of quadratic forms, is m-accretive, commutes with N, and
generates a contraction semi group U(t) exp ( - strongly continuous
in t for t &#x3E; 0 and in z for z E E( 1]). If ~ &#x3E; 0, this semi group is analytic in z
for 

(2) Under the same assumptions as in part (1) the operator

generates a contraction semi group B~Nt) which satisfies the
same properties as Furthermore 

converges strongly to U(t) exp ( - as ?: -~ oo, uniformly for t in any
compact subset of !R + .

(1) See note added in proof.

Annales de l’Institut Henri Poincaré-Section A
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Proo~f. 2014 (1) Let z E For Re z ~ 0, the form defined by

is strictly m-sectorial and defines an m-accretive and strictly m-sectorial
operator ( [7], p. 282). For Re z = 0, we use the following perturbation
argument : let v be the operator of multiplication by V in L2. Then, under
the assumptions made on V, for any E &#x3E; 0, there exists a 0: ~ 0 such that
the following inequality holds in the sense of quadratic forms on Q( - A):

From this it follows that in 

where ki is. the momentum of the i-th particle,

Therefore by a standard perturbation argument the operator

can be defined as a sum of quadratic forms in each and then in Jf
as a direct sum of its restrictions to the In both cases by the Hille-
Yosida theorem the operator (i(Ho + Z2H4) + generates a strongly
continuous contraction semi group..

Strong continuity and analyticity in z of U(t) exp ( - follow from
the same properties in each since exp ( - is the strong limit

. 
as v -~ 00 of its restriction to the subspace with N ::::; v, uniformly with
respect to For each N these properties follow from the same
properties of the resolvent operator.

(2) The first statement is a special case of part (1). Strong convergence
of the semi group follows from the corresponding properties in each ~f~
for fixed N. This follows, through strong resolvent convergence, from the
convergence of H03BA4 to H4 as an operator from Q(Ho) n HN to Q(Ho)* n HN.
Remark 3 .1. 2014 It is clear from the proof that part ( 1 ) of Proposition 3 .1

still holds under the weaker assumptions V stable and V E for z E E(~),

We now turn to the study of the operator W(t, s) formally defined by (2 . 5).
The function ~p appearing in (2 . 5) will be a solution of the following integral
form of the Hartree equation (2.4)

Vol. XXXIII, n° 4-1980.



374 J. GINIBRE AND G. VELO

where Mo(’) is the free evolution operator defined by

The relevant spaces where to solve the equation (3.14) and some information
on the solutions are contained in Proposition 2.1 of [4] (for more details
see [3 ]). The main properties ofW(t, s), of VV(t, s) (which is defined by (2 . 32)),
and of their approximants s), defined by

and s), also defined by (2. 32), are expressed by the following pro-
position.

PROPOSITION 3 . 2. 2014 Let V be stable and + Lp2 with p2 &#x3E; n/2,
p2 &#x3E; 1 for n = l,p2 &#x3E; 1 for n = 

~p a solution of the classical equation (3.14). 0, z E with z ~ 0,
let (x, f~ E ~ with /~ &#x3E; oc. Then 

-

(1) The operator is bounded and strongly
continuous with respect to s, t and z for ~ s, s)  ~3 - x. If in

addition &#x3E; 0, this operator is analytic in z for z E Eo(11). 
’"

The same properties hold for the operators exp (aN)W(t, s) exp ( - 
exp s) exp ( - and exp s) exp ( - 

(2) The operators exp s) exp ( - and

converge strongly to exp s) exp ( - and

respectively, oo, uniformly for t, ~(~ ~ s) in compact subsets of
the region s)  f3 - a.

(3) The operator exp s) exp ( - /3N) is strongly differentiable
with respect to t and s for t &#x3E; s and s)  ~3 - a, with derivative
given by

where H 2 and H 3 are obtained in the same way as in ~2 . 3 3) from H 2 and H 3

Annales de l’Institut Henri Poincaré-Section A
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which are themselves obtained by replacing V by VI( in the definitions(1.34)-
( 1. 43) of [4 ].

Proof 2014 (1) The proof is identical with that of Proposition 4.1, part ( 1 ),
of [4 ].

(2) Follows immediately from Proposition 3.1, part (2).
(3) The proof is almost identical with that of Proposition 4.1, part (2),

of [4 ]. One first obtains

where

~p satisfies (4 . 28) of [4] and still belongs to L2) because of the coupled
assumptions on V and cp. The result (3.17) now follows from (3.18) and
from (4 . 28), (4 . 29) and (4 . 32) of [4 ].
We now turn to the study of the semigroup U4(t, s) formally defined

by (2.10) and in particular of its relation with W(t, s). The operator U4(~, s)
will be constructed as the limit of suitably regularized operators and its
main properties will be derived from the corresponding properties of the
approximants.

It will be convenient to introduce the scale of Hilbert spaces for

~ E tR as follows : 0, ~~ - ~(N~12), which is a Hilbert space with
norm

where

For ~  0, is the completion of ~f in the norm

The space of bounded operators in H03B4 will be dieted by R(03B4).
We define formally the approximant U4(t, s) to U4(t, s) as the solution

of the system

Vol. XXXIII, n° 4-1980.



376 J. GINIBRE AND G. VELO

with infinitesimal generator

Note that the cut off 03BA appears in H4, but not in H2. Since VI( E L 00, U4(r, .s)
satisfies the properties stated for U4(t, s) in Section 5 of [4] J up to, and

including, Corollary 5 . 3. In particular U4(t, s) satisfies the equation

in a suitable sense (see Corollary 5 . 3 of [4 ]).
We next take the limit x -4 00 in U4(t, s).
PROPOSITION 3 . 3. - Let V be stable and V~L~ + Lp2 with p2  2,

p2 &#x3E; n/2. Let 03C6 E l(R, L2 n LR) with 1/p2 + 2/q = 1. 0, let [a,b]
be an interval of R and let 03B14(.)~l1([1, b], R+) satisfy the equation (5 . 4)
of [4] for all T E [a, b ] . Let z E E(r) and let s, t E [a, b],t ~ s. Then

( 1 ) For all ~ &#x3E; 0, the following limit exists in the strong topology of~(5):
+ 1))U4(t, s) exp ( - + 1))

and the convergence is uniform in s, t in any compact subset of [a, b ].
The operator on the R. H. S. of (3.25) is strongly continuous with respect
to s, t in ~(5) and satisfies the estimate (5 . 6) of [4 ].

(2) Let in addition ~p E L2 n LR) with 1/p2 + 1/? = 1/2, ~p a solution
of the classical equation (3.14). Then, for any a, ~3 such that

the following identity holds

Proof. - (1) In order to prove the existence of the limit (3.25) we intro-
duce a particle number cut off as follows. Let 03C31~L1(R+, IR) be positive
and decreasing, = 1 if S ~ 1, = 0 2. We denote bY",(Jv the
operator in 7(. We introduce a double approximant 
formally generated by

and defined more precisely by the series (see (2 .11 ), (2.12))
exp s) exp ( - ~3N)

Annales de flnstitut Henri Poincare-Section A
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which is norm convergent for s)  ~ - ex. One sees easily that

s) satisfies the estimate (5.6) of [4] uniformly in 03BA and v. By proposi-
tion 3.1, part (2), one can take in (3.27) the strong limit as K -~ 00 for

fixed v. On the other hand, by the same argument as in the proof of Pro-
position 5.1 of [4] and of Proposition 4.1 of [2], based on the formula

one can take the limit

uniformly in x for 03A6~D (exp (03B2N)), 03B2 &#x3E; 

Part (1) follows from these two limiting properties and from the esti-
mate (5 . 6) of [4 ].

(2) Part (2) follows by integrating the identity

and then taking the limit ~ -~ oo, using Proposition 3.2, part (2), and
part (1) of this proposition. Q. E. D.
We conclude this section with a brief sketch of the operator theoretic

justification of Lemmas 2 .1 and 2 . 2. This is based on Propositions 3 . 2

and 3.3, on (3.24) and on the estimates of Sections 4 and 5 below. First,
all the formulas in Lemmas 2.1 and 2.2, as well as (3.24), are supposed
to hold as relations between bounded operators when sandwiched between

exp (o(N) and exp ( - (3N) with 0 ~ o~ a4(t)  (~(.s)  j8 for some C4(’)
satisfying the equation (5 . 4) of [4 ]. The same remark applies to all state-
ments and formulas in the discussion below. The first step consists in

proving Lemma 2.2 with a cut off K in H4, U, U(l), Qh U4, but, of course,
not in H2 and in U 2’ With this cut off the proof is exactly that given for
Lemma 2.2. One then proves the estimates of Sections 4 and 5 with the

cut off all the estimates are uniform in x. The next step consists in taking
the limit K- -~ 00. From the estimates of Lemma 4.2 and the fact that 

is multilinear in the potential V, it follows that the approximant conver-

ges to strongly (actually in norm). On the other hand UK converges
strongly to U by Proposition 3.1, part (2), so that also Q1 converges
strongly to Q~ (this also follows from the estimates of Lemma 5.2). One
then uses these convergences together with that of U4 to U4 given by
Vol. XXXIII, n° 4-1980. 15



378 J. GINIBRE AND G. VELO

Proposition 3.3, part (1), and the uniform estimates of Lemmas 4.3, 4.4,
5. 3 and 5.4 to take the limit ~ -~ oo in (2. 36) and (2. 39). One concludes
that and converge strongly to U4,k and Q4,k respectively, that
the estimates of Lemmas 4.4 and 5.4 still hold for the limits, and that U4
has an asymptotic expansion in z

with coefficients that are bounded operators. One finally combines (3.28)
with an iterated form of (3.26) to derive Lemma 2.1, the proof being now
purely combinatorial.

4. ESTIMATE OF THE GENERAL TERM

In this section we estimate the general term Wp(t, s) of the expansion
of W(t, s) as a power series in z = h1/2 given by Eq. (2 . 20). As in [4 ], we
estimate Wp(t, s) in the strong sense, namely, we estimate ~ Wp(t, 8)1&#x3E; II for 03A6
in the dense set 9fi (exp (8N)) for some 8 &#x3E; 0. By Lemma 2.1, the operators
Wp(t, s) are expressed in terms of the operators U 4.k(t, s) which, by (2. 32)
and Lemma 2 . 2, are themselves expressed in terms of the operators s)
and Y~(t, s). Therefore, we estimate successively s), Y~(t, s), U 4.k(t, s)
and finally s). All the estimates of this and the next section apply
equally well to the operators with and without ", and we shall state and
prove them for whichever is more convenient, without further explanation.
The estimates on s) will be expressed in terms of the function 

defined by

where

The vector C in the expression for ,u~ 1 ~ and the operator norms in the
expressions for ~c~2~ and ,u~3~ are taken in the N-particle space ~N for any
N  3 (the result is independent of N), and i, j, l label three different par-
ticles (the result is also independent of the choice of i, j, 1). Standard argu-
ments [5, 6 show that ,u(t) is finite for a large class of potentials. For the
convenience of the reader we prove an explicit bound in the following lemma.

l’Institut Henri Poincaré-Section A



379THE CLASSICAL FIELD LIMIT OF NON-RELATIVISTIC BOSONS II.

LEMMA 4.1. 2014 Let V~L~ + Lp2 with p2 &#x3E; 1, p2 &#x3E; n/2. Then for any
~c &#x3E; ~ (see after (3.9)),

where V~ is defined by (3.8, 3.9), 82 = 1 - and Cp2 is a constant
depending only on p2.

Proof. 2014 We first estimate /1(1). Obviously it suffices to take t &#x3E; 0 and

~2. We drop the subscripts ( = 1, 2). Let .f’ be a real positive even
function of positive type in L 1 n L~ with f(s)  1 for |s |  1, and let

/(T/~. Then, for any x &#x3E; 0,

where

by the vector valued version of Plancherel’s theorem,

where we have used the positivity of f,

The last norm is bounded [6 by

for x, so that

with

Together with (4 . 3), this proves the estimate (4 . 2) for ,u~ 1 ~ (improved by
a factor 2). A possible suitable choice for f is

Vol. XXXIII, n° 4-1980.
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We next estimate ,u~3~ (the estimate of ,u~2~ will be omitted, since it is similar
and yields a smaller bound). Let K; ~ x. We substitute the decomposi-
t ion V = V" + V~ into ,u~3~(t), expand, and estimate the various terms.
The diagonal term with V is bounded [5,6] by

The non diagonal terms are bounded by

b Schwarz’s inequality,

by the argument used above to estimate (see (4.4)). Therefore

from which (4.2) for /1(3) follows immediately since (2~)~ ~2 ~ ~ Cp2~
Q. E. D.

We now estimate U~l~(t - s) defined by (2.28).

LEMMA 4 . 2. 2014 Let V~L~ + Lp2, with p2 &#x3E; 1, p2 &#x3E; n/2, let 03B4  0. Then,
for any integer t ~ 0, s) satisfies the estimate

where /(~N) is defined by (3.20).

Proof 2014 Without any loss in generality, we take s = 0 and t &#x3E; 0. It is

sufficient to prove the estimate in each N-particle subspace Since the

number of perturbation graphs in 2 - ~ [N(N - 1)]~ it is sufficient
to prove that the contribution of each graph is bounded by A general
perturbation graph is defined by a sequence of pairs of particles a == {o~ },
1 ~ i ~ 1, and contributes a term

Let D and then

where
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* denotes the convolution, and the operator valued functions F~ and

Gxa are defined by

These functions depend on t as a parameter and the convolution product
in (4.8) is taken for the value t of the variable. We estimate

by Plancherel’s theorem. Now the first and last factors in the last member
of (4 . 9) are bounded by (~u~ 1 ~(t)) 1 ~2. If the two pairs ai = a and ai + 1 == ~8
overlap, then

If the pairs a and 03B2 are disjoint, we estimate for any C and == == 1,

by Schwarz’s inequality.
Collecting all the estimates we obtain (4 . 5). Q. E. D.
We next estimate the commutator that occurs in s).

LEMMA 4.3. - Let V~L~ + Lp2 with p2  2, p2 &#x3E; n/2, let
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~p E L2 n Lq) with 1/p2 + 2/q = 1, and let ~ 0. Then for t ~ s and
for any integer l  0,

where g(s) is the function of x defined by (1. 38) of [4] with ~p taken at time s,
and c( . ) is defined by (2.19) of [4 ].

2014 We write the commutator in the L. H. S. of (4.10) as

where G(s), K(s), L(s) and L(s)* are defined by formulas similar to (2. 33)
in terms of G(s), K(s), L(s) and L(s)* as given by ( 1. 35-1. 40) of [4] with 03C6
taken at time s, and ~ denotes the connected product: this means that for
each graph in the perturbation expansion of U~(t, ~ only those terms
in G(s) and K(s) (resp. L(s), resp. L(s)*) are retained that act on (resp.
annihilate, resp. create) particles that interact in the given graph [1 ]. We
estimate the various terms in the R. H. S. of (4 .11) successively. G(s) and K(s)
are sums of one particle operators, and the norms of their one particle
components are bounded by ~ g(s)~~ and c(s) respectively (see Lemma 2 . 2
of [4 ], especially (2.16) and (2.17)). Since there are at most 2t particles
interacting in we obtain

where we have used the estimate of each individual perturbation term
of s) obtained in Lemma 4.2.
We now turn to the terms containing L(s) and L(s)*. Commuting f (b, N)

with L(s) or L(s)*, we see that the term with L(s)* has the larger contribution.
We therefore consider only this term. Let 0, = = 1,
and let N. be the N-particle components of C, q. Then

We consider separately the contribution of the various perturbation
graphs with 1 interactions that occur in s). Let m be the number of
interacting particles in a given graph, so that 2 ~ ~ ~ Min (21, N). L(s)* is
a sum of two particle creating terms, of which only those connected with
the given graph survive. The number of terms with one contraction is
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1
m(N - m) and o the number of terms with two contractions is - m(m - 1).
The total number of terms is therefore less than 2

so that

where == t(s ; x, y) is defined by (1. 40) of [4], 111(8) I I 2 denotes its norm
in L2(dx dy), and the factor (N(N - 1))- ll2 accounts for the transition from
the norm in to the norm in (see (3 . 3)). Therefore

by Schwarz’s inequality applied to the sum over N, since the last combi-
nation of N-dependent factors is easily seen to be smaller than one for

The lemma follows by collecting the previous estimates and noting that
!~)!!2=~). Q. E. D.
The next step consists in estimating U4,k(t, s) or equivalently s)

as given by (2. 32) and Lemma 2.2.

LEMMA 4.4. 2014 Under the same assumptions as in Lemma 4. 3, for t ~ s
and for any integer k  0, U 4.k(t, s) satisfies the estimate

where ~u is defined in (4.2).

Proof estimate U 4,k(t, s) in the form given by (2 . 36) :
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where

and the remaining notation is the same as in (2 . 36). We estimate the norms
containing 1)2(1, z’) by Proposition 2 . 2 of [4] (see especially (2 . 24) of [4 ])
and the other norms by Lemmas 4 . 3 and 4 . 4 above :

where we have replaced bi by ~r+ 1 = 5 + 4k in the exponent resulting
from the application of (2 . 24) of [4 ],

where we have used the fact that  is an increasing function of t. Now

The result now follows by extending the sum over r in (4.15) up to infinity.
Q. E. D.

We are now ready to estimate the general term s) of the expansion
of W(t, s) as a power series in z, using the representation given in Lemma 2.1.

PROPOSITION 4.1. - Let V~L~ + Lp2 with p2  2, p2 &#x3E; n/2, and
~p E C6(!R, L 2 n Lq) with + 1/q = 1/2. Let 8 &#x3E; 0 and C (exp (eN)).
Then, for t &#x3E; s and for all p ~ 1, Wp(t, satisfies the following estimate :

where
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c( . ) is defined by (2.19) of [4 ],

and 0 C1(’) is defined by (3 . 8) of [4 ].

~’roo, f. Using 1 the representation (2.20) we estimate " , s) as follows :

where 03B40 = 0 = 3i + 4(ko + ... + ki_ 1) for 1 i  j. The norms
containing are bounded by 2ci(rJ, by using Lemma 3 . 2 of [4 ],
while the norms containing U 4,k are estimated by Lemma 4.4 above.
We obtain

where we have replaced (~ + 4~, by ~~ + 4~ = 3/ + 4k in the exponent
resulting from the application of (4.13) and we have used the fact that  is

an increasing function of f. The factor ( + ) counts the number of terms
B 7/

in the sum for fixed j and k, since

) 1 = coefficient of yk in (1 - y)-(j+1) = ’ + k 2j+k.
Z-J 

Y ( Y) 
B 7/

~~

We estimate the last norm in (2 . 41) by Lemma 3 .1 of [4 ], and obtain
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with C, b3 and b4 defined by (4.17), (4.18), (4.19) respectively. Using the
binomial inequality (2p + /’)! ~ (2p) !j !(1 + + for 0153 &#x3E; 0, we
estimate the last sum as

The number of terms in the sum over j is 1 + [p/2] ~ p for p ~ 1. We
estimate the sum as p times the maximum term, which we arrange to be
the term j = p by a suitable choice of a : for this purpose we define x by

We bound the factor ( 1 + in (4 . 23) by (3/2)p and obtain

Eq. (4.16) now follows from (4.22), (4.24) and the binomial inequality
(2p)! ~2~(p!)~. Q. E. D.
The estimate (4.16) should be compared with the similar estimate (3 .17)

of [4] ] corresponding to the case of bounded potentials. While the term
coming from H 3 in (4.16) still contributes a factor of the order ( p !) 1 ~2
(Const)p as previously, the term coming from H4 now has an additional
factor pp/2 and is therefore estimated only as p ! (Const)p. The occurrence
of this additional factor pp/2 can be traced back to Lemma 4.2 where the
factor (t!)-1 expected from the time ordering in (4. 6) actually does not
appear in the final estimate because of the local singularities of the potential
(a more careful estimate should have a factor (l!)-E2 in (4.5) with

As a consequence, with the analyticity properties available from Propo-
sition 3 . 2, part ( 1 ), which is the same as for bounded potentials (see Pro-
position 4 .1, part ( 1 ), of [4 ]), Borel summability is lost in the present case.

5. ESTIMATE OF THE REMAINDER

In this section we estimate the remainder Rp(t, s) of the expansion of
as a power series in z = h1/2, given by (2.19). More precisely we

estimate Rp(t, s)C for any C E ~ (exp (/3N)) with ~ sufficiently large and
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(t - s) sufficiently small. The remainder Rp(t, s) can be represented as
in (2 . 22), with s) and R(t, s) given by (2 . 23) and (2. 24) respectively.
Now, for V stable, V~L~ + Lp2 for p2 &#x3E; 2, p2 &#x3E; n/2, and 03C6 E L 2 n Lq)
with 1/p2 + 1/q = 1/2, ~p a solution of the classical equation (3.14), H3(t)
still satisfies the estimates of Lemma 3 . 2 of [4] ] and in particular (3 .10)
of [4 ]. Furthermore U4(t, s) satisfies the estimate (5 . 25) of [4] and W(t, s)
satisfies the estimates of Proposition 4 . 2 of [4 ], especially (4 . 38) of [4 ].
As a consequence, Rp(t, s) is estimated exactly as in [4] ] and therefore satisfies
the estimate (6 . 21) of [4 ]. We therefore concentrate on the terms s).

In order to estimate s) using the representation (2 . 23), we need
the estimate of U4,k(t, s) given by Lemma 4.4 and a similar estimate for

s). The latter will be obtained by the use of (2. 39) from the estimates
contained in Lemmas 4.2 and 4.3 and similar estimates on s)
and Zl(t, s) which we now set out to derive.
We first need a preliminary estimate on U(t).

LEMMA 5.1. 2014 Let V be stable, V~L~ + with p2 &#x3E; 1, p2 &#x3E; n/2.
0, z E E(~) and E &#x3E; 0. Let ~ 0 and define ,ul(~) by

Then is finite and satisfies for all z E E(r~), ~ z  1,

where

for some po such that Max (1,~/2)  po  P2 and some ~c depending
only on V, and with D a constant depending only on V, p2 and po.

Proof 2014 Since U( . ) commutes with N, it is sufficient to estimate

for = 1, N ~ 2.
Let K ~ x, where K is defined after (3 . 9). We split V as VK + V~ according §

to (3.8). Then

where is obtained from h(t) by replacing V by Vx. We estimate 
by the use of the integral equation
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where ‘~ = exp ( - Taking the norms of the various terms in
L2( [0, ~ ], we obtain, by the same method as in the proof of Lemmas 4.1
and 4.2

where (see (4.2)) aK = 
We now choose x sufficiently large, depending on N, such that

axN = N - 2 and obtain

rind therefore

This implies the bound (5 . 2) for /11 1 under the condition axN = N - 2. In
order to prove that is finite, it is sufficient to show that this condition
implies that ~cN increases no faster than a power of N and more precisely
that xN satisfies (5 . 3). Now from (3.10), we obtain, for 

from which (5 . 3) follows immediately. Q. E. D.

Remark 5.1. 2014 Strictly speaking, the integral relation (5 . 4) can be proved
only for sufficiently regular potentials, for instance under the additional
assumption that Therefore one should first introduce a cut off ~.,
prove the estimate (5 . 2) with V replaced by V;. both in U and at the places
where it occurs explicitly in the proof above, and then take the limit ~, -~ 00
in the final result. We omit the details.
We next estimate QI(t - s) as defined by (2.30).

LEMMA 5 . 2. 2014 Let V be stable and + Lp2 with p2 &#x3E; 1, p2 &#x3E; n/2.
0, z E E(r~), t &#x3E; sand 8 &#x3E; 0. Let ~ &#x3E; 0. Then, for any integer ~1,

s) satisfies the estimate
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Proof 2014 The proof is almost identical with that of Lemma 4. 2, the only
difference being that here one should take

and estimate this quantity by the use of Lemma 5 .1. Q. E. D.
We next estimate the commutator that occurs in s).

LEMMA 5 . 3. 2014 Let V be stable, V~L~ + Lp2 with p2 &#x3E; 2, p2 &#x3E; n/2.
E cø([R, L2 n Lq) with 1/p2 + 2/q = 1. Let ~  0, z E E(~), t  sand

~ &#x3E; 0. 0. Then, for any integer l &#x3E; 1,

where g( . ) and c(.) are the same functions are in Lemma 4.3.

Proof. - We define 0 = s) + G and estimate successively the
contributions of G, K, [ and L* to the L. H. S. of (5.6). Since G and K
commute with N and are sums of one particle operators, the norms of
which are bounded by ~(s)~ and respectively, we obtain

+ K(~Q~)]/(~ + 41, N)-l exp ( - 0N)!!!
~ 2( II 1100 + /(~ N)NQ,(f, .)/(~ + 41, N)-l exp (- 0N)!!). (5.7)
The last norm on the R. H. S. of (5.7) is then estimated by Lemma 5.2.
In order to estimate the terms with [ and [ * we commute these operators
away from Q, to the left or to the right and then use (2.18) of [4]. We obtain

III f(03B4, N)[(s) + (s)*,Ql(t, s)]f(03B4 + 41, N)-l exp(- 03B8N)|||

where we have kept the largest of the four preceding norms 1 ).
The last norm in (5.8) is estimated by the same method as in Lemma 5.2
and also satisfies (5. 5). Collecting all the estimates, we obtain (5 . 6).

Q. E. D.
The next step consists in estimating s) or equivalently Q4,k(t, s)

as given by (2 . 32) and Lemma 2.2.

LEMMA 5.4. - Let the assumptions of Lemma 5.3 be satisfied. Let

s, t., t ~ s, be such that the equation (5 . 4) of [4] with boundary condition
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03B14(t) = ~ has a solution 03B14(.)~l1([s, t ], R+). Let 03B4  0. Then, for any inte-
ger k  1, Q4,k(t, s) satisfies the estimate

Proo~ f: first note that, because of (5 . 4) of [4 ], a4( . ) satisfies the
inequality

for all T E js, t ]. By (2.39), s) is given as the sum of two terms which
we denote by and and which we estimate separately.
Exactly as in the proof of Lemma 4.4 (see (4.15)),

We then estimate the sum over {l} as

and extend the sum over r up to infinity :

We now estimate s) exactly in the same way and obtain an estimate
similar to (4.14) with however the last norm replaced by

Annules de l’Institut Henri Poincaré-Section A



391THE CLASSICAL FIELD LIMIT OF NON-RELATIVISTIC BOSONS II.

We estimate these two norms by Lemma 5 . 3 and by (5 . 6) of [4] ] respectively
and the other terms as in the proof of Lemma 4 . 4. Thus

where we have used (5.10). We estimate the integral over 1",+ 1 by extending
the integration to the whole interval [s~], perform the integral over
(Ti, ..., 1",) as before, and estimate the sum over {~} by (5.12). Then

Collecting (5.13) and (5.15) yields (5.9). Q. E. D.
We are now ready to estimate the contribution of the terms s) to

the remainder Rp(t, s) of the expansion of W(t, s) as a power series in z,

using the representation given in Lemma 2.1.

PROPOSITION 5.1. 2014 Let V be stable, VEL x’ + Lp2 with p2  2, p2 &#x3E; n/2.
Let ~p E ~(f~, L2 n Lq) with + 1/q = 1/2. 0, z E E(~), and E &#x3E; 0.

Let s, t E fR~ ~ s, be such that the equation (5 . 4) of [4] with boundary
condition a4(t) = E has a solution o:4(.)e~([s, t ], tR~), and let

C (exp ((~4~s) + 

Then the contribution to Rp(t, s) of the terms s), namely of the first
sum in the R. H. S. of (2.22), satisfies the estimate
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where C’ and b3 are defined by (6 . 24) and (6 . 25) of [4 ], namely

We use the representation (2.23) of Lemma 2.1 and estimate
the various factors as in the proof of Proposition 4.1 (see especially (4.20),
(4 . 21)), with however the operators U4( . , . ) now sandwiched between addi-
tional factors exp(:t a4( . )(N + 1)). Using the estimate (5 . 25) of [4] (see
Proposition 3.3, part (1)), the estimates (4.13) of Lemma 4.4 and (5.9)
of Lemma 5 . 4, and the estimate (6 . 27) of [4 J, we obtain

We estimate the last norm by the use of Lemma 3.1 of [4] :

with C’ and b3 defined by (5.17) and (5.18) respectively. The last sum over j
is of the same type as that in (4.22), with however / + 2k now taking the
values p or p + 1. We estimate it exactly as before (see (4 . 23), (4 . 24)), thereby
obtaining (5.16). Q. E. D.
The estimate (5 .16) should be compared with the similar estimate (6. 22)

of [4] corresponding to the case of bounded potentials. As in the case of
the general term (4.16) and for the same reason, the estimate (5.16) contains
an additional factor pp/2 for singular potentials (see the remark at the end
of Section 4).

de l’Institut Henri Poincaré-Section A



393THE CLASSICAL FIELD LIMIT OF NON-RELATIVISTIC BOSONS II.

We are now in a position to state our main result on the expansion
of W(t, s) as a power series in z.

THEOREM 5.1. 2014 Let V be stable, + with p2 &#x3E; 2, p2 &#x3E; n/2.
Let ~p E ~(tR, L 2 n Lq) with 1/p2 + I/? = 1/2, ~p a solution of the classical
equation (3.14). Let ~ &#x3E; 0, let 03B2 &#x3E; 0 and C E 22 (exp ({3N)). Then for all

there exists 8 &#x3E; 0 such that, if t E [~5 + 0], is analytic
in z for z E and has an asymptotic expansion at z = 0 which satisfies
an estimate of the form

for all where and E(r~) are defined by (3.6), (3 . 7).
The constants 8, Co and C 1 depend on V, 1], [3, s and ~p. For fixed V, 1], ~8

and ~p, they can be taken uniform in s on the compact subsets of [R. For
fixed 1] and 03B2, they can be taken uniform in V, sand 03C6 if

with ~V1~~, ~V2~p2 and the stability constant B uniformly bounded,
and if is bounded in L2 and in Lq uniformly in ~p and r.

Proof 2014 The theorem follows from the analyticity properties of 
given in Proposition 3.2, part (1), and from the estimates of the remainder
Rp(t, s) contained in Proposition 5.1 for the terms and in Pro-

position 6.1 of [4] for the term s) (see the introduction of this section).
Q. E. D.

6. UNIFORMITY IN TIME
AND ASYMPTOTIC EXPANSION OF THE S-MATRIX

The results stated so far in this paper and in [4] are restricted to small
time intervals. The reason is that in general the solutions of (5.4) and (4 . 36)
of [4] blow up in a finite time. However in the special case of real positive z,
namely for physical values of ~, these equations have solutions for arbitrary
time intervals and therefore Theorem 6 .1 of [4] ] and Theorem 5 .1 hold
without restrictions on t - s. Even in this situation, the estimates on the
general term and on the remainder of the expansion of s) in general
depend on t and s. Under stronger assumptions, these estimates can be
made uniform in t and s, thereby yielding an asymptotic expansion in ~1~2
for W( + oo, 2014 oo). This quantity is related to the S-matrix, as explained
in [2] (see especially (1.56) of [2 ]).

THEOREM 6.1. 2014 Let the assumptions of Theorem 5.1 be satisfied. In
addition let z E [R +, n ~ 3, V E Lpl for some Pb 1 ~ pl  n/2. Assume that
there exists a p &#x3E; 0 such that
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Let the functions !! g( . ) 1100, c( . ) and c 1 ( . ) defined by (1.38). (2.19) and (3 . 8)
of [4] ] be in L1(f~). Then W( + oo, 2014 oo) has an asymptotic expansion
at z = 0 which satisfies an estimate of the form (5.19) for all z with 0 ~ z ~ 1.
The proof of this theorem is a simple check that the estimates of Sec-

tions 4 and 5 are uniform in time under the assumptions made. In parti-
cular the assumption V E Lpl n Lp2 implies uniform boundedness of 
(defined by (4.1)) as a function of t [5, 6 ]. Similarly (6.1) implies uniform
boundedness of /11 (defined by (5.1)) as a function of t. (This condition is
a strong form of the asymptotic completeness for the N-body problem).
The integrability conditions on ~g(.)1100, c( . ) and c 1 ( . ) mean that the classi-
cal solution ~p decays suitably for large time (see Proposition 2 . 2 of [2 ],
and for more details [3 D. Under suitable assumptions on V, the integra-
bility of II g( .) 1100 and of c( . ) can be proved for a large class of solutions,
while the integrability of cl( . ) lies beyond the reach of the methods used
in [3 ] .

ACKNOWLEDGMENTS

One of us (G. V.) is grateful to K. Chadan for the kind hospitality at the
Laboratoire de Physique Theorique in Orsay, where part of this work
was done.

Note added in proof. 2014 In all the statements made in the rest of this
section and involving H4, namely in Proposition 3 .1, part (2), in Proposi-
tion 3.2 and in Proposition 3 . 3, we assume that VK is stable for sufficiently
large x, we assume that 03BA is large accordingly, and we choose a stability
constant B that ensures the stability condition (3.5) both for V and VK.
Stability of VK for large K holds in particular if V is the sum of a bounded
stable potential and of a positive potential. In the general case, one can use
a different, more complicated cut off procedure, similar to that used in [2 ],
to define a different set of approximate operators UK, and WK, for
which all the results of Section 3 hold.
The content of this remark has no incidence on the estimates and results

of the rest of the paper (Sections 4 to 6).

[1] K. O. FRIEDRICHS, Perturbation of spectra in Hilbert space. Providence, R. I. :

Am. Math. Soc., 1965.
[2] J. GINIBRE, G. VELO, Comm. Math. Phys., t. 66, 1979, p. 37-76.

[3] J. GINIBRE, G. VELO, Math. Z., t. 170, 1980, p. 109-136.

[4] J. GINIBRE, G. VELO, The classical field limit of non-relativistic bosons. I. Borel

summability for bounded potentials, Ann. Phys. N. Y., in press.
[5] R. J. IORIO Jr., M. O’CARROLL, Comm. Math. Phys., t. 27, 1972, p. 137-145.
[6] T. KATO, Math. Ann., t. 162, 1966, p. 258-279.
[7] M. REED, B. SIMON, Methods of Modern Mathematical Physics, Vol. I, Func-

tional Analysis, New York, Academic Press, 1972.

( M anuscrit reçu le 20 juin 1980)

Annales de l’Institut Henf-i Poincaré-Section A


