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INTRODUCTION

A vacuum spacetime is a four dimensional Lorentz manifold (V4, 
that satisfies the Einstein empty spacetime equations
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148 A. E. FISCHER, J. E. MARSDEN AND V. MONCRIEF

where is the Ricci tensor of ~4~g, and R(4)g) is the scalar curvature.
We may regard as a rational function of degree eight in ~4~g and
its first two derivatives. Therefore one might guess that the space of all
solutions E of = 0 is a complicated algebraic variety. The main
purpose of this paper is to show that the singularities in this variety are
precisely conical, i. e., of degree two, and to describe this conical structure
explicitly.
The motivation and methods we use come from the perturbation theory

of spacetimes and the related concept of linearization stability. A space-
time is called linearization stable if every solution of the linearized

Einstein equations is integrable, i. e., is tangent to a curve of exact solutions
of Einstein’s equations. For instance, if g is a smooth manifold in a neigh-
borhood of then will be linearization stable. (See § 1 for the

precise definitions.)
In previous papers the following results have been shown for space times

with compact Cauchy surfaces :

1) For a solution (4)g0 of Einstein’s equations, the fo.llowing are equi-
valent:

i) (4)g0 has no Killing fields,
ii) linearization stable,
iii) the space of solutions E is a manifold in the neighborhood of (4)go

and has as its tangent space the space of solutions of the linearized equations
at ~4~go~

2) Let (4)go have Killings fields. If (4)h is a solution of the linearized equa-
tions at {4~go, then in order for be integrable certain conserved quantities
of Taub quadratic in (4)h must vanish identically. There is one such quantity
for each linearly independent Kitting vector field. (We refer to these restric-
tions as the second order condition.)

These results are proved in Fischer and Marsden [1973, 1975 ], Mon-
crief [1975, 1976] and Arms and Marsden [1979 ]. They are briefly reviewed
in Section 2.

In this paper we prove the converse of 2. This converse can be interpreted
in several ways, as follows :

a) If ~4~h satisfies the linearized equations and the Taub conserved
quantities vanish, then there is a curve of exact solutions through 
that is tangent to ~4~h.

b) The set E has (nontrivial) quadratic, i. e., conical singularities near
spacetimes with Killing fields.

c) A perturbation expansion around the background ~4~go may need
adjustment at second order, but once this is done, it can always be completed
to a convergent expansion.

This paper deals with globally hyperbolic solutions of the vacuum

Einstein equations in a neighborhood of spacetimes that have a compact
de l’Institut Henri Poincaré-Section A



149THE STRUCTURE OF THE SPACE OF SOLUTIONS OF EINSTEIN’S EQUATIONS. - I

Cauchy surface of constant mean curvature. (The latter condition, believed
to be valid rather generally, is discussed in Marsden and Tipler [1979 ].)
In this part of the paper we deal with solutions which have a single Killing
vector field. Part II of the paper will then deal with the case of several

Killing fields and general applications to mechanics.
The proofs in this paper rely on the Morse lemma of Tromba [1976 ],

the Ebin-Palais slice theorem (Ebin [19.70 ]), and the authors’earlier work.
Strictly speaking, we are only after the structure of the zero set of a function,
so the Morse lemma is a bit of overkill and in fact the arguments can be

simplified somewhat. However, the stronger conclusions given by the
Morse lemma, namely a normal form for the whole function not merely
its zero set, may be useful for other purposes.
For many Killing fields discussed in Part II (done jointly with J. M. Arms)

we shall use the bifurcation theory developed by Buchner, Schecter and
Marsden [1979] ] and the Kuranishi theory of deformations, in a form
inspired by Atiyah, Hitchin and Singer [1978 ].

There are two interesting directions of generalization possible :
(A) To fields coupled to gravity, such as Yang-Mills fields. As shown

by Arms [1978 ], the Hamiltonian formalism of Fischer and Marsden [1978] ]
is applicable to Yang-Mills fields, and the corresponding generalization
of linearization results 1 and 2 have been obtained. It seems that the analysis
of the present paper will generalize as well.

(B) The other direction of generalizations is to spacetimes with non-
compact Cauchy surfaces, say Cauchy surfaces that are asymptotically
flat. Here, under rather general conditions, Choquet-Bruhat, Fischer and
Marsden [1978] have shown that E is a manifold, even near spacetimes
with Killing fields. However, the second order conditions emerge at spatial
infinity in perturbations of the total energy and momentum; see Mon-
crief [1978 ]. This signals not trouble in the solution manifold, but rather
the development of cones in the level sets for the total energy and angular
momentum. It is this reduced space that will still have singularities and the
methods in this paper can be used to analyze them.
Our spacetimes are always assumed to be smooth, oriented and time-

oriented with smooth compact spacelike Cauchy surfaces. By Budic et al.
[1978 ], any compact smooth spacelike hypersurface will be a Cauchy
surface. The spacetime (V4, ~4~g) associated with Cauchy data (g, 7r) on
a spacelike hypersurface X will always mean the maximal Cauchy develop-
ment, unique up to diffeomorphisms of the spacetime. The spacetime
is topologically E x [R. Results like these are conveniently available in
Hawking and Ellis [1973] ] and will not be referenced explicitly.
The authors wish to acknowledge a number of helpful remarks provided

by J. Arms, Y. Choquet-Bruhat, R. Jantzen, R. Palais, R. Sachs, S. Schecter,
I. Singer, F. Tipler, A. Taub and A. VVeinstein.

Vol. XXXIII, n° 2-1980.



150 A. E. FISCHER, J. E. MARSDEN AND V. MONCRIEF

§ 1 PRELIMINARY CALCULATIONS AND DEFINITIONS

Let (V4.(g) be a spacetime. We let = the Ricci tensor of

~4~g, R(4)g) == trace = the scalar curvature and

Our sign conventions are those of Misner, Thorne and Wheeler [1973 ].
These conventions are determined by the Ricci commutation formula

where a, {3, ... = 1, 2, 3, 4 and ; denotes covariant differentiation with
respect to ~4~g, and by the definition

Using appropriate functions spaces (see, e. g., Fischer and Marsden [1975]),
the functions Ric, Rand Ein are Cx in {4~g. The derivatives of these mappings
are given as follows :

where ‘’

is the Lichnerowicz Laplacian acting on covariant symmetric two

tPncnrc (4)

and where h = h 2 (tr t4~h ) ~4~ g, l. e. h - aa h - ~~ 2. hu 
For example, in coordinates

Annales de Henri Poincaré-Section A



151THE STRUCTURE OF THE SPACE OF SOLUTIONS OF EINSTEIN’S EQUATIONS. - I

The formulas for R(4)g) and follow from that for Ric using

We shall now give a number of lemmas which will lead to Taub’s conserved
quantities. Some of these calculations are « well known » and are included
for the reader’s convenience.

1.1. LEMMA. 2014 7/’ = 0, and (4)h is any symmetric two tensor, then

where 03B4 = 03B4(4)g is the divergence with respect to (4)g.
Proof. - The contracted Bianchi identities assert that = 0.

Differentiation gives the identity

where 03B4(1+ g) _ 03B4(4)g indicates the functional dependence of 03B4 on 
and [D~(~4~g) ~ ~~] is the linearized divergence operator acting on 
The lemma follows since =0. II

and then using the hypotheses = 0 and = 0. II
We remark that ~4~h) can be worked out explicitly usin

1.3. PROPOSITION (Taub [1970 D. - Suppose Ein((4)g) = 0,

has zero divergence. (Here the first « . » denotes contraction while the
second indicates the application of the bilinear map 
Vol. XXXIII, n° 2-1980.



152 A. E. FISCHER, J. E. MARSDEN AND V. MONCRIEF

Proof From lemma 1.2, the bracketed quantity has zero divergence.
Thus (4)T is the contraction of a Killing field and a symmetric divergence-
free two tensor field and hence has zero divergence. II
As a consequence, if 1 and L2 are two compact spacelike hypersurfaces,

then

where ~4~Z~i, i = 1, 2, is the unit forward pointing normal to ~~ and d3~i
is its Riemannian volume element.

If F : V4 -~ V4 is a diffeomorphism, then

where F* denotes the pull-back of tensors. This equation is the giobalized
version of the coordinate covariance The first and second order

infinitesimal version of coordinate covariance is the following :

1. 4 . PROPOSITION. - Let (4)X be any vector field on V4, and ~4~h a sym-
metric two-tensor field. Then

~~~-~"B _-)/ B~-*~"~~B. ~/ 2014~’~~B201420142014B C3// 7

~d

Proof Let F Â be the flow of (4)X, Fo = the identity diffeomor-

phism on V4. (Of course, F À may be only locally defined.) Thus

Differentiating this relation in 03BB gives

Setting ~. = 0 gives the first relation. Then, differentiating this relation
with respect to ~4~g gives the second relation. II

for any vector field (4)X. Since perturbations of the form are gauge

perturbations, the equation shows that the linearized Einstein operator
is gauge invariant if ~4~g is a solution to the empty space equations.

Similarly, if ~4~h solves the linearized equations

then

Annales de ’ l’Institut Henri Poincare-Section A



153THE STRUCTURE OF THE SPACE OF SOLUTIONS OF EINSTEIN’S EQUATIONS. - I

for any (4)X. shall need this relationship and the following lemma to
obtain the gauge invariance of Taub’s conserved quantities (4)T.

1 .5. LEMMA. Suppose = 0, (4)X is a Killing field of (4)g,
(4)h is a symmetric two tensor f-cetd and 03A3 is a compact spacelike hypersurface.
Then

J

Proof -- By 1.1, ~ ~4~h is divergence free, and since (4)X is a
Killing vector field, (4)X. ] is a divergence free vector

field. Thus for two spacelike compact hypersurfaces, B(03A31, (4)h) = B(03A32, (4)h).
Choose Ei and ~2 disjoint and replace ~4~h by a symmetric two tensor ~4~k
that equals (4)h on 03A31 and vanishes on a neighborhood of 03A32. Then

~4~h) = ~4~k) == ~4}k) - O. II
The next proposition establishes the gauge invariance of Taub’s conserved

quantities (4)T when integrated over a hypersurface.

1. 6 . PROPOSITION. - Let = 0, Killing field of (4)g,
~4~h = 0 and (4)y an arbitrary vector field. Then for any compact

spacelike hypersurface E,

Proof. - By bilinearity of we need only show that

where by the hypothesis and equation 1 of the remark after 1.4,
~4~k = ~4~h + L(4)y(4)g satisfies ~4~k = 0. But this follows by
contracting equation 2 of the remark after 1.4 with (4)X, integrating over X
and using 1. 5. II
Next we connect these ideas with linearization stability. If = 0

and (4)h = 0, we call an infinitesimal deformation. An actual
deformation is a smooth curve ~4~g(~~) of Lorentz metrics through 
satisfying Ein(4)g(À)) = 0. We say ~4~h is integrable if for every compact
set C c V4 there is an actual deformation ~4~g(~,) defined on C such that
~(0) = ~4~go on C and

By the chain rule, every integrable ~4}h is an infinitesimal deformation.
A spacetime is called linearization stable if every infinitesimal deformation
is integrable.
Vol. 2-1980. 6



154 A. E. FISCHER, J. E. MARSDEN AND V. MONCRIEF

In the presence of Killing fields any infinitesimal deformation must
satisfy a necessary second order condition in order to be integrable, as
follows.

1 .7. PROPOSITION . - Suppose = 0, (4)X is a Killing field of
(4)go and (4)h is integrable. Then the conserved quantity of Taub vanishes
identically when integrated ouer any compact spacelike hypersurface 03A3:

~

Proof. 2014 Differentiation of == 0 twice with respect to 2
at 03BB = 0 gives the identity

where (4)k = d d03BB2 (4)g(03BB)|03BB=0. Contracting with (4)X, integrating over 03A3

and using lemma 1.5 gives the result.
We shall now summarize some of the formalism of geometrodynamics

(ADM formalism) that we shall be using. Consult Misner, Thorne and
Wheeler [1973] and Fischer and Marsden [1978] for proofs and additional
details.

Given a spacetime (V4, ~4~g), a compact three manifold M, and a space-
like embedding i : M -~ V4, define

i) g = i*(~4~g), a Riemannian metric on M ;
ii) k = the second fundamental form of the embedding, a symmetric

two tensor on M, with the sign convention

where (4)Z is the forward pointing unit formal to E = i(M) c vi,
iii) ~c = trace k, the mean curvature of the embedding;
iv) 7T’ == (~ 2014 k)# where  denotes the contravariant form of the tensor

with respect to g ; note that tr ~’ - 2x. Similarly b denotes the index
lowering map.

v) 7T = 7T’ (8) ~u( g) where ,u( g) is the Riemannian volume element of g.
Set Pt(~4~g) _ (g, 7T), the projection of ~4~g to the Cauchy data (g, 7c)

induced by ~4~g by the spacelike embedding i. We shall sometimes write

Pi for P~.
vi) Set G03B103B2 = [Ein((4)g)]03B103B2 and the perpendicular-

perpendicular projection of a scalar function on M ;
= - the perpendicular-parallel projection of 

a one-form on M.

density on M ; L ~ J

cf(g, ?r) = 2014 = 2(~7r)~ ’ 

a one ’ form density on M; in

Annales de l’Institut Henri Poincare-Section A



155THE STRUCTURE OF THE SPACE OF SOLUTIONS OF EINSTEIN’S EQUATIONS. - I

coordinates, ~i = - 27c/~; a vertical bar denoting covariant differentiation
on M with respect to g.

Set 7T) = (~( g, 7~ 7T)).
Given a slicing of (V4, (4)g); i. e., a curve i03BB in the space Emb(M, V4, (4)g)

of space like embeddings ( 1 ) of M to V4 which foliate a neighborhood
of Xo = io(M) in V4, the Einstein equations = 0 are equivalent
to the following system for which the notation is explained below :

Here N and X are the perpendicular and parallel components of ~X~ = 2014 ~
~A

the tangent to the curve of embeddings, so (4)XÂ : M -~ TV4 and covers ~.
To explain the evolution equations, we need some addition notation.
Let A = be the space of Riemannian metrics g on M of Sobolov

n
class + 1  s ~ oo. Then M is an open convex cone in S2, the
_

space of symmetric 2-covariant tensor fields h; thus x S2.
Let Sd2 be the space of 2-contravariant symmetric tensor densities 7c on M
and let T* A = A x Sd2, the L2-cotangent bundle of ~2. The function
space topology used is x on 

We can regard 1&#x3E;: T*~ -~ Ad x Ad, where Ad x Ad is the space
(scalar densities) x (one form densities). Thus, for (g, vc) E 

mapping the differentiability classes x WS -1 ~p -~ x 

i. e., 7r) is of order (2, 1 ).
Now carries a natural weak symplectic structure Q given by

Also, on we define the weak Riemannian metric ((,)) by

where h 1 - h2 denote the contraction of h1 and h2 to a scalar using g.

e) It is an exercise in manifolds of mappings to show that in suitable function spaces
Emb(M, V4, ~4~go) is a smooth infinite dimensional manifold. See Palais [1968] and Ebin
and Marsden [1970] for the relevant techniques.

Vol. XXXIII, n° 2-1980.
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Associated to Q and ((, &#x3E; &#x3E; is a comprex str~ucture -~- 

eivenby

where * denotes the dualization map S2 -~ Sd2 and Sd2 ~ S2, which
depends on g. Explicitly, h* = and = (cv’)b.
Thus Q, (~ ~ and JJ stand in the usual relation

(see Abraham and Marsden [1978, p. 173 ]).
The adjoint D0(g, 7r)* : A 0 x ~ ~ ~ S2 x Sd2 (where = vector fields

on M) is defined by

X), (a, ~3) ~ == Ncx + X - ~8 is the natural pairing between

Thus - 7r)* -(N, X)eS2 x Sd2 is explained. (For details on
the Hamiltonian structure, we refer to Fischer and Marsden [1978] ] and
Marsden [1980] ] and part II (2).
The explicit relationship between ~4~g, g, N and X and the slicing is

given bv

where coordinates x03B1 = (xi, /).) of the slicing are used.
We record the explicit formulas for 7r) and its adjoint. The proofs

are long but straightforward.

(2) In terms of general field theory, this form - 0 D1&#x3E;(g, rc)* ~ x is the generator
of the momentum mapping association with the gauge variable Emb(M, V4, ~4~g). In our
earlier work (Fischer and Marsden [1979 ]) we used different conventions for J and the
adjoints, but the present conventions are more useful for the study of general momentum
mappings.

Annales de l’Institut Henri Poincaré-Section A



157THE STRUCTURE OF THE SPACE OF SOLUTIONS OF EINSTEIN’S EQUATIONS. - I

and

The notation used in these formulas is as follows :
. signifies contraction ; e. g., 7r - h = 03C0ijhij
tr significes trace
7T’ is the tensor part of 7r
?C X ?C = 03C0ik03C0kj( = tr 03C0 x 7r)
AN = - 

Hess N = 1

Ein(g) - R~; - - 2 Rg~~
vertical bar = covariant differentiation on M
semi-colon - covariant differentiation on V4
h# - indices raised by g
7~~ == indices lowered by g
5h = - 

~~h = 

h ~ ~7T == 2014 

g ’ 03B403C9 = - 03C9ki|k
2~’ (Dr(~). h) _ + 

The definition of 03A6 in terms of may be phrased as follows :
given a hypersurface X,

Therefore,

where (,) denotes the natural L2 pairing as above. Differentiation of
this relation yields :

1. 8 . PROPOSITION. - Let = 0, i E Emb(M, V4(4)g) and 03A3 = i(M).
Vol. XXXIII, n° 2-1980.



158 A. E. FISCHER, J. E. MARSDEN AND V. MONCRIEF

The infinitesimal deformations ( h, c,~) of(g, 7r) induced by a deformation
~4~h of ~4~g are given explicitly by

1.9. COROLLARY. If = 0 and (4)y is a Killing field of (4)g, then

This follows from 1. 8 and 1. 5. In lemma 2. 2 of Section 2, we will prove
that Killing fields are in one to one correspondence with elements of
ker vr) (Moncrief [1975 ]).

Differentiation of the identity preceding 1.8 twice with respect to

~4~g and then setting = 0 and ~4~h = 0 gives

where (h’, = D2P~(~4~g) ~ (~4~h, ~4~h). Integrating this over M and using
1.9 yields the following expression for Taub’s quantities.

1.10. PROPOSITION. - Let = 0, = 0 and (4)X

be a Killing field for (4)g. Then , for any i E Emb(M, v4, 

Annales de l’Institut Henri Poincare-Section A



159THE STRUCTURE OF THE SPACE OF SOLUTIONS OF EINSTEIN’S EQUATIONS. - I

Just as with one can work out D21&#x3E;(g, 7r) explicitly. We
record the result :

and where

We have already investigated gauge invariance of Ein, DEin, D2Ein
and (4)T in 1.4 and 1.6. These results imply corresponding results for the
0 map via 1.8 and 1.10. In obtaining these, the following is used.

1.11. LEMMA. = 0 and i E Emb(M, V4,(4)g). Let (4)y
be a vector field on V4 and (4)h1 1 == L(4)Y(4)g. T hen

úJ1) = ~4~h ~ = - J 0 7r)~ . 

Proof be the slicing of V4 determined by the flow of (4)y; i. e.,

~ = F~, ° i, where F~ is the flow of (4)y. Strictly speaking, this need not be
a slicing of V4 because (4)y may have zeros, but this does not affect the
validity of the evolution equations as they hold for any curve in

Emb(M, V4, ~4~g). Therefore
/~/ B 

Now for any diffeomorphism F of V4, one has the identity

Vol. XXXIII, n° 2-1980.
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Thus

by the chain rule. ~ 
-. ~ . _

The linearized evolution equations are obtained by differentiating the

evolution equations 2014 == 2014 yr)* ’ (X1, X~) with respect tod/ B7r/ n

(g, 7~ X1, for a ,fixed slicing:

Likewise, differentiation of ~(~ ?c) = 0 with respect to (~ vc) yields the
linearized constraint equations:

(See Fischer and Marsden [1978] for more information on the linearized
Einstein system.)
Combining 1.6, 1.10, and 1.11 gives
1.12. PROPOSITION. - L~ = 0 ~ feEmb(M, V4, ~). L~

(4)y vector field on V4 and (4)h1 = L(4)y(4)g. Then

and

For later use, we record here explicit formulas for the various projections
of onto E :

Annales de l’Institut Henri Poincaré-Section A



161THE STRUCTURE OF THE SPACE OF SOLUTIONS OF EINSTEIN’S EQUATIONS. - ]

lapse function and shift vector field of the chosen slicing. We recall that
in terms of these quantities

§ 2. LINEARIZATION STABILITY
AND KILLING FIELDS

This section reviews the known connections between linearization

stability and Killing vector fields. We supply those proofs that are either
new or are needed in later sections.

Let (V, ~4~g) be a vacuum spacetime and, as introduced in section 1,
E = i(M) is a compact embedded space like smooth hypersurface. Recall
that our spacetimes are globally hyperbolic, so that E is a Cauchy hyper-
surface.

2.1. THEOREM. (V, Killing fields, then it is linearization
stable.

This theorem is proved by combining the results of Fischer and Marsden
[1973, 1975] with those of Moncrief [1975 ]. We begin with the following
lemma and give a simplified proof, inspired by Coll [1976 ].

2 . 2 . LEMMA. 2014 (V4, (4)g) The space Killing fields of
isomorphic to ker 7r)* by the map r 1:(4)X i--+’ (X_L, the

perpendicular and parallel projections of (4)X on X.

Proof 2014 By 1.9, the range of ~~~ lies in the kernel of 7r)*. To
prove the lemma, we construct an inverse for ~1:’ i. e., a map from elements
(X1, E ker D0(g, 7~)* to Killing fields (4)X whose projections are

(X1, Let (4)X be the unique global solution on (4)y, ~4~g) of the linear
hyperbolic e uation

where + is the projection tensor. This choice of Cauchy
data and the projection formulas following 1.12 imply that

where ~4~h = L4)x~~. By the Ricci commutation formulas we get

Vol. XXXIII, n° 2-1980.



162 A. E. FISCHER, J. E. MARSDEN AND V. MONCRIEF

where ~ == ~~ - -tr(~h)~g. By gauge invariance 1.4,

We shall demonstrate that (4}h = 0 and p4&#x3E;z~~4~h = 0 on E. This implies
the Caucy data of (4)h is zero, so (4~h and hence (4)h vanishes.

STEP 1. - ~4)h11 and (4~h1~~ = 0 on E by the choice of Cauchy data
for (4)X.

STEP 2. (4~h = h = 0 on E by 1.11 and the fact that DC(g, 7r)*’ (X1, Xjj) = 0
(see 1.9).

STEP 3. 2014 In a slicing near E, (h, co) induced by ~4~h satisfy the linearized
evolution equations (see the remark following 1.11), with (4)y = (4)X.

Since (h, o) themselves and (4) h 11 and (4) h 1 lj vanish, so does 2014 ). In
particular, , 2014 = 0 and (4)h = 0 on L implies (~(4)Z03A3(4)h)~~ = 0 on 03A3.

a~,

STEP 4. 2014 (V4)z~~)~ vanishes on E since it equals

and = 0, = 0, ~4~h I~ = 0, (V Zr. (4)h);;;;II: = 0 and 
involves only derivatives tangent to X.

STEP 5. 2014 (V(4)z~~// vanishes on E since it equals

~’roof of 2.1 (Sketch). - On a compact spacelike hyper surface ~,
ker D0*(~ 71:) = {0 } by lemma 2. 2. A computation shows that D~*(g, vr)
is an elliptic operator in the sense of Douglis and Nirenberg; cf. Fischer
and Marsden [1978 ]. Thus in the appropriate Sobolev spaces, D0(g, 7c)
is a surjective operator whose kernel splits. By the implicit function theorem,
1&#x3E;-1(0) is a smooth manifold near (g, 7r) and in particular the constraint
equations D(g, 7r) = 0 are linearization stable. This stability is propagated
to the spacetime using the evolution equations (see Fischer and Marsden
[1978] ] and [1979 ]). II

It follows that the condition ker DC(g, 7c)* = {0} which guarantees
linearization stability, is hypersurface independent. If E is a hypersurface
of constant mean curvature, then ker 7r)* can be worked out expli-
citly. In fact, from the formula for Tc)*, one obtains the following
(Fischer and Marsden [1973 or 1978 ]).

2 . 3 . PROPOSITION. be a smooth spacelike compact hypersurface

l’Institut Henri Poincaré-Section A
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of constant mean curvature , with induced metric and , conjugate momentum
T hen

i) if no ~ 0 or go is not flat,

ii) no = 0 and go is flat,

In particular, if 03A3 = i(M) has constant mean curvature and 0 or

go is not flat, then any Killing field on V4 must be tangent to E.
(The last remark of this proposition also follows from the uniqueness

of hypersurfaces of constant mean curvature; see Marsden and Tipler
[1978 ].) Cases i) and ii) correspond to the presence of spacelike and time-
like Killing fields on V4. The analysis in later sections shall treat these
cases separately. The converse of 2 .1 is the following :

2 . 4 . THEOREM . If (V, (4)g) is linearization stable then it has no Killing

The idea of the proof, suggested by the work of Fischer and Marsden
[1975] ] and Moncrief [1976 ], is to show that the second order conditions 1. 7
(and 1.10) are non-vacuous, i. e., if ~4~X ~ 0 is a Killing field, there exist
(h, co ~ 0 satisfying the linearized equations such that the Taub quantity
in 1.10 does not vanish. The hypersurface invariance of the Taub quantities,
the explicit expression for ?r) and underdetermined elliptic systems
(Bourguignon, Ebin and Marsden [1976 ]) play an important role in the
proof. For details, see Arms and Marsden [1978 ].
As we have seen, one of the crucial features of the proofs of 2.1 and 2.4

is the analysis of the C map and the associated adjoint formulation of the
evolution equations. Another application of the C-formalism that we shall
need is a decomposition of tensors (h, due to Moncrief [1975 b ].
As was remarked above, D0(g, 7r)* and hence J c are elliptic.

Thus we get the following two splittings by the Fredholm alternative :

and

The summand ker 7r) represents the infinitesimal deformations
(h, of (g, 7c) that maintain 0(g, 71) and range 7c)*) represents
the infinitesimal deformations which change 7r). Thus, if 0(~, ~) = 0,
ker 71;) represents those infinitesimal deformations that conserve
the constraints. From the adjoint form of the evolution equations and
the fact that they preserve the constraints, we have
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Thus these ’ two splittings can be intersected to give " Moncriefs splitting :

2 . 5 . THEOREM. 2014 If ~(g, yr) = 0, then the tangent space

splits L2-orthogonally as

(The differentiability classes are the obvious ones.)
The two summands in the splitting

ker DD(~ vr) = range (J o 7~) 0153 ker (DC(~ 7r) c n ker (DC(~ vc))
can be interpreted as follows. Elements of the first summand infinitesimally
deform (g, 7r) to Cauchy data that generate isometric solutions to the
Einstein equations, and elements of the second summand infinitesimally
deform (g, jr) in the direction of new Cauchy data that generate noniso-
metric solutions.

Consistent with our work in Section 1, we call elements of

range J o ?r)* gauge trans~ formations. We shall sometimes denote
the component of (h, in ker (D~(g, 7r) o JJ) n ker yr) by WTT)
and call it the transverse-traceless part of (h, 03C9). This terminology arises
from the original decompositions of Arnowitt, Deser and Misner (circa 1960)
for non-compact spacelike sections and g = 0; there the « TT »
part signifies transverse traceless : 5~ = 0 and tr h = 0. Compact spacelike
sections (specifically T3 x [R) were studied by Brill and Deser (1973),
where ~ = 0 and g is flat, entailing that (h, co) satisfy ~h = 0, b~ = 0 and
tr h = constant, tr CD = constant.

§3 THE MAIN THEOREM AND IDEA OF PROOF

We make the following hypotheses on the vacuum spacetime (V4, 
i) it has a compact Cauchy surface,
ii) it has a compact spacelike hypersurface 03A3 of constant mean curvature

(it follows that E is a Cauchy surface; cf. Budic et at. [1978 ]), and
iii) its space of Killing fields is one dimensional, spanned by (4)X.

3.1. THEOREM. - If (4)h satisfies the linearized equations

and the necessary second order condition (see 1. 7)

then ~4~h i~ integrable.
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Moreover, curves tangent to such generate atl the solutions

to = 0 near ~4~go.
Our proof will show that the singularities in E are conical and that the

second order conditions define the tangent directions to the conical singu-
larity.
To prove the theorem, it is sufficient to show that the induced solution

of the linearized constraint equations (h, which then satisfies

(see (1.10)), is tangent to a curve of solutions of 0 = 0. Corresponding
to E, we shall show that the space of solutions B of 03A6 = 0 has a conical

singularity at (go, 
The projection map Pi : ~4~g ~ (g, ~ ~ makes ~ into a principal

bundle over B with structure group the diffeomorphisms 03C6 : V4 ~ V4
such that T 4&#x3E; TE = identity; this group acts freely on the Lorentz metrics
on V4. Thus, singularities in E are in one to one correspondence with
singularities in 
The singularities in ~/~4~~ are probably wrose than those in ~; ~/~4~~

may be a stratified set, whose strata are « V-manifolds ». Here ~4~~ is the
group of diffeomorphisms of V4..

In broad outline, the plan of the proof to show that ~ has conical singu-
larities proceeds as follows :

STEP 1. - Use the Liapunov-Schmidt procedure from bifurcation

theory to reduce the problem to the study of the zero set of a real valued
function. We carry out this step below.

STEP 2. 2014 Determine the degeneracy in the second derivative of f at
no). This part is of separate interest and is studied in the next section.

This direction of degeneracy is due to nearby (g, 7~) that come from a
spacetime with one Killing field.

STEP 3. 2014 Carefully fix gauges and freeze out the additional degeneracies
studied in step 2 so the problem is further reduced to that of studying the
zero set of a real valued function f with a non-degenerate critical manifold.

This step represents the heart of the proof and is carried out in Sections 5
and 6, treating the spacelike and timelike cases separately.

STEP 4. 2014 Apply a suitable version of the Morse lemma (or a theorem
on the structure of zero sets of maps) to f to show that its zero set

is (a cone) x (a manifold) (3).

(3) As was pointed out by J. Arms, in the spacelike case this step can also be done directly
using the ideas in Atiyah, Hitchin and Singer [1978 ]. See part II.
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STEP 5. - Remove the gauges to show that the zero set of C is a
cone x manifold with the correct cone directions as determined by the
second order conditions.
The proof is then completed by invoking properties of the initial value

problem as was explained above.
We now carry out step 1. The space Ad° x Adl, the target of C, has the

following L2 orthogonal decomposition (in x 

Let P denote the orthogonal projection onto the first factor. As we proved
in § 2, the second factor is spanned by (X1-, the perpendicular and
parallel projections of the Killing field (4)X. We can assume (X1-, has
L2 length 1, and identify ker with the real line !R.
Thus the projection (I - P) is given by

Let

3 . 2 . PROPOSITION. - Near the x 
’ 

topology,
’ smooth manifold with tangent space ’ the space ’ of solutions to ’ the

linearized constrai 

Proof The map 03A6 is clearly transverse to ker and its
kernel splits. II

Clearly, the constraint set (( = I&#x3E; - 1(0) is given by

Thus, our problem is to analyze " the zero ’ set of ~’ near (go, 
(In bifurcation theory, the construction just carried out is called the

Liapunov-Schmidt procedure ; cf. Marsden [1978 ].)

3 . 3 . PROPOSITION . ’1 ~he point (go, no) is a ’ critical point of f and its
Hessian is given by
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contraction is natural. This vanishes at (go, ~o) since (X1, lies in the
kernel ~o)*. Since we are at a critical point, the second derivative
of f may be computed in the ambient space and be restricted to røp.
This remark makes the formula for d2f clear. II
By gauge invariance (1.12 ii)) any element of the range of J o D03A6(g0, 03C00)*

is in the degeneracy space for d2f( go, i. e. in the space

The next section will determine the degeneracy space completely and
discuss its spacetime significance.

§4 DEGENERACY SPACES

The degeneracy space for a solution (go, of the constraint equations
was defined at the end of § 3. A detailed analysis of this space is crucial
for the proof of our main theorem, but it is also of independent interest.
We treat these spaces from both the spacetime and dynamic points of
view, and both from a finite and an infinitesimal perspective. Our definitions
below will be shown to be equivalent to those already given.
For a vacuum spacetime (V4, ~4~g) (with a compact Cauchy surface,

as above), let

and let the degeneracy manifold of (4)g0 be defined by

i. e., is the set of vacuum spacetimes with the same number of
Killing fields as ~4~go. Eventually we will prove that is a smooth
manifold; its tangent space may be formally computed by linearizing its

defining condition L(4)g (4)X = 0. This leads us to define the infinitesimal
degeneracy space of ~4~go to be

and for each ~~(~go) there is a vector field Y
such that + = 0 } .

Here (4)y represents the variation in the Killing fields (4)X with respect
to ~4~g.
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Given a compact spacelike hypersurface* 03A3 c v4, we have the map
~4~g H (g, 7c) defined in Section 1, and its derivative

we have suppressed the embedding i : M )-~ E for simplicity. We also
let denote the projection (4)X H (X1, XII). In 2.2 we proved that

1"~r.(,~(4)gO)) == ~) _ ~ (X1~ E ker ~o)~ }.
of course depends also on ~4}g; when we wish to make this explicit,

we write ’~’E(~4~X, ~4~g) = (X1, XII).
Let

and let

We expect ~(go, 7ro, E) to be the formal tangent space to S(go, ~o, ~).
The next proposition verifies this.

4.1. PROPOSITION. -- The following equality holds:

~) = {(~ ~) ~o)’ (h~ ~) = 0
and for each E ker 7~0)*, there is a (X1’, Xll’) such that

for some (X|(03BB), X~(03BB)). Differentiating in 03BB and evaluating at 03BB = 0 yields

M~ M~L

Inserting a factor of J to parallel the definition of ~ yields the formula
for f/(go, ~o, l:) in a formal way.

Proof of 4.1. Let (h, f/(go, ~o, ~ so by definition

for some ~4~h E ~~~4~go). By 1.11 and its derivative in the ~4~g variable, we get

an o 
_ _ .. _ ".

{4) If X is spacelike for ~4~gQ, it will also be spacelike for nearby ~4~g, which is all that
concerns us here.
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Let

Explicitly,

where (N’, X’) - D(4~(~X, ~4~go) - ~4}h; compare the linearized Einstein
equations.
Adding the above expressions gives

This shows that (h, belongs to the right hand side of the formula for
~(go~ ~o~ L).

Conversely, let (h, belong to the right hand side of the stated formula
for ~(go, ~o, ~). Let ~4~h satisfy the linearized equations and induce (h, D).
We will show that ~4~h E ~(~4~go) by a procedure parallel to the proof
of 2.2. This requires the following steps.

4 . 2 . LEMMA. Le~ = 0, ~4~h = 0, and L(4)x(4)g = O.
For a vector field (4)y, define

~hen

by letting F; denote the flow of (4)X, differentiating the covariance relation

in ~, and using =0- II
We will now determine a vector field (4)y such that ~4~ h = 0. Define

(4)y to be the solution of the differential equation

which is equivalent to the hyperbolic equation

(since = 0) with Cauchy data
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and

(The right hand side of the last equation only involves tangential deri-
vatives of (4)y and so is expressible in terms of (Y 1., Y//).
Lemma 4.2 and the defining equation for (4)y, namely

L ~ J

show that

Thus (4)h will vanish if its Cauchy data does. Clearly (4)h|| = 0 and
= 0 since prOjects to .1, Y//. The remaining projection 

is the first slot of

which vanishes by assumption. Thus ~4~ h ~~ = 0. The second slot vanishing
then implies that

The identity

expresses (V(4)z~~)~ in terms of ~4~ h ~~ and the derivatives of {4~ h tangen-
tial to E and other quantities which vanish by virtue of = 0, and
the chosen evolution equation for (4)y. Thus we have

Finally the identity 
‘ r

expresses (V(4)z~)~// in terms of ~ !s. the tangential derivatives of

~ at E and terms which also vanish by virtue of = 0 and the

evolution equation for (4)y.
Thus h and V(4)Z03A3(4)h vanish on E and hence (4)h vanishes on all ofV4. II
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Next we show that ~) is the degeneracy space in the sense
defined at the end of the previous section.

4 . 3 . PROPOSITION , ~) = {(~ ker DC(go. for each

E ker DC(go. ~o)*. (hm coi) E ker 7~

Proof From 4.1, (h, ~o, and only if

[D0(g, ~)~‘(X1, X~n ~ (h~ OJ) E range 7ro)" .

i. e., the left hand side is L2 orthogonal to ker ~o),

for all Differentiating the identity

in (g, 7r), we see that the preceding condition is equivalent to the one stated
in the proposition. tt
For later purposes we shall need to know what the degeneracy spaces _

are in case S is a hypersurface of constant mean curvature (see Propo-
sition 2.3).

4 . 4 . PROPOSITION. - If L has constant mean curvature, we have the
L2 orthogonal decomposition

w~ere

D = {(h, 03C9) E ker 03C00) o J) ~ ker and Lx03C9 = 0

for each X such that Lxg = Lx7c = 0 ~, if 7ro ~ 0 or go is 
and

£ð = { (h, 0) = 0 ; i. e., h is covariant constant and

Lxgo = 0 implies Lxh = 0 }, if TCo = 0 and go 

Proof. Let us begin with the following observation :

4. 5 . LEMMA. ~(go, ~) =~ range J o 

Proof This may be verified by a computation but the following proof
is easier. Note that

~(~4~go) ~ ~ L~4~yl41go ~ I (4)y is a vector field on V4 }
by its definition and 1. 4. But ~( go, ~o, ~) is the image of ~(~4~go) under

Vol. XXXIII, n" 2-1980.



172 A. E. FISCHER, J. E. MARSDEN AND V. MONCRIEF

and by 1.11, range [J 0 ~o)~] is the image of the right
hand side. II 

-

To prove 4.4 let us first consider the case in which 0 or go is not
flat. By 2. 3, ker 7~0)* = {(0, X) = 0 and = 0 }. By
2. 5 we have

A straightforward calculation gives

By 4. 5 and 4.1, this maps range to itself. On the other
hand, this maps the summand (ker n ker 7~0)
orthogonal to range [J 7Co)*]. Indeed, since Lxg = 0,

Let (/!i, (Ot) E range (J 0 ~o)*) c ~(~o, ~o, ~) so

for some Yn) by 4.1, and let (h, M)e(ker JJ) n ker 
Then we get

Thus the only elements of the second summand of ker ~o) that
lie in ~(go, ~) are those for which (Lxh, = 0 by virtue of 4.1.
This proves the first part of 4.4.
Now suppose that 7~0 = 0 and go is flat. Then (h, E ~(g~, ~o, L)

must satisfy the conditions just derived, plus the condition of (4.1) corres-
ponding to the elements (N, (see 2 . 3 ii)). We can
assume (h, E the second summand of ker But for 7ro = 0 and
go flat, this reduces to the Brill-Deser [1972] « TT » condition (cf. Mon-
crief [1976 ]); i. e.,

where 03B1, 03B2 are constant and = 0, tr = 0. The condition

of 4.1 for go flat, 7~0 = 0, X1 = 1 and X,~ = 0, evaluated on
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- I

becomes

However the left and right hand sides of each equation are L2 orthogonal,
and so vanish separately. Moreover 03C9TT and are orthogonal,
so both vanish. Thus c~ = 0. Also = 0 implies hTT is covariant
constant. This proves the second part of 4.4. II

In 1.7 and 1.10 we developed necessary second order conditions that
must be satisfied by an integrable element (h, r.~) E ker Our

main result may be phrased by saying that there cannot be any higher
order conditions. One manifestation of this is the following result that
can be checked by a completely different technique from the proof of our
main result.

4 . 6 . PROPOSITION. - a) jy integrable,

4.1, then the following third order condition holds :

b) The third order condition in a) is vacuous in the sense that it is an identity
that is satisfied automatically for any (h, cv) E 03C00, 03A3) satisfying the

,first and second order conditions. ( We assume, as always, that there is at

least one compact spacelike hypersurface of constant mean curvature some-
where in the spacetime.)

This situation is in contrast to the second order conditions that are

always a non-vacuous condition on (h, cv) E ker 03C00) if

ker ~o)* ~ ~ ~ ~. 
~k

Differentiating C(g(~), 7c(A)) = 0 three times and setting ~, = 0 gives

Contracting with (Xl, and integrating gives
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Substituting from 4.1 (with the removed),

Finally, substitution of the second order equations

yields ~).
The outline of the proof of b) is as follows.

STEP 1. - Show that the third order conditions are hypersurface and
gauge invariant.

This step follows the pattern used in establishing the second order
conditions. For example one needs to differentiate the contracted Bianchi
identities = 0 twice rather than just once. The second order condi-
tions imply that there exist (~B such that

and the integrability conditions

enable one to propagate these to a solution of

This shows that

1:

is hypersurface invariant and reduces to - - 2 1 our third order integral in
terms Gauge invariance then follows, as for the second order conditions.
This enables one to pass to a hypersurface 03A3 of constant mean curvature
and to omit the first summand in the decomposition of ker 
On this hypersurface there are the two cases i) and ii) of 2. 3. Proposition 4 . 4
characterizes ~o, ~~ explicitly in these two cases.

STEP 2. 2014 Verification of the third order condition for 03C00 = 0, g flat and
= (N, 0).
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By gauge invariance of the third order condition and using 4.4, it is

enough to take (h, = (h, 0) where h is covariant constant. Then the
condition on (X1’, X//) in 4.1 reduces to (X1’, E ker 0)* since

as a straightforward consequence of 7~0 = eo = 0, VN = 0, Vh = 0, and
= 0. The third order condition then reduces to

Writing this out explicitly, we see that each term vanishes as a consequence
of Ric( go) = 0, h = 0 or - 0.

STEP 3. 2014 Verification of the third order condition . for (X|, X~) = (0, X)
where Lxg = 0, Lx03C0 = 0.
By gauge invariance we can assume that

(h, E (ker ~co) ~ ker 

Then if (X1’, X//) satisfies the condition of 4.1, each side must separately
vanish, as they are orthogonal, as was shown in the proof of 4 . 4. Therefore

and

Thus the third order condition reduces to

JM

But this is true since D3 ~( g, 7r) = 0 as f is quadratic in ( g, II

§5 A SLICE IN FOR THE ACTION OF

The proof of our results depends on a carefully constructed slice for the
action of the three dimensional diffeomorphism group £ð3 on For
the action of fØ3 on A, the Ebin-Palais slice theorem (see Ebin [1970 ])
asserts the existence of a slice. We shall find one in T*_ ~l by utilizing the
0-map. Our slice will be an affine one, L2 orthogonal to the orbit of fØ3. A
« more covariant » slice, like the one constructed by Ebin would technically
complicate our proof; affine slices have all the desired properties needed
here and are of the type originally proposed (and unpublished) by Palais.
The analogue of Ebin’s slice on is discussed in Fischer and Marsden
[1977 ].
We recall that a slice Sxo at x0 in a manifold M relative to the action

of a Lie group G on M is a submanifold containing xo such that
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i) if g E Ixo, the isotropy group of xa, then

ii) If g E G and g’ Sxo n then g E and

iii) there is a local cross-section

defined in a neighborhood U of the identity coset such that the

map (~, x) H ~(~) - x is a homeomorphism of U x Sxo onto a neighbor-
hood of x0 in M. In particular, the slice Sxo sweeps out a neighborhood
of x0 under the group action; see Palais [1957 ].

In effect, if G is interpreted as a gauge group, a slice may be thought
of as the local choice of a gauge.

Let M be a smooth compact manifold and ~ the group of

&#x3E; n p + 1 diffeomorphisms of M and M the space of Ws,p
Riemannian metrics, with D acting on M by pull-back (a « right » action).
The orbit of a element go E ~ is a Cr closed submanifold C A

with tangent space

This is closed since the operator X ~ Lxg0 is elliptic; its L2 orthogonal
complement is ker 5. In fact, a neighborhood of go in the affine space
go + ker ~ may be chosen as the slice; the neighborhood is a ball in a
Sobolev norm that is invariant under the isometry group of go. These facts
follow from Palais [1957] ] and Ebin [1970 ].
To construct a slice in we proceed according to the following steps.
5.1. x 

and its orbit under the action of £ð3 diffeomorphisms of class WS+ 1,p
9~ T*.~ under pull-back, i. e.,

Then is a closed Cr submanifold o.f with tangent space at (go, ~o)
given by

~’roof. Let T : qø3 -~ T*~.Gl; ~ ~ By standard compo-
sition properties of Sobolev spaces, ’P is a cr map; see Ebin [1970 ]. We have

Since X ~ is elliptic, T’1 B}I has closed range and finite dimensional
kernel. By the arguments of Ebin-Marsden [1970, Appendix B ], 
is a cr subbundle of T£ð3. It follows from the implicit function theorem
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that the range of 03A8 is an immersed submanifold. From Ebin. [1970,
Prop. 6. .13 ], it follows that ’P is an open map onto its range and that the
range is closed. The lemma then follows. II

5 . 2 . LEMMA . There is a unique linear operator C 1---+ from
WS + 2, p functions to WS 

+ 1,p vector fields on M such that

is 2 ort ogona to ~ 

Proof The " condition is

where P2 is the projection onto the second factor. Thus, Y is to be solved
for from the equation

The proof will be complete if we can show

i) ~ the left side is an elliptic operator in Y,
ii) the left side has kernel {Y LYg0 = 0, = 0}, and
iii) the right side is L2 orthogonal to this kernel.

. Proof i). Let be the left side of the above equation. Then
is a second order operator whose leading terms are

The symbol of the operator 

An algebraic computation shows that

where ago(Y) = Lygo and = Therefore, Y Y = 0

implies Y ’ ~(ago) ’ Y = 0 and Y ’ ~(x~)’ Y = 0. From the first, we get
Y = 0 0. Thus is elliptic.
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Proof of ii). Let Y = 0. Then

and so 03C00)* . (0, Y) = ( - Lygo) = 0.

Proof of iii). Let Y be in the kernel of Then

vanishes since (0, Y) E ker 7ro)*. II
The isotropy group of is = {~ E £ð3 = ~o and

03C6*03C00 = TTo }.
5.3. COROLLARY. 2014 For we have the covariance relation

T t.B2014/J J ~B’r"-"/’

Indeed, Y is a covariant operator, so this follows from uniqueness.
5 . 4 . LEMMA . 2014 //’ = 0, then the L2 orthogonal complement of

is given by

Proof From 5.2 we have the L2-orthogonal splitting

by

The result therefore follows by the general splitting theorem 2.5. tt
Now let U be an 8-ball, for f: sufficiently small in in

a norm that is invariant under e. g., the norm constructed

using the first s covariant derivatives with respect to the metric go. Let

5 . 5 . THEOREM . 1, f ’ = 0 and (go, ~o) is VV S + r, p, r &#x3E; 1, then
for E sufficiently small, S(g0,03C00) is a slice in for the action of D3 on 

Proof (sketch). - Covariance implies that for 03C6 E 4J preserves
the orthogonal splitting (see for example 5.3), and hence maps 
to itself. This gives property i) of the slice.
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By construction, the set of == forms a smooth bundle

over (!) (gO,1to). Therefore, by the implicit function theorem, for ~ small enough,
this bundle forms a tubular neighborhood of (!) (gO,1to). In particular, if any
two intersect, they must coincide and their base points be equal.
Therefore property ii) of a slice holds. This also gives iii) using the canonical
homeomorphism between (!) (gO,1to) and and a local right inverse
for the projection 7r : £ð3 ~ -
The usual consequences of the slice theorem follow. For example, in a

neighborhood of (go, any is conjugate to a subgroup of 
The are, of course, compact finite dimensional Lie groups.

§6 PROOF OF THE TIMELIKE CASE

Let Eo by a hypersurface of constant mean curvature. Our assumption
that the Killing fields form a one dimensional space is equivalent to
dim ker ~o)*] == 1, where go, ~co, ~ are the geometrodynamical
objects defined previously in conjunction with Eo = io(M). By 2.3,
ker 7ro)*] is spanned by either (0, X), where Lxgo = 0

if 0 or go is not flat, or by (1, 0) if 7~0 = 0 and go is flat. The latter
possibility is the timelike case and is dealt with in this section.

Steps one and two in the outline in Section 3 have already been carried out.
It has been shown that the degeneracy space for the map

JM

at the critical point 0) is given by

where ~ == {(~ 0) 0 };
see Proposition 4.4. First, let us construct an affine space whose tangent
space is ff.

6.1. LEMMA. 2014 Let F = {(go 0) E is covariant constant

with respect to go }’ Then TgoF and each g = go is flat.

Proof 2014 In a normal coordinate chart for go, the components of g are
constants. II

The first component of !/ corresponds to the splitting of the
tangent space of the space of all flat metrics into covariant constants plus
gauges. This construction is discussed in Fischer and Marsden [1975 ],
Theorem 6, p. 530.
Now consider the slice at (go, 0) defined in the previous section.

This slice consists of a piece of an affine space whose linear part contains
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the three summands described in lemma 5.4. For go flat and 7~0 = 0, the
TT summand has the following form (Moncrief [1975 ]):

where tr,tr literally means zero divergence (transverse) and zero trace and
where are constants.

6 . 2 . LEMMA . F c and F is a , finite dimensional affine submani-
fold o.f 

Proof. - Let hcc satisfy 0. Write

and observe that the right hand side has the form htr,tr + - 3 g003B1. II

Restriction to imposes a spatial gauge. For the timelike gauge,
we shall impose the condition that tr ~’ is constant; we also wish to coordi-
nate these gauge choices with the manifold CCp introduced in Section 3
(see step 1 of the proof). Let Btr = { {g, 03C0) E |~tr 03C0 = 0 ?.

6. 3 . LEMMA. Btr n CCp n is a smooth submanifold of 
in a neighborhood o,f {go, 0) with tangent space at {go, 0) given by the TT

tensors {h, W)TT.
Proof Define r : ~ x AJ x {~1d/f~~, where

by

where

?c) = L2 orthogonal projection of I&#x3E;(g, 7~) to range DC(go, 0).

Note that

range 0) = L2 orthogonal complement of (1, 0)

since (1, 0) spans ker 0)* by assumption.
Now

0) - (h~ o) = 0)’ (h~ D(4 tr vr) (h~ ~))

since P = identity on range 0). By definition of we get
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for elements of the tangent space to n cøp n (go, 0), we get

The following statement is readily verified : if bilinear form on a
Banach space ~ with degeneracy space D and if F c E satis.fies ~ + 
where B(P, = 0, then the degeneracy space of B restricted is F n D.

Now from 6.3 and the splitting theorems,

From this remark, gauge invariance of Taub’s conserved quantities,
and Propositions 4 . 4 and 6 . 3, the degeneracy space 0) is

Since all members of F are of the form (g flat, 0), each point of F is a critical

point for f , with the same degeneracy space ff. tt
A continuous symmetric bilinear form R on a Banach

space E is called weakly nondegenerate if B(x, y) == 0 for all y implies x = 0,
i. e., the induced map of E to E* is injective ; strongly nondegenerate means
that the induced map of E to E* is an isomorphism.
A weakly non-degenerate critical mani, fold for a smooth map f : M -+ [R

on a Banach manifold M is a submanifold N c M such that each x E N

is a critical point for .f’ (so f is constant, say zero, on N) and, restricted to
a complement of T N, is weakly non-degenerate.

If f ’ : M -+ [R is a smooth map such that N c M is a manifold of critical

points, and if the degeneracy space of D2f(x) at each x E N coincides with
TxN, then it is clear that N is a weakly nondegenerate critical manifold
for f This completes the explanation of the terminology in 6 . 4.
We have now completed Step 3 for the timelike case.
For Step 4 we shall invoke the Morse lemma. The usual version (see,

e. g., Palais [1969 ]) assumes that the critical point (or manifold) is strongly
nondegenerate, which is not the case here. There is, however, a version due
to Tromba [1976] that will apply to our case. We state the result we need
in the following form.

6.5. LEMMA. Let M be a Banach manifold and f : M -+ IR a C2

function. Let N c M be a submanifold of critical points of f and suppose
that f vanishes on N. Suppose that

i) N is a weakly nondegenerate critical manifold ;
ii) there is a weak Riemannian (or pseudo-Riemannian) structure , &#x3E;x,

on M that has a smooth connection (cf. Ebin [1970] ] and Ebin-Marsden

[1970 ]) ;
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iii) f has a CL ~ , ~x gradient Y(x), where Y : M -+ TM (so Y(x) = 0
if x E N) ; and

iv) if TxM = TxN E8 Ex is a , &#x3E;x-orthogonal sptitting (so DY(x) : Ex -+ Ex
if x EN), then DY(x) : Ex -+ Ex is an isomorphism.
Then in a neighborhood of xo E N, there is a C2 local chart in M in which

the local representative o.f’ f takes the normal form

where x1 is a coordinate in N and x2 is a complementary coordinate ( for EJ;
with x2 = 0 defining N.
The special case in which N is a point is proved in Tromba [1976 ] ;

see Choquet-Bruhat, Fischer and Marsden [1979] for an alternative proof.
The lemma here is proved in the same way noting that all the constructions
depend smoothly on the parameter x, a coordinate for N.

Remarks 1. 2014 If one just wants the structure of the zero set of f, the
proof can be simplified. In Buchner, Marsden and Schecter [1979 ], this
is done by a « blowing up » method. Their results generalize to the case
of f : M -+ ~k that will be needed in part II of this paper.

2. 2014 If we let C denote the cone of solutions of (v, v) == 0 in
a complement Exo of TxoN, then the lemma implies that f - I(o) is diffeo-
morphic to C x N in a neighborhood of x0, where « diffeomorphic » means
one set is mapped to the other by means of the restriction of a local diffeo-
morphism. Thus the set of zeros of f is a cone x manifold, the manifold
being the critical manifold.

3. 2014 As a particular case of remark 2, a vector v~Tx0M which satisfies
the linearized equations == 0 is tangent to a curve of solutions
of == 0, i. e., r will be integrable, if and only if (v, u) = 0,
i. e., if and only if the second order conditions hold.

6 . 6 . LEMMA . The previous lemma applies to the map

with N == F.

Proof. - We have already checked i) of 6.5 in 6.4, namely that F is
a weakly nondegenerate critical manifold for /. Let  ~g ~ be the
H 1 X L 2 metric on ~tr n cøp n defined by

where the contraction is with respect to g. By the methods of Ebin [1970] ]
one sees that this metric considered on T’~~~ has a smooth connection.

On the other hand, from the methods of our splitting theorems and those
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in Appendix A of Ebin and Marsden [1970 ], one sees that the ( )-ortho-
gonal projection

is a smooth map, using ~ the x topology for (g, vr), ~ &#x3E; -.
P

It follows that ( , ) has a smooth connection on the x comple-
tion of n n This establishes ii) of 6.5.
The L2 x L2 gradient of f is given by

and so the H 1 x L2 gradient is given by

where Id is the identity operator. From the explicit form of vr)*
we see that it is second order in g and zeroth order thus by elliptic
theory Y(g, ~c) is a smooth map of ~tr n cøp n to its tangent bundle.
This proves iii).
To prove iv) we note that the kernel of DY(go, 0) is exactly the degeneracy

space. Thus on a complement, DY(go, 0) is one-to-one. But DY(go, 0)
is bounded, self-adjoint, and elliptic, so it is an isomorphism on this com-
plement. II
We have now completed step four of the outline in Section 3. We have

proved that the set of zeros. of 03A6 within the space Btr n is

a (cone) x (manifold). It remains to remove these gauge conditions.

Removing may be done by properties of a slice and the fact that 0
is covariant :

i. e., zeros are propagated by the action of Thus the zeros 
within form a (cone) x (manifold); it is readily checked that the directions
of integrability are still defined by the second order conditions*.
We have so far shown that

has the structure of a cone x manifold in a neighborhood of (go, ~o).
We can use this to prove that any satisfying the linearized equations
and the second order conditions is integrable. We need :

e) In the Ebin-Palais slice theorem some derivatives may be lost by using the slice
map X, i. e., the map X is smooth only if we drop our differentiability class. Thus the zeros
of D within X regarded as a cone in X will be a « Ck cone »,
i. e., a literal cone after a Ck coordinate change.
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6.7. LEMMA. Let Eo be a hypersurface constant mean curvature ,

for (go, and ~4~h any solution to # the linearized equations. T hen in a suitable
linearized gauge, its induced (h, 03C9) satisfies

Proof The linearized gauge transformations are range J o 
If tr TTo == const. and = 0, we have

If 7!;o ~ 0 then ~o)~ = ( ~ - &#x3E; 0 and so the above
operator is an isomorphism in C. If 7~0 == 0 then the range of C t2014~ 2~C
is the L2 orthogonal complement of the constants. The result then

follows. II
Thus any ~4~h satisfying the linearized equations induces (h, r.~) E 

Therefore, if the (gauge-invariant) second order conditions also hold,
(h, will be tangent to the cone defined by 0 = 0 within and hence

( h, c,~) is tangent to a curve of solutions of the constraint equations, and
therefore ~4~h is tangent to a curve of solutions of == 0 (see Fischer
and Marsden [1978 a for details of the latter statement).

It remains to prove that all the solutions of = 0 in a neigh-
borhood of ~4~go are obtained by this process. We have shown that all the
solutions admitting hypersurfaces of constant mean curvature are so

obtained. That this is all solutions follows from the perturbation theory
of constant mean curvature hypersurfaces, namely :

6.8. LEMMA. - Let 03A30 be a hypersurface on which 03C00 = 0 and go is
There is a smooth from a neighborhood of the space o.f’

all Lorentz metrics on V4 to hypersurfaces such that compact
space like hypersurface of constant (b) mean curvature for (4)g.

This is proved by the methods in Choquet-Bruhat, Fischer and Marsden
[1979] and Marsden and Tipler [1979 ]. Namely, consider Gaussian normal
coordinates in a neighborhood of Zo. For a real valued function N on Eo?
Let r(N) be its graph and let P(4)g, N) be the density tr 03C0 induced by (4)g
on r(N). Then since 0)’ N’ == 2AN’, one sees that P is transversal
to the constants. The result then follows.

This completes the proof of the timelike case of our main theorem.

(6) If we had attempted to use the gauge condition tr 03C0 = 0, then solutions would be

isolated, by Fischer and Marsden [1975 a ].
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§7 PROOF OF THE SPACELIKE CASE

In the spacelike case we are concerned with a compact hypersurface of
constant mean curvature Eo = io(M) on which ker 7Co)* is spanned
by the vector (0, X) where = 0 and = 0. By the results of section
three, the set of zeros near (go, equals the set of zeros of

near (go, This function vanishes at (go, no), has a critical point there
and by 4 . 4 the degeneracy space of D2f (go, ~o) is given by

where

We now proceed to freeze out the spatial gauges by passing to a slice
(see 5.21) and the temporal gauges by imposing a condition on tr vc.

Then within this space we shall obtain a manifold of critical points of the
restriction f of ~’ that is tangent to the degeneracy space. This will carry
out step 3 of the proof outlined in § 3.

Motivated by the above degeneracy space for we define
the affine space

Proof - Let (go + h, 0 03C00 + 03C9) E Since Lxg0 = 0 and Lx03C00 = 0,
covariance implies that Lxh = 0, Lxw = 0. Conversely, if LXh = 0
and Lx03C9 = 0, write

by the splitting theorem. We can choose

from the proof of the theorem, with a similar formula « for (C, Y). Again, by
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o 0 0

covariance of C, if ~o) and (~, &#x26;) are X-in variant, si is (C, Y) and
o 0

(C, Y). -
Now define

where the slice is given by 5.4, so 36x is the affine space

where
0

Note that covariance of the operator C ~ Y(C) implies that Lx [Y(C) ] = 0;
indeed, if Ft is the How of X, so Ft * [Y(C)] ] = 

Let xo = tr ko be the mean curvature of the hypersurface Eo in the
metric (4) Let

We have assumed that xo is a constant. is a smooth submanifold of
Indeed, the map (g, 7c) H tr k from to A 0 has a surjective

derivative even as a function of k alone. Of more interest is the intersection
of the manifolds In order to deal with this intersection,
shall have to make one more simplification.

7 . 2 . LEMMA . Under our assumption that go is not flat or that 0,
there is a compact hypersurface Eo’ near 03A30 in V4 that has constant mean
curvature 0.

This lemma is easy if 0 and is more delicate if ko == 0 (and so go
is not flat). The proof is given in lemma 5 of Marsden and Tipler [1979] ]
and is based on the idea of Choquet-Bruhat, Fischer and Marsden [1979 ].
Note that if 03C00 == 0, the assumption that go is not flat is equivalent to

not being flat.
This lemma means that we can, and will assume that our constant 

curvature hypersurface satisfies 0. Note that by 2.3, ker D0(go? ~o)*
is still spanned by (0, X). With this assumption, we have

7 . 3 . LEMMA . n cøp n smooth manifold in the neigh-
borhood of (go, 03C00) with tangent space at (go, given by

b) B03BA0 n røp n PÀx is a ’ smooth submanifold 1 of n røp n , 
with

tangent space at (go, given by
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Proof 2014 Parts a) and b) are similar. We shall prove b). For a), replace
~X by and drop the conditions Lx(’) = 0 in what follows.

Define the man , ......

where (A~ x stands for the X-invariant members of the orthogonal

complement of (0, X) i. e., { ( , oc) JM X = 0 and Lx03B1 = 0, Lx  = 0},
and A$ = { f E A 0 Lxf = 0 }. Recall that P is the orthogonal projection
onto the range of As in 7.1, the map P commutes with Lie
differentiation by X and so it is clear that r takes values in the stated spaces.
The derivative of r at the direction of a tangent vector

To show this is surjective, let ((,u, (x), f) lie in the range space. Since

7~0) o 1!0)* is invertible, we can let

Again, X-invariance of (;u, 0:) implies X-invariance for (C, V).
Write

’ ..~ BoU’’"’U/ B ’’" 2014~B~u?’*u/ B"7 B"//’

The second term equals

Note that this vanishes in case . a) as well since ko = constant.
Next, let

o

This operator is computed (for example, in Choquet-Bruhat, Fischer and
Marsden [1979 ]) to be

Our assumption that 0 implies that k0 . k0 ~ 0 and so R is invertible.
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Thus we can choose

and again ë is X-invariant by covariance. Thus r is a submersion and so

is a smooth manifold. Its tangent space at (go, ~o) is the kernel ofDr(go? no);

o 0 52., 52.,

Since (~ co) E ker DI&#x3E;(go, the term ~o* ’ (C, Y) vanishes. The
lemma then follows, II

Now let / : n  p n -+ !R be the restriction of /; i. e.,

It is clear that f(go, ~o) = 0 and that ~o) = 0.

7.4. LEMMA. non-degenerate critical

mani.f’old for / the explanation of these terms see the 

Proof. From the definition

But Lxg = 0 for each (g, ~) E ~x, so .f’ vanishes on ~X. Also, for
~h~ ~) E n CCp n 

Now if ( g, ?r) E n ~p n then Eo has constant mean curvature for
(g, 7T) and so by (2. 3), Lxg = 0 = Lx03C0 implies (0, X)~ker D03A6(g, 03C0)*.
Thus vanishes at points of n røp n so the latter is a critical
manifold for f .
From the splitting theorems and 7.3,
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Since is gauge invariant, the remark on the degeneracy space
of a restriction in 6 . 9 then applies, so the degeneracy space ~o)
is, by 4.4 and 7. 3

We have now completed step 3 for the spacelike case.
For step 4, we need to verify the conditions of lemma 6. 5 for the func-

tion /, with M = n rcp n and N = n cøp n ~X. We have
already verified condition i~. For condition ii) we choose this time not
an H1 1 x L2 norm but an H 1 ~2 x norm :

Here (I + ~) 1 iz is the square root of the positive self-adjoint operator
I + ~. We have chosen the H 1 ~2 x norm so the (,) gradient is

zeroth order. We have

and so

Thus the L2 x L2 gradient of ~’ is

and so the , &#x3E; gradient of / is

where ~ is the (, )-orthogonal projection of onto

at points of n cøp n 
As in 6.6, (,~ has a smooth connection is a smooth bundle

map; it is clear that Y is a smooth vector field. Note that
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As in 5.7, is an isomorphism on a complement to

n cøp n ¿x). Thus the conditions of 6 . 5 hold, and step 4 of the space-
like case is completed.

Finally, removal of the gauges proceeds as before. Since 0, lemma 6.8
now simplifies as follows (we can prescribe tr k == ~co now rather than a
« floating » constant).

6 . 5 . LEMMA . V4 be a hypersurface constant mean 

ture ~4~go. There is a unique neighborhood o, f
space of metrics on V4 to hypersurfaces such that 

is a compact spacelike hypersurface o,f constant mean curvature for ~4~g.
The proof is found in Choquet-Bruhat, Fischer and Marsden [1979 ].

This, together with the same arguments involving 6.7, completes the
proof of the spacelike case.

§8 DISCUSSION

We have established that the space of solutions of Einstein’s equations
for spacetimes with compact Cauchy surfaces of constant mean curvature
is a smooth manifold near space times with no Killing fields and has a
conical singularity near spacetimes with one Killing field. These singula-
rities reflect the fact that in order to complete a perturbation expansion
from the linearized solution to second and higher order it is necessary
and sufficient that the conserved integrals of Taub vanish identically.
In part II of this paper we shall extend the analysis from one to many
Killing fields, and to the study of general momentum mappings in mechanics.
Although generically (on an open dense subset), the space of solutions

is a smooth manifold, the singularities occur at precisely the spacetimes
the most studied and of the most interest, i. e., those with symmetries.
Not only must one take care with perturbation theory near such spacetimes,
but other physical phenomena such as quantization will be affected by
these singularities as well; see Moncrief [1978 ]. Indeed, some path integral
techniques and the WKB method implicitly assume that the solution space
has a reasonable Banach space structure, at least locally; our analysis
indicates that this question is a good deal more subtle near space times
with symmetries.

All explicitly known space times with compact Cauchy surfaces have
Killing fields and therefore are singular points in the space of solutions.
For example, the Taub universe which has four Killing fields, is a singular
point in the space of solutions, as are the other Bianchi IX models which
usually have three « space like » Killing fields. In addition, there are the
Gowdy and Kasner universes. We do not know any explicit solution
with precisely one spacelike Killing field. However, non-flat 3-metrics
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with one Killing field and zero scalar curvature would provide examples,
taking ~co == 0.
Our analysis has shown that near a metric with one Killing field, all

nearby solutions with one Killing field form a smooth manifold pointing
in the degeneracy direction. This is also true for more Killing fields. Within
a given symmetry class, breaking one extra symmetry can be dealt with by
the methods already presented here. One obtains a cone of solutions within
the given symmetry class. This is exactly what happens for the Taub universe
within the Bianchi IX type class, as has been demonstrated explicitly
by Jantzen [1978 ].
For time-like Killing fields, most examples have extra spatial symmetries

as well, the flat universe T3 x f~, originally studied by Brill and Deser [1972 ],
being an example. For one Killing field that is time-like, we have seen
in 2. 3 that this forces one to a situation where Eo is flat with 7~0 = 0. While
our main thrust in § 6 has been to set the stage for the many Killing field
cases, one can ask if there are any examples with only one Killing field.
We now give some information on this question, and in particular, show
that there are some examples. First of all, one cannot find such a spacetime
with T3 x IR topology :

8.1. PROPOSITION. -- Any .flat metric on Tn has n commuting Kilting
fields.

Proof. From Wolf [1974, p. 123 ], any flat metric on Tn is induced
from the Euclidean metric on [R" by taking the quotient of [?" with a discrete
subgroup r of I~n generated by a lattice of vectors v 1, ..., vn. The corres-
ponding translations give the isometries. II

If (M, g) is a Ricci-flat manifold and X is a vector field on it, it follows

readily from the formula

that X is a Killing field iff X is harmonic (iff X is covariant constant). Thus,
from De Rham’s theorem, the dimension of the space of Killing
fields = the first Betti number of M.

8.2. PROPOSITION. - There exist flat compact three manifolds with
no Killing fields.

Proof. From Wolf [ 1974, p. 122] there is a class ~6 with b 1 (M) == 0.
This gives a 3-parameter family of compact connected orientable flat
3-manifolds with no Killing fields by our above remarks. (Curiously all
non-orientable ones have a Killing field.) tt
The classes ~2’ ~3’ ~4 and ~5 have one Killing field. These classes give

examples of flat spacetimes M x IR with precisely two Killing fields.

Spacetimes with more than one Killing vector field will be considered
in part II.
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