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Non-unitary scattering and capture.
II. Quantum dynamical semigroup theory

E. B. DAVIES

Mathematical Institute, Oxford.

Ann. Poincaré,

Vol. XXXII, n° 4, 1980,

Section A :

Physique theorique.

ABSTRACT. - We construct a quantum dynamical semigroup model of
neutron-nucleus scattering, which incorporates irreversible effects due to

y-emission, and thus allows the possibility of neutron capture.

§ 1. INTRODUCTION

There are several situations in multibody scattering theory in which
interactions of the particles with the electromagnetic field (or possibly
with a phonon field) are important because they lead to irreversible effects
and in particular to particle capture. For example, in low energy neutron
scattering from a nucleus ([10], p. 411) and in electron scattering from a
molecule ([77], p. 593) there may be sharp resonances at energies correspond-
ing to eigenstates of the compound nucleus (or molecule) and these are
associated with metastable states having a long but finite lifetime. It is
clear both from the mathematical formalism of multibody, scattering
theory [1, 13] and from physical considerations ([10], p. 284; [11], p. 595)
that true capture can only occur upon the emission of a photon which
stabilises the compound nucleus (or molecule). For this reason it is desirable
to obtain a mathematical model of scattering theory in which the irreversible
effects due to photon emission are taken into account. It should be noted
that photon emission is also of relevance in inelastic scattering ([77j, p. 373)
but it is then of less importance because it generally occurs well after the
scattering event is completed.
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362 E. B. DAVIES

In this paper we study the scattering of two particles (which for the sake
of definiteness we call a neutron and nucleus) in a model involving both
direct inelastic and compound nucleus reactions. We regard the neutron
and nucleus as an open system interacting with the external electromagnetic
field by a phenomenological evolution equation. Although we make syste-
matic use of the scattering theory developed in [6, 8] for non-self-adjoint
Hamiltonians involving optical potentials, our dynamics is actually specified
by a quantum dynamical semigroup [5] acting on the Banach space ~(~f)
of trace class operators. We mention some closely related work in ([7], ~ 6)
where, however, the phenomenon of neutron capture is excluded, and a recent
paper of Barchielli [2], who studies the same dynamical equations as those
treated here.

§ 2. A MODEL OF NUCLEAR SCATTERING

The Hilbert space of the model in the centre of mass coordinate system
is ~f = Q JfB 1 where the neutron Hamiltonian on is

and the Hamiltonian K1 on describes the internal dynamics of the
nucleus. Since the nucleus is often very complicated we assume no more
about K1 than that 0 and that the nucleus has a ground state Q with
K103A9 = 0. The orthogonal projection Po of H onto Jfo 0 Q == com-

mutes with

We put

For the purposes of scattering we always assume that the nucleus is initially
in its ground state, so that the ingoing state lies in 
We assume that the nucleus may relax from any excited state to the ground

state by the emission of y-radiation according to the abstract Pauli master
equation

where p is an arbitrary mixed state on V0 ~ 0 is a bounded self-

adjoint operator on with VoS2 = 0, and J is a bounded completely posi-
tive map on the space of trace class operators on satisfying
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363NON-UNITARY SCATTERING AND CAPTURE. II

for all p E According to ([5], p. 83) the solution of (1) is of the form

where eZ1t is a quantum dynamical semigroup on 

EXAMPLE 1. 2014 To obtain the usual Pauli equation from ( 1 ), one puts

and

where ~ &#x3E; 0, and then looks at the time evolution of the diagonal matrices.
This case is discussed in (~9], p. 122) as a model of spin relaxation, and deri-
vations of the master equation ( 1 ) from first principles may be found
in [4], [12].

Returning to the general case, the assumption that vos2 = 0 implies that

J(v) - 0, eZ1t03BD = v for 0, where v = I 0 &#x3E;  Q ! I is the ground state
of the nucleus.
We assume that v is the only stable state, that is

for all p E In this and all similar equations convergence is taken
to be in the trace norm II 111 . We also make the assumption, closely related
to but independent of (2), that there is a constant ~ &#x3E; 0 such that

for all 03C8 1 S2. This implies that

for 
The evolution on is given as in [2] by the quantum dynamical

semigroup Tt = eZt associated with the evolution equation

where the action of Z1 on is induced in an obvious way by its action
on ~(~ 1 ) and

with domain precisely specified in ([5], p. 82); we assume that the interaction
term V1 on Yt’ is self-adjoint and relatively compact with respect to Ho.
We may also write

Vol. XXXII, nO 4 - 1980.



364 E. B. DAVIES

where

is the generator of a one-parameter contraction semigroup on ~P and J is
extended in the natural way from to @ f 1). Note that in
the absence of relaxation (that is if Vo and J vanish) the Hamiltonian H is
self-adjoint and its eigenvectors describe compound nucleus bound states
arising from the interaction term V 1.

Returnir g to the general case, we define to be the closed linear span
of the eigenvectors of H associated with real eigenvalues, and put

We refer to [6], [8J for the definition of the absolutely continuous subspace
of H. It is useful to introduce the semigroup St on ~(~f) defined by

for all p E (H) and t &#x3E; 0, noting that

for all p E ~(J~), and hence that

for all 0  p E and t &#x3E; 0.
For this model scattering theory must be developed at two levels. Since

we shall always suppose that the nucleus is initially in its ground state we
wish to prove the existence of

for all f E ~a, and

for all p E ~(~fo)- The operator W _ is a contraction from into ~f,
while Q- is a completely positive trace-preserving map from ~(~fo) into

The existence of W- and Q- may be shown by Cook’s method.

for all f in a dense subspace D of H0 then W- f exists for all f E and

Q_(p) exists for all p E 

Proof - The existence of W- is standard. If

Annales de l’lnstitut Henri Poincare - Section A



365NON-UNITARY SCATTERING AND CAPTURE. II

then  is dense in G(H0). Moreover if /? E G(H0)

by the Trotter product formula. To apply Cook’s method it is sufficient

to note that if p E Ç¿

The existence of the outgoing wave operators is less easy, and we prove
it first at the Hilbert space level.

is of trace class then

exists for all 03C6 E and lies within 

Proo, f : We apply (M, Theorem 6.3) with

the’" denoting the symbols of r6]. We have

Now

and

which is compact since Vi is relatively compact with respect to Ho, and Vo
is a bounded perturbation of - iRo. We deduce by ([6], Theorem 6.3) that

for all 03C6 E On the other hand the existence of

Vol. XXXII, nO 4 - 1980.
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for all 03C6 E is an immediate consequence of ([6], Theorem 5.4) and the
fact that

which is of trace class.

Although we shall systematically adopt the Hypotheses A-F of [8] and
make use of the results there, slight modifications to the proofs are actually
needed because V 1 is relatively compact with respect to Ho but Vo is not,
being bounded instead. Also the wave operator W- has domain instead

of :Yf, but fortunately the range of W + lies in Jfo also. Moreover W- is
one-one and lies entirely within By Hypothesis F and Theorem 7
of [8] the scattering operator S = W + W _ maps one-one onto and

there is a Banach space decomposition

As in [8] we define P to be the orthogonal projection with kernel E9 
The range of P is called the set of outgoing states, and is not equal to Range
W - in general. The necessity for the presence of P in (5) below is connected
with the possibility of neutron capture, or equivalently with the failure of
asymptotic completeness.

THEOREM 4. The modified outgoing wave operator

exists and lies in ~(~f).

2014 We deduce from (3) that

By Theorem 10 of C8] we obtain

for all c~ E provided W + is extended from to Jf by putting
= O. The integrand of (6) therefore converges for each s to
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367NON-UNITARY SCATTERING AND CAPTURE. II

and we obtain

provided we justify taking the limit under the integral sign.
In order to do this we let Q denote the non-orthogonal projection with

kernel and range equal to range W _ . Since

we deduce that if p ~ 0

Now by Hypothesis F and Eq. (5) of [8] there exists a &#x3E; 0 such that

for all 03C6 E H

Using the identity

we now see that the integrand of (6) is dominated in trace norm by

This is integrable so we may apply the dominated convergence theorem to
complete the proof.
The fact that the projection P in (5) is orthogonal allows the following

physical interpretation. 0 and tr [p] = 1 then

so

and this quantity may be interpreted as the probability of the neutron in the
state p at t = 0 eventually escaping from the nucleus. We also define the
bound states of the dynamical semigroup Tr to be those lying in

THEOREM 5. The bound states of Tt are those with support in a certain
closed subspace 2 of ~f satisfying

Vol. XXXII, nO 4 - 1980. 13
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In the case of Example 1, 2 is the largest such subspace invariant under A
and under for all t ~ 0.

Proof. - We first note that since ~+ is positivity preserving, Vb is a norm
closed order ideal. By ([5], p. 54), Vb is the set of p with support in a certain
closed subspace 2 of ~f.

If p ~ 0 and tr 0 for all t &#x3E; 0 then tr [D+(p)] = 0 so p E Vb.
Conversely if tr &#x3E; 0 for some a, then putting

we obtain that

Now by the open mapping theorem there is a constant 0  5  1 such
that

for all 03C8 E H. Combining this observation with Eq. (5) of [8] we obtain

so

and 03C1  Vb. Hence p E Vb if and only if tr [PTt(p)] - 0 for all t &#x3E; 0.

Using the expansion

Annales de l’Institut Henri Poincare - Section A



369NON-UNITARY SCATTERING AND CAPTURE. II

together with the definition of J in Example 1, we finally see that 1/1 E 2,
or equivalently 11/1 &#x3E;  1/11 E Vb, if and only if

for all choices of t(1), ... This leads immediately to the required characte-
risation of J.
The general phenomenon of neutron capture is rather complicated

because J~f may be strictly larger than ~b, but the orthogonal projection P’
of H onto f may be used to investigate it.

is continuous and monotone increasing, with limit p( oo) which may be
called the capture probability of p.

Proof. By ([5], p. 18) the dynamical semigroup Tt has a dual semi-

group T* on J~(~f). Since 0 ~ P’~ 1 we have 0 ~ T*(P’) ~ 1. By the
invariance of ~(J~) under Tr it follows that and II = 1

Applying the spectral theorem to T*(P’) we deduce that

The continuity is obvious.

Since PP’ = P’P = 0 we see that

for all t ~ 0 and so

We conjecture that the sum actually equals 1, but have not proved this.
Nevertheless even (8) allows us to give a simple sufficient condition for
capture of an ingoing neutron. We state the result only for Example 1,
although the method can obviously be extended.

THEOREM 7. 2014 Suppose in Example 1 that H has a bound state ~o and
that there exists 03C8 E H0 such that 111/1 II === 1 and

Vol. XXXII, n° 4 - 1980.
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Then

Proof - By (8) and 0 Theorem 6 we have " only to show that if

for some ~ ~ 0. Now applying inequalities which follow easily from (3),
we obtain

so

This is strictly positive by (9) and the continuity of the integrand.

§ 3. SCATTERING WITH SLOW DECAY

In this section we consider the asymptotic form for small a &#x3E; 0 of the

scattering operators of the last section, where Vo, J are replaced by ocVo,
aJ everywhere, so that a measures the rate of decay of the nucleus to its
ground state. Physically it is clear that as a -+ 0 direct nuclear scattering
and radiative decay operate on different time scales and become independent
processes. If SO is the unitary scattering operator on ~f for the self-adjoint
Hamiltonian Ho + V l’ and if the relaxation of the nucleus to its ground
state v = I Q &#x3E;  I is described by the map

from F(~f) to F(~f), then one expects that

The proof of this is surprisingly difficult, mathematically because we
cannot suppose that Wl has closed range for all small a &#x3E; 0 because of the
comments in [8], ~ 4, and physically because of the long lifetimes associated
with compound nuclear scattering. We therefore make rather different
technical assumptions in this section on the operator V1 and apply Kato’s
smooth perturbation theory. We replace the hypothesis of Lemmas 2 and 3
by the assumptions that the self-adjoint operator V 1 on H is of the form

Annales de l’ Institut Henri Poincaré - Section A



371NON-UNITARY SCATTERING AND CAPTURE. II

where 1B = 1 and the bounded operators A, B on satisfy

We also suppose, probably unnecessarily, that

for all 03C6 in a dense subspace D of Jfo- All the other assumptions are as
before, the dependence of various operators on a being indicated by super-
scripts.
As usual the dependence of the ingoing wave operators on a is easy to

handle.

and

Proof. Since ( 11 ) implies Cook’s condition we see that the wave ope-
rators W°L exist and are given by

for all 03C8 ~ D. Now converges strongly to as a -+ 0, so by
the dominated convergence theorem

The result for general ~ E ~o is obtained by density arguments. The proof
of ( 12) depends upon the observation that if 0  p E ~(~fo) then

so

Therefore

S ince W~ converges strongly to W~ as x -~ 0, where W ~ is unitary, we see that

Vol. XXXII, nO 4-1980.
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Before stating the next theorem we note that W~ is a unitary operator on ~f
under the condition ( 10).

exists for all p E F(~f) and a &#x3E; 0, and defines a completely positive trace-
preserving map Q~. from T(~f) into ~’(~o)’ Moreover

for all p E ~f).
Before starting the proof we use the theory of dilations of dynamical

semigroups as in ([3], ~ 6) to reduce to a Hilbert space problem.

PROPOSITION 10. 2014 There exists a Hilbert space f 2 and a one-parameter
group of isometries on Jfi 1 @ f 2 with generator K" such that

for all p E 1 (8) ~2)’ Moreover there is a one-parameter group of iso-
metries on such that

Proof - The basic construction is that of Theorem 5 of [Yj, whose method
may be extended to more general states p than considered there. The limit
a 2014~ 0 is easily taken, the isometries on ~’2 - L 2(y (0) corresponding
to simple shifts on the time parameters of the elements co E Y 00 without
change of length of cu as time passes.

Using the Trotter product formula we obtain

We expand the exponential terms of this in powers of Vb obtaining

If 03C8 lies in the algebraic tensor product
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373NON-UNITARY SCATTERING AND CAPTURE. II

we deduce from ( 10) and (11) that

where the integral converges uniformly with respect to oc. We denote the

integrand of ( 15) by 

by ( 13). We deduce using (2) and ( 15) that

We next use (14) and exploit the uniformity of the convergence with
respect to a, to obtain

Since K2 commutes with Ko, K 1 and V 1 we see that

which implies that

Vol. XXXII, n° 4 - 1980.



374 E. B. DAVIES

We conclude by noting that the set of states on H of the form tr2 [p]
for p = ! ~ ) ( ~ ) I and /J, .p E ~’, is dense in ~(~f).
We use Theorem 9 to investigate the time dependence of the energy of the

system. By the conservation of energy, the coupling of the nucleus to the
electromagnetic field, and the fact that the nucleus is initially in its ground
state, one would expect that

for all 0 S p E We have not been able to prove this and believe

that it is at best approximately true. The following is relevant to this conjec-
ture for small a.

THEOREM 11. Under the hypothesis of this section

exists for all 0  p E and lies in ~(~fo)- Moreover

Proof. By Theorems 8 and 9

where is unitary and commutes with Ho. Therefore
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