Sylvia Pulmannovà

Superpositions of states and a representation theorem

Annales de l'I. H. P., section A, tome 32, nº 4 (1980), p. 351-360 http://www.numdam.org/item?id=AIHPA 1980 32 4 351 0>

© Gauthier-Villars, 1980, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section A » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Superpositions of states and a representation theorem

by

Sylvia PULMANNOVÀ

Institute for Measurement and Measurement Technique, Slovak Academy of Sciences, 885 27 Bratislava, Czechoslovakia.

ABSTRACT. — A quantum logic (L, P) is considered, where P is a set of pure states. The set $\mathscr{L}(P)$ of all subsets of P closed under superpositions is studied. It is shown that $\mathscr{L}(P)$ is isomorphic to the set of all linear subspaces of a vector space. In case that each state in P has a carrier, an orthocomplementation can be defined in a subset $\mathscr{F}(P)$ of $\mathscr{L}(P)$. An imbedding theorem for the logic L into the logic L(H) of a Hilbert space H is then proved.

1. DEFINITIONS AND NOTATION

Let L be a partially ordered set with the first and last elements 1 and 0, respectively, and with the orthocomplementation $a \mapsto a^{\perp} : L \to L$. Let the latlice sum $\bigvee a_i$ exist in L for any sequence $\{a_i\} \subset L$ such that $a_i \leq a_j^{\perp}$, $i \neq j, i, j = 1, 2, ...$ The elements $a, b \in L$ are said to be orthogonal $(a \perp b)$ if $a \leq b^{\perp}$ and they are said to be compatible $(a \leftrightarrow b)$ if there exist elements a_1, b_1, c in L, mutually orthogonal and such that $a = a_1 \lor c, b = b_1 \lor c$. A map $m : L \to [0, 1]$ is a state on L if i) $m(1) = 1, ii) m(\lor a_i) = \Sigma m(a_i)$ for any sequence of mutually orthogonal elements in L. The state m is pure if it cannot be written in the form $m = cm_1 + (1 - c)m_2$, where 0 < c < 1and m_1, m_2 are distinct states. Let P be a set of pure states on L. For $a \in L$, $m \in P$, define $P_a = \{m \in P : m(a) = 1\}$, $L_m = \{a \in L : m(a) = 1\}$. We shall suppose that i) $P_a \subset P_b$ implies $a \leq b$ $(a, b \in L)$ and ii) $L_{m_1} \subset L_{m_2}$

Annales de l'Institut Henri Poincaré - Section A-Vol. XXXII, 0020-2339/1980/351/\$ 5.00/ © Gauthier-Villars. implies $m_1 = m_2$. From *i*) it follows that L is orthomodular, i. e. $a \le b$ (*a*, $b \in L$) implies $b = a \lor (b \land a^{\perp})$ and that to any $a \in L$, $a \ne 0$, there is $m \in P$ such that m(a) = 1 [4]. We shall suppose, in addition, that if $a, b, c \in L$ are mutually compatible, then $a \leftrightarrow b \lor c$. The pair (L, P), which satisfies all the suppositions mentioned above, is called a quantum logic.

A state $m \in P$ is a superposition of the states $p, q \in P$ if p(a) = 0 and q(a) = 0 imply m(a) = 0 (or, alternatively, if p(a) = 1 and q(a) = 1 imply m(a) = 1) [12]. A set $S \subseteq P$ is said to be closed under superpositions if it contains every superposition of any pair of its elements. If $S \subseteq P$ is not closed under superpositions, let $\Lambda(S)$ denote the smallest subset of P, closed under superpositions and containing S. The set $S \subseteq P$ is a sector if i) $S = \Lambda(S)$, ii to any $p, q \in S, p \neq q$, there is $s \in S, s \neq p, q$ such that $s \in \Lambda \{p, q\}$, iii if $q \in P, q \notin S$ then $\Lambda \{s, q\} = \{s, q\}$ for any $s \in S$. We say that the superposition principle holds in (L, P) if for any $p, q \in P, p \neq q$, there is $r \in P, r \neq p, q$ such that $r \in \Lambda(\{p, q\})$ [9].

Let C be the set of all elements of L which are compatible with all the other elements, i. e. $C = \{ a \in L : a \leftrightarrow b \text{ for any } b \in L \}$. C is called the centre of L. It was shown that C is a Boolean sub- σ -algebra of L. If p is a pure state and $c \in C$, then p(c) = 1 or p(c) = 0 [11, 12]. A logic L is called irreducible if its centre C is trivial, i. e. $C = \{ 0, 1 \}$. It was shown that if the superposition principle holds on (L, P), then L is irreducible [9].

For $S \subseteq P$ and $a \in L$, let us write S(a) = i if m(a) = i for all $m \in S$, where i = 0.1. Let $\overline{S} = \{ m \in P : S(a) = 1 \text{ imply } m(a) = 1 \}$. Gudder [6] introduced the following postulate (minimal superposition postulate, MSP): if S is any finite subset of P and $m \in \overline{S}$ is such that $m \notin \overline{Q}$ for any subset $Q \subseteq S, Q \neq S$ (i. e. *m* is a minimal superposition), then $\{ m, S_1 \}^- \cap \overline{S}_2 \neq \emptyset$ for any $S_1, S_2 \subseteq P$ such that $S_1 \cap S_2 = \emptyset$ and $S_1 \cup S_2 = S$.

Let us denote by $\mathcal{L}(P)$ the set of all subsets $S \subset P$ such that $\Lambda(S) = S$.

2. STRUCTURE OF THE SET $\mathscr{L}(\mathbf{P})$

In the sequel we shall suppose that (L, P) is a quantum logic and that the MSP holds in P, P being a set of pure states on L.

We recall that the map $S \mapsto \Lambda(S)$ has the following properties [9]:

i)
$$S_1 \subseteq S_2$$
 implies $\Lambda(S_1) \subseteq \Lambda(S_2)$,
ii) if $S_{\alpha} \subseteq P$, $\alpha \in A$, then $\bigcap_{\alpha \in A} \Lambda(S_{\alpha})$ is closed under superpositions, and
 $\Lambda(\bigcap_{\alpha} S_{\alpha}) \subseteq \bigcap_{\alpha} \Lambda(S_{\alpha})$,
iii) if $S_{\alpha} \subseteq P$, $\alpha \in A$, then $\bigcup_{\alpha} \Lambda(S_{\alpha}) \subseteq \Lambda(\bigcup_{\alpha} S_{\alpha})$.

Annales de l'Institut Henri Poincaré - Section A

In addition, if the MSP holds, then by [10]:

iv) $\Lambda(S) = \overline{S}$ for any finite subset S of P,

v) $p \in \Lambda(\{r, q\})$ implies $r \in \Lambda(\{p, q\})$ for any distinct states $p, q, r \in P$. Let $\mathscr{L}(P) = \{S : S \subseteq P, \Lambda(S) = S\}$. $\mathscr{L}(P)$ is a partially ordered set by the set inclusion.

For $S_{\alpha} \in \mathcal{L}(P)$, $\alpha \in A$, let us set

$$\bigwedge_{\alpha \in A} S_{\alpha} = \Lambda \left(\bigcap_{\alpha \in A} S_{\alpha} \right), \text{ and } \bigvee_{\alpha \in A} S_{\alpha} = \Lambda \left(\bigcup_{\alpha \in A} S_{\alpha} \right).$$

Lemma 1. — For $S_{\alpha} \in \mathscr{L}(P)$, $\alpha \in A$, $\bigwedge_{\alpha} S_{\alpha} = \bigcap_{\alpha} S_{\alpha}$.

Proof. — By *ii*),
$$\Lambda\left(\bigcap_{\alpha} S_{\alpha}\right) \subset \bigcap_{\alpha} \Lambda(S_{\alpha}) = \bigcap_{\alpha} S_{\alpha}$$
. On the other hand,
 $\bigcap_{\alpha} S_{\alpha} \subset \Lambda\left(\bigcap_{\alpha} S_{\alpha}\right)$, i. e. $\bigwedge_{\alpha} S_{\alpha} = \bigcap_{\alpha} S_{\alpha}$.

Lemma 2. — For S_1 , $S_2 \in \mathscr{L}(P)$,

$$S_1 \lor S_2 = \{ p \in P : p \in \Lambda \{ r, q \}, r \in S_1, q \in S_2 \}.$$

Proof. — Let us set $S = \{p \in P : p \in \Lambda \{r, q\}, r \in S_1, q \in S_2\}$. Clearly, $S_1 \cup S_2 \subset S$ and $r \in S_1$, $q \in S_2$ imply $\Lambda \{r, q\} \subset \Lambda(S_1 \cup S_2)$. We see that $S \subset \Lambda(S_1 \cup S_2) = S_1 \lor S_2$. We shall complete the proof by showing that $S = \Lambda(S)$. Let $p_1, p_2 \in S$. Then there are $r_1, r_2 \in S_1$ and $q_1, q_2 \in S_2$ such that $p_1 \in \Lambda \{r_1, q_1\}, p_2 \in \Lambda \{r_2, q_2\}$. Let $p \in \Lambda \{p_1, p_2\}$. Then, clearly, $p \in \Lambda \{r_1, q_1, r_2, q_2\} = \{r_1, q_1, r_2, q_2\}^-$. The following cases can occure: *i*) $p \in \Lambda \{r_1, r_2\},$ *ii*) $p \in \Lambda \{q_1, q_2\},$ *iii*) $p \in \Lambda \{r_i, q_j\}$ (*i*, *j* = 1, 2), *iv*) no of *i*), *iii*) comes true.

It is straightforward that in the cases i), ii), iii) $p \in S$. Let us consider the case iv). If $p \in \Lambda \{r_1, q_1, r_2\}$, then by MSP, $\Lambda \{r_1, r_2\} \cap \Lambda \{p, q_1\} \neq \emptyset$. Let $m \in \Lambda \{r_1, r_2\} \cap \Lambda \{p, q_1\}$. Then $m \in S_1$, $p \in \Lambda \{m, q_1\}$, $q_1 \in S_2$ imply that $p \in S$. Analogical reasoning can be done in all cases in which there is a set $Q \subseteq \{r_1, r_2, q_1, q_2\}$ such that $p \in \Lambda(Q)$. Now let $p \in \Lambda \{r_1, r_2, q_1, q_2\}$ be a minimal superposition. Then by MSP, there is

$$m \in \Lambda \{ r_1, r_2 \} \cap \Lambda \{ p, q_1, q_2 \}.$$

This implies $m \in S_1$, $m \in \Lambda \{p, q_1, q_2\}$. The following cases can occure (a) $m \in \Lambda \{p, q_1\}$ (or, analogically, $m \in \Lambda \{p, q_2\}$), which implies $p \in \Lambda \{m, q_1\}$ (or $p \in \Lambda \{m, q_2\}$), i. e. $p \in S$. b) $m \in \Lambda \{q_1, q_2\}$. Then $q_1 \in \Lambda \{m, q_2\}$, but $m \in \Lambda \{r_1, r_2\}$ implies $q_1 \in \Lambda \{r_1, r_2, q_2\}$. Hence, $\Lambda \{r_1, r_2, q_1, q_2\} \subset \Lambda \{r_1, r_2, q_2\}$, i. e. $p \in \Lambda \{r_1, r_2, q_2\}$, which is the preceding case. c) $m \in \Lambda \{p, q_1, q_2\}$ is a minimal superposition. Then,

Vol. XXXII, nº 4 - 1980.

SYLVIA PULMANNOVÁ

by MSP, there is $n \in \Lambda \{q_1, q_2\} \cap \Lambda \{m, p\}$. $n \in \Lambda \{q_1, q_2\}$ implies $n \in S_2$ and $n \in \Lambda \{m, p\}$ implies $p \in \Lambda \{m, n\}$, $m \in S_1$, $n \in S_2$, hence $p \in S$. This completes the proof.

LEMMA 3. — For any $Q \subseteq P$, $\Lambda(Q) = \bigcup \{ \Lambda(T) : T \text{ is a finite subset of } Q \}$.

Proof. — Let us set $B = \bigcup \{ \Lambda(T) : T \text{ is a finite subset of } Q \}$. Clearly, $Q \subseteq B \subseteq \Lambda(Q)$. We show that B is closed under superpositions. Indeed, let $p_1, p_2 \in B$, then there are $T_1, T_2 \subseteq Q$, finite subsets, such that $p_1 \in \Lambda(T_1)$ and $p_2 \in \Lambda(T_2)$. But then $p_1, p_2 \in \Lambda(T_1 \cup T_2)$, hence

$$\Lambda \{ p_1, p_2 \} \subset \Lambda(\mathbf{T}_1 \cup \mathbf{T}_2) \subset \mathbf{B}.$$

From this it follows that $\Lambda(B) = B$, hence $\Lambda(Q) = B$.

LEMMA 4. — If $\Phi \subset \mathscr{L}(P)$ is an ordered subset (by inclusion) then the set B = $\cup \{T : T \in \Phi\} \in \mathscr{L}(P)$.

Proof. — We have to show that $\Lambda(B) = B$. Let $p_1, p_2 \in B$, then there are $T_1, T_2 \in \Phi$ such that $p_1 \in T_1, p_2 \in T_2$. There holds $T_1 \subseteq T_2$ or $T_2 \subseteq T_1$. Let $T_1 \subseteq T_2$, then $p_1, p_2 \in T_2$ implies that $\Lambda \{p_1, p_2\} \subset T_2$, hence $\Lambda \{p_1, p_2\} \subset B$.

THEOREM 1. — The lattice $\mathscr{L}(P)$ has the following properties:

i) it is modular,

ii) it is atomistic and its atoms are the singleton subsets of P,

iii) it has the covering property,

iv) if ω is an atom in $\mathscr{L}(P)$ and A is a set of atoms in $\mathscr{L}(P)$ such that $\omega \in \Lambda(A)$, then there exists a finite subset $\{\omega_1, \omega_2, \ldots, \omega_n\} \subset A$ such that $\omega \in \Lambda \{\omega_1, \ldots, \omega_n\}$,

v) to any $S \in \mathcal{L}(P)$ there is $T \in \mathcal{L}(P)$ such that $S \wedge T = \emptyset$ and $S \vee T = P$.

Proof. — *i*) Let S_1 , S_2 , $S_3 \in \mathcal{L}(P)$, $S_1 \subseteq S_3$. Clearly,

$$(\mathbf{S}_1 \lor \mathbf{S}_2) \land \mathbf{S}_3 \supseteq \mathbf{S}_1 \lor (\mathbf{S}_2 \land \mathbf{S}_3).$$

Let $p \in (S_1 \lor S_2) \land S_3$. Then $p \in S_1 \lor S_2$ implies $p \in \Lambda \{q_1, q_2\}, q_1 \in S_1$, $q_2 \in S_2$ (Lemma 2). Then

$$q_1 \in \Lambda \{ p, q_2 \} \subset S_3 \lor S_2 \quad , \quad q_2 \in \Lambda \{ p, q_1 \} \subset S_3 \lor S_1.$$

Hence, $q_1 \in (S_3 \lor S_2) \land S_1$, $q_2 \in (S_3 \lor S_1) \land S_2$, so that $p \in \Lambda \{q_1, q_2\}$ implies

 $p \in [(\mathbf{S}_3 \lor \mathbf{S}_1) \land \mathbf{S}_2] \lor [(\mathbf{S}_3 \lor \mathbf{S}_2) \land \mathbf{S}_1] \\ = (\mathbf{S}_3 \land \mathbf{S}_2) \lor [(\mathbf{S}_3 \lor \mathbf{S}_2) \land \mathbf{S}_1] \subset \mathbf{S}_1 \lor (\mathbf{S}_2 \land \mathbf{S}_3).$

Annales de l'Institut Henri Poincaré - Section A

ii) Evidently, the singleton sets $\{s\}$, $s \in P$, are atoms in $\mathscr{L}(P)$. If $S \in \mathscr{L}(P)$, then $S = \Lambda \{s : s \in S\} = \bigvee_{s \in S} \{s\}$.

iii) We have to show that for any S, $Q \in \mathscr{L}(P)$ and $s \in P$ ($s \notin S$), S $\subset Q \subset S \lor \{s\}$ implies Q = S or Q = S $\lor \{s\}$. Let Q \neq S. Then there is $r \in Q$, $r \notin S$. From Q $\subset S \lor \{s\}$ it follows $r \in S \lor \{s\}$, i. e. there is $p \in S$ such that $r \in \Lambda \{p, s\}$ (Lemma 2). From this it follows that $s \in \Lambda \{r, p\} \subset Q$. Then S $\subset Q$, $s \in Q$ imply S $\lor \{s\} \subset Q$, i. e. S $\lor \{s\} = Q$.

iv) By Lemma 3, $\Lambda(A) = \bigcup \{ \Lambda(S) : S \text{ fi.ite subset of } A \}$. Hence, for any $\omega \in \Lambda(A)$, there is a finite subset $S = \{ s_1, \ldots, s_n \} \subset A$ such that $\omega \in \Lambda(S)$.

v) Let Θ be the set of all $W \in \mathscr{L}(P)$ such that $S \wedge W = \emptyset$. Θ contains \emptyset , therefore it is non-empty. If Φ is any ordered set of elements of Θ , let J be the set-theoretic sum of all elements in Φ . By Lemma 4, $J \in \mathscr{L}(P)$; and, clearly $S \wedge J = \emptyset$. From this it follows that $J \in \Theta$. By Zorn's lemma there is a maximal element $T \in \Theta$. Now let us consider the element $S \vee T$. Let $s \in P$, $s \notin T$. Then $T \subset \Lambda(T \cup \{s\})$, and by the maximality of T, $S \wedge \Lambda(T \vee \{s\}) \neq \emptyset$. Let $p \in S \wedge (T \vee \{s\})$. By Lemma 2 then there is $t \in T$ such that $p \in \Lambda \{t, s\}$. Then $s \in \Lambda \{p, t\}$, and from $p \in S$ and $t \in T$ it follows that $s \in S \vee T$, hence $S \vee T = P$.

We shall say that the states $s_1, \ldots, s_n \in \mathbf{P}$ are independent if $s_i \notin \Lambda \{s_j : j \neq i\}, i, j = 1, 2, \ldots, n$.

If s_1, \ldots, s_n are independent states and q is a state such that

 $s_1 \in \Lambda \{q, s_2, \ldots, s_n\}$ then $q \in \Lambda \{s_1, \ldots, s_n\}$.

Indeed, there is a minimal subset

 $\mathbf{I} \subset \{2, \ldots, n\} \text{ such that } s_1 \in \Lambda \{q, s_i : i \in \mathbf{I}\}.$

From the MSP we obtain

 $\{q\} \land \land \{s_1, s_i : i \in \mathbf{I}\} \neq \emptyset,$

hence

$$q \in \Lambda \{ s_1, s_i : i \in \mathbf{I} \} \subset \Lambda \{ s_1, s_2, \ldots, s_n \}.$$

By permutation of the index set 1, 2, ..., *n* we obtain that $s_i \in \Lambda \{q, s_j : j \neq i\}$ implies $q \in \Lambda \{s_1, \ldots, s_n\}$.

We say that a finite set of states $\{s_1, \ldots, s_n\}$ is a basis for $S \in \mathcal{L}(P)$ if s_1, s_2, \ldots, s_n are independent and $S = \Lambda \{s_1, \ldots, s_n\}$. It can be shown by the same method as in [6] that if $\{s_1, \ldots, s_n\}$ and $\{p_1, \ldots, p_k\}$ are bases for S then n = k. If $S \in \mathcal{L}(P)$ has a basis $\{s_1, \ldots, s_n\}$ then n is called the dimension of S and is denoted by d(S) = n. If S has a basis, we say that S is finite dimensional. Recall that a dimension function on a lattice K is a real valued function on K with the properties:

i)
$$d(\emptyset) = 0, \ d(a) \ge 0$$
 for all $a \in K$

ii) if $a \le b$ and $a \ne b$, then d(a) < d(b),

Vol. XXXII, nº 4 - 1980.

iii) $d(a \lor b) + d(a \land b) = d(a) + d(b)$ for all $a, b \in \mathbf{K}$.

The following proposition can be proved analogically as Theorem 3.10 in [6].

PROPOSITION 1. — Let $S \in \mathcal{L}(P)$ be finite dimensional. Then d is a dimension function on $[\emptyset, S] = \{ T \in \mathcal{L}(P) : T \subseteq S \}.$

PROPOSITION 2. — Let $S \in \mathscr{L}(P)$ be finite dimensional. Then $[\emptyset, S]$ is a complemented modular lattice.

Proof. — It follows from Theorem 1.

We can define in the set $\mathscr{L}(P)$, as in a projective geometry, the notions of lines and planes. An element $S \in \mathscr{L}(P)$ is a line if d(S) = 2, and it is a plane if d(S) = 3. If $s_1, s_2 \in P$ are distinct states, then $d(\Lambda \{s_1, s_2\}) = 2$ and hence $\Lambda \{s_1, s_2\}$ is a line. If S_1 and S_2 are distinct lines and $S_1 \wedge S_2 \neq \emptyset$ then $d(S_1 \wedge S_2) = 1$. In this case the identity

$$d(S_1 \lor S_2) = d(S_1) + d(S_2) - d(S_1 \land S_2)$$

shows that $S_1 \vee S_2$ is a plane. This yields a new formulation of the SP: the superposition principle holds if and only if every line in $\mathscr{L}(P)$ has at least three distinct points lying on it. In this case $[\emptyset, S]$ is a geometry for any finite $S \in \mathscr{L}(P)$ [12, Th. 2.15, p. 30).

THEOREM 2. — Let (L, P) be a quantum logic such that the superposition principle (SP) and the minimal superposition principle (MSP) hold and let there exist at least four independent states in P. Then there exist a division ring K and a vector space V over K, such that the set $\mathcal{L}(P)$ is isomorphic to the lattice $\mathcal{L}(V)$ of all linear subspaces of V (in the sense that there exists a bijection between $\mathcal{L}(P)$ and $\mathcal{L}(V)$ that preserves their order structure). $\mathcal{L}(V)$ is the set of all linear subspaces of V ordered under set-theoretical inclusion and meet and join operations are defined by

$$\forall \mathbf{M}_i = \Sigma \mathbf{M}_i , \mathbf{M}_i \in \mathscr{L}(\mathbf{V}) , i = 1, 2, \dots$$

$$\land \mathbf{M}_i = \cap \mathbf{M}_i , \mathbf{M}_i \in \mathscr{L}(\mathbf{V}) , i = 1, 2, \dots$$

Proof. — Proof of this theorem follows from Theorem 1 and Theorem in $[1, Ch. VII, \S 6, p. 375].$

In [10], there is shown that the set P can be written as the union of sectors if and only if $\Lambda \{p, q, r\} \neq \Lambda \{p, q\} \cup \Lambda \{q, r\}$ for any distinct states $p, q, r \in P$ such that $p \approx q, q \approx r, r \notin \Lambda \{p, q\}$, where $p \approx q$ means that there is a state $u \in P$, $u \neq p$, q such that $u \in \Lambda \{p, q\}$. Now we shall show that this condition is always fulfilled.

THEOREM 3. — Let (L, P) be a quantum logic such that the MSP holds. Let p, q, r be distinct states in P such that $p \approx q, q \approx r$ and $r \notin \Lambda \{p, q\}$.

Annales de l'Institut Henri Poincaré - Section A

356

Then $\Lambda \{p, q, r\} \neq \Lambda \{p, q\} \cup \Lambda \{q, r\}$, so that P can be written as the union of sectors.

Proof. — From $p \approx q$ and $q \approx r$ it follows that there are $s_1 \in \Lambda \{p, q\}$, $s_1 \neq p$, q and $s_2 \in \Lambda \{q, r\}$, $s_2 \neq q$, r. As $\Lambda \{s_1, s_2\} \lor \Lambda \{p, r\} \subset \Lambda \{p, q, r\}$, $d(\Lambda \{s_1, s_2\} \lor \Lambda \{p, r\}) \leq 3$. The relation $d(a \land b) = d(a) + d(b) - d(a \lor b)$ then implies that $d(\Lambda \{s_1, s_2\} \land \Lambda \{p, r\}) \geq 1$. But if $\Lambda \{s_1, s_2\} = \Lambda \{p, r\}$, then $s_1 \in \Lambda \{p, r\} \land \Lambda \{p, q\}$ implies $s_1 = p$, a contradiction. Hence, $d(\Lambda \{s_1, s_2\} \land \Lambda \{p, r\}) = 1$. Let $\Lambda \{s_1, s_2\} \land \Lambda \{p, r\} = \{t\}$. We shall show that $t \notin \Lambda \{p, q\}$, $t \notin \Lambda \{q, r\}$. Indeed, if $t \in \Lambda \{p, q\}$, then $q \in \Lambda \{t, p\}$, but $t \in \Lambda \{p, r\}$ implies $q \in \Lambda \{p, r\}$, a contradiction. Analogically we show that $t \notin \Lambda \{q, r\}$. Hence, we found $t \in \Lambda \{p, q, r\}$, $t \notin \Lambda \{p, q\}$, $t \notin \Lambda \{q, r\}$.

We shall call the elements of $\mathscr{L}(P)$ the subspaces of P.

3. CLOSED SUBSPACES OF P

Let us set $\mathscr{F}(P) = \{ S \subseteq P : S = \overline{S} \}$. Clearly, $\Lambda(\overline{S}) = \overline{S}$, so that $\mathscr{F}(P) \subseteq \mathscr{L}(P)$. The map $S \mapsto \overline{S}$ is a closure operation in the sense of Birkhoff [3], so that the set $\mathscr{F}(P)$ becomes a complete lattice whose join and meet operations are given by

$$\bigvee_{j} S_{j} = \left(\bigcup_{j} S_{j}\right)^{-} \quad \text{and} \quad \bigwedge_{j} S_{j} = \bigcap_{j} S_{j} [5].$$

The proposition $a \in L$ is said to be a carrier of a state m, if

i) m(a) = 1,

ii) $b \not\perp a$ implies m(b) > 0.

Notice that the carrier of a state $m \in P$, whenever it exists, is uniquely determined by m, since it is the smallest element of the set L_m . The carrier of m, if it exists, will be denoted by carr m.

In the following we shall suppose that each state $p \in P$ has the carrier.

LEMMA 5. — If carr p is the carrier of the state $p \in P$, then q (carr p) < 1 for every pure state $q \neq p$, $q \in P$.

Proof. — Suppose q (carr p) = 1 for some $q \neq p$. Then p(a) = 1 implies q(a) = 1, $a \in L$, so that $L_p \subset L_q$. But then q = p, a contradiction.

PROPOSITION 3. — *i*) The logic L is atomistic and the correspondence carr : $p \mapsto \operatorname{carr} p$, $p \in P$, is a one-to-one mapping of the set P onto the set of all atoms of the logic L.

ii) For every non-zero proposition $a \in L$ one has $a = \bigvee \{ \operatorname{carr} p : p \in P_a \}$. Vol. XXXII, nº 4 - 1980. *Proof.* — See [7].

We shall say that two states m_1 , m_2 are mutually orthogonal and write $m_1 \perp m_2$ if for some proposition $a \in L$ one has $m_1(a) = 1$ and $m_2(a) = 0$ [5]. For any $S \subseteq P$, define S^{\perp} to be the set of all pure states $p \in P$ such that $p \perp S$ (i. e. $p \perp q$ for all $q \in S$). Obviously $S \subseteq S^{\perp \perp}$. For the empty set \emptyset we put $\emptyset^{\perp} = P$.

PROPOSITION 4. — For every non-empty subset $T \subseteq P$ one has $T^{\perp \perp} = \overline{T}$. *Proof.* — See [7].

It can be easily seen that the map $\bot : T \mapsto T^{\bot}$ is an orthocomplementation in the set $\mathscr{F}(P)$ of all closed subspaces of P.

THEOREM 4. — For every $a \in L$, the set $P_a = \{ s \in P : s(a) = 1 \}$ belongs to $\mathscr{F}(P)$ and the mapping $a \mapsto P_a$ is an orthoinjection of the logic L into the set $\mathscr{F}(P)$.

Proof. - See [7].

THEOREM 5. — Let (L, P) be a quantum logic such that SP and MSP hold, and let there be at least four independent states in P. In addition, let each state $p \in P$ have the carrier carr $p \in L$. Then there exist a division ring K, an involutorial antiautomorphism $* : \lambda \to \lambda^*$ of K, a vector space V over K and a Hermitian form f, such that $\mathscr{F}(P)$ and $\mathscr{L}_f(V)$ are isomorphic (i. e. there exist, between them, a bijection which preserves order and orthocomplementation), where $\mathscr{L}_f(V)$ is the set of all subspaces of V, closed with respect to the form f.

Proof. — By Theorem 2 there exist a division ring K and a vector space V over K, such that the set $\mathscr{L}(P)$ of all subspaces of P is isomorphic to the lattice $\mathscr{L}(V)$ of all linear subspaces of V. If the set $\mathscr{L}(P)$ is finite dimensional, then V is finite dimensional. In this case $\mathscr{L}(P) = \mathscr{F}(P)$. Since $\mathscr{F}(P)$ is orthocomplemented, $\mathscr{L}(V)$ has an orthocomplementation induced by the one of $\mathscr{F}(P)$; then Theorem of Birkhoff and von Neumann [12] ensures the existence of a pair (*, f), such that

 $M^{\perp} = M^{0} = \{ v \in V : f(v, w) = 0, \text{ for all } w \in M \}$, $M \in \mathcal{L}(V)$.

Every subspace of V is closed with respect to the form f, and $\mathscr{L}(V)$ and $\mathscr{L}_{f}(V)$ coincide, so that the isomorphism between $\mathscr{L}(P)$ and $\mathscr{L}(V)$ preserves orthocomplementation.

Consider now the case of infinite dimension. We give a sketch of the proof, as in [2]. For the details see [8]. Let us denote by ω the isomorphism between $\mathscr{L}(P)$ and $\mathscr{L}(V)$. For every finite dimensional subspace M of V there exists a finite $T \in \mathscr{L}(P)$, such that $\omega(T) = M$. ω is an isomorphism between

Annales de l'Institut Henri Poincaré - Section A

 $[\emptyset, T] = \{ S \in \mathscr{L}(P) : S \subset T \}$ and $\mathscr{L}(M)$, the mapping $S \mapsto S^{\perp} \wedge T$ is an orthocomplementation of $[\emptyset, T]$, hence $\mathscr{L}(M)$ has an orthocomplementation induced by the one of $[\emptyset, T]$.

Let M_0 be a fixed 4-dimensional subspace of V. Since $\mathscr{L}(M_0)$ is orthocomplemented, there exist, by the theorem of Birkhoff and von Neumann, an involutorial antiautomorphism $\lambda \mapsto \lambda^*$ and a Hermitian form f_0 on M_0 , such that for $\omega(S) \in \mathscr{L}(M_0)$,

$$\omega(\mathbf{S})^{\perp} \wedge \mathbf{M}_0 = \{ w \in \mathbf{M}_0 : f_0(v, w) = 0 \text{ for all } v \in \omega(\mathbf{S}) \}.$$

For every finite dimensional subspace M of V containing M_0 , there exists a pair $(\bar{*}, f_M)$ such that, for all $\omega(S) \in \mathscr{L}(M)$,

$$\omega(\mathbf{S})^{\perp} \land \mathbf{M} = \{ w \in \mathbf{M} : f_{\mathbf{M}}(v, w) = 0 \text{ for all } v \in \omega(\mathbf{S}) \}.$$

Owing to the unicity of the pair $(\bar{*}, f_0)$ in M_0 , there exists a $\gamma \in K$ such that $\lambda^{\bar{*}} = \gamma^{-1}\lambda^*\gamma$ and $f_M(v, w) = f_0(v, w)\gamma$ for every $v, w \in M_0$. Then, substituting $(\bar{*}, f_M)$ by $(*, f_M\gamma^{-1})$, we get a unique Hermitian form f_M (with respect to *) which induces the orthocomplementation of $\mathscr{L}(M)$ and $f_M = f_0$ on M_0 . If $M_0 \subset M_1 \subset M_2$, then $f_{M_1} = f_{M_2}$ on M_1 .

For every pair $v, w \in V$ define

$$f(v, w) = f_{\mathsf{M}_0 + \mathsf{K}_v + \mathsf{K}_w}(v, w).$$

It can be shown that the function f so defined is a Hermitian form on V, that the image of the mapping ω is just $\mathscr{L}_f(V)$ and that ω preserves order and orthocomplementation between $\mathscr{F}(P)$ and $\mathscr{L}_f(V)$.

COROLLARY. — There exists an orthoinjection of the logic L into the set $\mathscr{L}_{f}(V)$.

Proof. — By theorem 4, the mapping $j : a \mapsto P_a$ is an orthoinjection of L into the set $\mathscr{F}(P)$. Then, by Theorem 5, the mapping $\omega \circ j$ is an orthoinjection of L into $\mathscr{L}_f(V)$.

REFERENCES

- [1] R. BAER, Linear algebra and projective geometry, Academic Press, New York, 1952 (Russian translation IL, Moscow, 1955).
- [2] E. G. BELTRAMETTI and G. CASSINELLI, Logical and mathematical structures of quantum mechanics, *Riv. Nuovo Cim.*, vol. 6, 1976, p. 321-404.
- [3] G. BIRKHOFF, Lattice theory, Amer. Math. Soc., Coll. Publ., New York, 1967.
- [4] S. P. GUDDER, Uniqueness and existence properties of bounded observables, *Pacific. J. Math.*, vol. 19, 1966, p. 81-93.
- [5] S. P. GUDDER, A superposition principle in physics, J. Math. Phys., vol. 11, 1970, p. 1037-1040.
- [6] S. P. GUDDER, Projective representations of quantum logics, Int. J. Theoret. Phys., vol. 3, 1970, p. 99-108.

Vol. XXXII, nº 4 - 1980.

SYLVIA PULMANNOVÁ

- [7] W. GUZ, On the lattice structure of quantum logics, Ann. Inst. Henri Poincaré, vol. 28, 1978, p. 1-7.
- [8] F. MAEDA and S. MAEDA, *Theory of symmetric lattices*, Springer-Verlag, Berlin, 1970.
- [9] S. PULMANNOVA, A superposition principle in quantum logics, Commun. Math. Phys., vol. 49, 1976, p. 47-51.
- [10] S. PULMANNOVA, The superposition principle and sectors in quantum logics, Int. J. Theoret. Phys., to be published.
- [11] V. S. VARADARAJAN, Probability in physics and a theorem on simultaneous observability, Commun. Pure Appl. Math., vol. 15, 1962, p. 189-217.
- [12] V. S. VARADARAJAN, Geometry of quantum theory, Van Nostrand, Princeton, N. Y., 1968.

(Manuscrit reçu le 19 février 1980).

360