Annales de l'I. H. P., section A

SYLVIA PULMANNOVÀ

Superpositions of states and a representation theorem

Annales de l'I. H. P., section A, tome 32, no 4 (1980), p. 351-360
<http://www.numdam.org/item? id=AIHPA_1980__32_4_351_0>
© Gauthier-Villars, 1980, tous droits réservés.
L'accès aux archives de la revue «Annales de l'I. H. P., section A » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Superpositions of states and a representation theorem

by
Sylvia PULMANNOVÀ
Institute for Measurement and Measurement Technique, Slovak Academy of Sciences, 88527 Bratislava, Czechoslovakia.

Abstract. - A quantum logic (L, P) is considered, where P is a set of pure states. The set $\mathscr{L}(\mathrm{P})$ of all subsets of P closed under superpositions is studied. It is shown that $\mathscr{L}(\mathrm{P})$ is isomorphic to the set of all linear subspaces of a vector space. In case that each state in P has a carrier, an orthocomplementation can be defined in a subset $\mathscr{F}(\mathrm{P})$ of $\mathscr{L}(\mathrm{P})$. An imbedding theorem for the logic L into the logic $L(H)$ of a Hilbert space H is then proved.

1. DEFINITIONS AND NOTATION

Let L be a partially ordered set with the first and last elements 1 and 0 , respectively, and with the orthocomplementation $a \mapsto a^{\perp}: \mathrm{L} \rightarrow \mathrm{L}$. Let the latlice sum $\bigvee a_{i}$ exist in L for any sequence $\left\{a_{i}\right\} \subset \mathbf{L}$ such that $a_{i} \leq a_{j}^{\perp}$, $i \neq j, i, j=1_{1}^{i}, 2, \ldots$ The elements $a, b \in \mathrm{~L}$ are said to be orthogonal $(a \perp b)$ if $a \leq b^{\perp}$ and they are said to be compatible ($a \leftrightarrow b$) if there exist elements a_{1}, b_{1}, c in L, mutually orthogonal and such that $a=a_{1} \vee c, b=b_{1} \vee c$. A map $m: \mathrm{L} \rightarrow[0,1]$ is a state on L if $i) m(1)=1, i i) m\left(\vee a_{i}\right)=\Sigma m\left(a_{i}\right)$ for any sequence of mutually orthogonal elements in \mathbf{L}. The state m is pure if it cannot be written in the form $m=c m_{1}+(1-c) m_{2}$, where $0<c<1$ and m_{1}, m_{2} are distinct states. Let P be a set of pure states on L . For $a \in \mathrm{~L}$, $m \in \mathrm{P}$, define $\mathrm{P}_{a}=\{m \in \mathrm{P}: m(a)=1\}, \mathrm{L}_{m}=\{a \in \mathrm{~L}: m(a)=1\}$. We shall suppose that $i) \mathbf{P}_{a} \subset \mathrm{P}_{b}$ implies $a \leq b(a, b \in \mathrm{~L})$ and $\left.i i\right) \mathbf{L}_{m_{1}} \subset \mathbf{L}_{m_{2}}$
implies $m_{1}=m_{2}$. From i) it follows that L is orthomodular, i. e. $a \leq b$ ($a, b \in \mathrm{~L}$) implies $b=a \vee\left(b \wedge a^{\perp}\right)$ and that to any $a \in \mathrm{~L}, a \neq 0$, there is $m \in \mathrm{P}$ such that $m(a)=1$ [4]. We shall suppose, in addition, that if $a, b, c \in \mathrm{~L}$ are mutually compatible, then $a \leftrightarrow b \vee c$. The pair (L, P), which satisfies all the suppositions mentioned above, is called a quantum logic.

A state $m \in \mathrm{P}$ is a superposition of the states $p, q \in \mathrm{P}$ if $p(a)=0$ and $q(a)=0$ imply $m(a)=0$ (or, alternatively, if $p(a)=1$ and $q(a)=1$ imply $m(a)=1)$ [12]. A set $\mathrm{S} \subset \mathrm{P}$ is said to be closed under superpositions if it contains every superposition of any pair of its elements. If $S \subset P$ is not closed under superpositions, let $\Lambda(\mathrm{S})$ denote the smallest subset of P , closed under superpositions and containing S. The set $S \subset P$ is a sector if $i) S=\Lambda(S)$, ii) to any $p, q \in \mathrm{~S}, p \neq q$, there is $s \in \mathrm{~S}, s \neq p, q$ such that $s \in \Lambda\{p, q\}$, iii) if $q \in \mathrm{P}, q \notin \mathrm{~S}$ then $\Lambda\{s, q\}=\{s, q\}$ for any $s \in \mathrm{~S}$. We say that the superposition principle holds in (\mathbf{L}, P) if for any $p, q \in \mathbf{P}, p \neq q$, there is $r \in \mathrm{P}, r \neq p, q$ such that $r \in \Lambda(\{p, q\})$ [9].

Let C be the set of all elements of L which are compatible with all the other elements, i. e. $\mathrm{C}=\{a \in \mathrm{~L}: a \leftrightarrow b$ for any $b \in \mathrm{~L}\} . \mathrm{C}$ is called the centre of \mathbf{L}. It was shown that C is a Boolean sub- σ-algebra of L . If p is a pure state and $c \in \mathrm{C}$, then $p(c)=1$ or $p(c)=0[11,12]$. A logic L is called irreducible if its centre C is trivial, i. e. $C=\{0,1\}$. It was shown that if the superposition principle holds on (L, P), then L is irreducible [9].

For $\mathrm{S} \subset \mathrm{P}$ and $a \in \mathrm{~L}$, let us write $\mathrm{S}(a)=i$ if $m(a)=i$ for all $m \in \mathrm{~S}$, where $i=0.1$. Let $\overline{\mathrm{S}}=\{m \in \mathrm{P}: \mathrm{S}(a)=1$ imply $m(a)=1\}$. Gudder [6] introduced the following postulate (minimal superposition postulate, MSP): if \mathbf{S} is any finite subset of \mathbf{P} and $m \in \overline{\mathbf{S}}$ is such that $m \notin \overline{\mathrm{Q}}$ for any subset $\mathrm{Q} \subset \mathrm{S}, \mathrm{Q} \neq \mathrm{S}$ (i. e. m is a minimal superposition), then $\left\{m, \mathrm{~S}_{1}\right\}^{-} \cap \overline{\mathrm{S}}_{2} \neq \varnothing$ for any $S_{1}, S_{2} \subset P$ such that $S_{1} \cap S_{2}=\varnothing$ and $S_{1} \cup S_{2}=S$.

Let us denote by $\mathscr{L}(\mathrm{P})$ the set of all subsets $\mathrm{S} \subset \mathrm{P}$ such that $\Lambda(\mathrm{S})=\mathrm{S}$.

2. STRUCTURE OF THE SET $\mathscr{L}(\mathbf{P})$

In the sequel we shall suppose that (L, P) is a quantum logic and that the MSP holds in P, P being a set of pure states on L .

We recall that the map $S \mapsto \Lambda(S)$ has the following properties [9]:
i) $\mathrm{S}_{1} \subset \mathrm{~S}_{2}$ implies $\Lambda\left(\mathrm{S}_{1}\right) \subset \Lambda\left(\mathrm{S}_{2}\right)$,
ii) if $\mathrm{S}_{\alpha} \subset \mathrm{P}, \alpha \in \mathrm{A}$, then $\bigcap_{\alpha \in \mathrm{A}} \Lambda\left(\mathrm{S}_{\alpha}\right)$ is closed under superpositions, and $\Lambda\left(\bigcap_{\alpha} \mathrm{S}_{\alpha}\right) \subset \bigcap_{\alpha} \Lambda\left(\mathrm{S}_{\alpha}\right)$,
iii) if $\mathrm{S}_{\alpha} \subset \mathrm{P}, \alpha \in \mathrm{A}$, then $\bigcup_{\alpha} \Lambda\left(\mathrm{S}_{\alpha}\right) \subset \Lambda\left(\bigcup_{\alpha} \mathrm{S}_{\alpha}\right)$.

In addition, if the MSP holds, then by [10]:
iv) $\Lambda(\mathbf{S})=\overline{\mathbf{S}}$ for any finite subset \mathbf{S} of \mathbf{P},
v) $p \in \Lambda(\{r, q\})$ implies $r \in \Lambda(\{p, q\})$ for any distinct states $p, q, r \in \mathrm{P}$.

Let $\mathscr{L}(\mathrm{P})=\{\mathrm{S}: \mathrm{S} \subset \mathrm{P}, \Lambda(\mathrm{S})=\mathrm{S}\} . \mathscr{L}(\mathrm{P})$ is a partially ordered set by the set inclusion.

For $\mathrm{S}_{\alpha} \in \mathscr{L}(\mathrm{P}), \alpha \in \mathrm{A}$, let us set

$$
\bigwedge_{\alpha \in \mathbf{A}} \mathrm{S}_{\alpha}=\Lambda\left(\bigcap_{\alpha \in \mathbf{A}} \mathrm{S}_{\alpha}\right) \text {, and } \bigvee_{\alpha \in \mathbf{A}} \mathrm{S}_{\alpha}=\Lambda\left(\bigcup_{\alpha \in \mathbf{A}} \mathrm{S}_{\alpha}\right)
$$

Lemma 1. - For $\mathrm{S}_{\alpha} \in \mathscr{L}(\mathrm{P}), \alpha \in \mathrm{A}, \bigwedge_{\alpha} \mathrm{S}_{\alpha}=\bigcap_{\alpha} \mathrm{S}_{\alpha}$.
Proof. - By ii), $\Lambda\left(\bigcap_{\alpha} \mathrm{S}_{\alpha}\right) \subset \bigcap_{\alpha} \Lambda\left(\mathrm{S}_{\alpha}\right)=\bigcap_{\alpha} \mathrm{S}_{\alpha}$. On the other hand,
$\bigcap_{\alpha} S_{\alpha} \subset \Lambda\left(\bigcap_{\alpha} S_{\alpha}\right)$, i. e. $\bigwedge_{\alpha} S_{\alpha}=\bigcap_{\alpha} S_{\alpha}$.
Lemma 2. - For $\mathrm{S}_{1}, \mathrm{~S}_{2} \in \mathscr{L}(\mathrm{P})$,

$$
\mathbf{S}_{1} \vee \mathbf{S}_{2}=\left\{p \in \mathbf{P}: p \in \Lambda\{r, q\}, r \in \mathbf{S}_{1}, q \in \mathbf{S}_{2}\right\}
$$

Proof. - Let us set $\mathrm{S}=\left\{p \in \mathrm{P}: p \in \Lambda\{r, q\}, r \in \mathrm{~S}_{1}, q \in \mathrm{~S}_{2}\right\}$. Clearly, $\mathrm{S}_{1} \cup \mathrm{~S}_{2} \subset \mathrm{~S}$ and $r \in \mathrm{~S}_{1}, q \in \mathrm{~S}_{2}$ imply $\Lambda\{r, q\} \subset \Lambda\left(\mathrm{S}_{1} \cup \mathrm{~S}_{2}\right)$. We see that $S \subset \Lambda\left(S_{1} \cup S_{2}\right)=S_{1} \vee S_{2}$. We shall complete the proof by showing that $\mathrm{S}=\Lambda(\mathrm{S})$. Let $p_{1}, p_{2} \in \mathrm{~S}$. Then there are $r_{1}, r_{2} \in \mathrm{~S}_{1}$ and $q_{1}, q_{2} \in \mathrm{~S}_{2}$ such that $p_{1} \in \Lambda\left\{r_{1}, q_{1}\right\}, p_{2} \in \Lambda\left\{r_{2}, q_{2}\right\}$. Let $p \in \Lambda\left\{p_{1}, p_{2}\right\}$. Then, clearly, $p \in \Lambda\left\{r_{1}, q_{1}, r_{2}, q_{2}\right\}=\left\{r_{1}, q_{1}, r_{2}, q_{2}\right\}^{-}$. The following cases can occure: i) $p \in \Lambda\left\{r_{1}, r_{2}\right\}$, ii) $p \in \Lambda\left\{q_{1}, q_{2}\right\}$, iii) $p \in \Lambda\left\{r_{i}, q_{j}\right\}$ (i, $\left.j=1,2\right)$, $i v)$ no of i, $i i$, , iii) comes true.

It is straightforward that in the cases i, ii), iii) $p \in \mathrm{~S}$. Let us consider the case $i v$). If $p \in \Lambda\left\{r_{1}, q_{1}, r_{2}\right\}$, then by MSP, $\Lambda\left\{r_{1}, r_{2}\right\} \cap \Lambda\left\{p, q_{1}\right\} \neq \varnothing$. Let $m \in \Lambda\left\{r_{1}, r_{2}\right\} \cap \Lambda\left\{p, q_{1}\right\}$. Then $m \in \mathrm{~S}_{1}, p \in \Lambda\left\{m, q_{1}\right\}, q_{1} \in \mathrm{~S}_{2}$ imply that $p \in \mathrm{~S}$. Analogical reasoning can be done in all cases in which there is a set $\mathrm{Q} \subset\left\{r_{1}, r_{2}, q_{1}, q_{2}\right\}$ such that $p \in \Lambda(\mathrm{Q})$. Now let $p \in \Lambda\left\{r_{1}, r_{2}\right.$, $\left.q_{1}, q_{2}\right\}$ be a minimal superposition. Then by MSP, there is

$$
m \in \Lambda\left\{r_{1}, r_{2}\right\} \cap \Lambda\left\{p, q_{1}, q_{2}\right\}
$$

This implies $m \in \mathrm{~S}_{1}, m \in \Lambda\left\{p, q_{1}, q_{2}\right\}$. The following cases can occure (a) $m \in \Lambda\left\{p, q_{1}\right\}$ (or, analogically, $m \in \Lambda\left\{p, q_{2}\right\}$), which implies $p \in \Lambda\left\{m, q_{1}\right\}$ (or $p \in \Lambda\left\{m, q_{2}\right\}$), i. e. $p \in \mathrm{~S}$. b) $m \in \Lambda\left\{q_{1}, q_{2}\right\}$. Then $q_{1} \in \Lambda\left\{m, q_{2}\right\}$, but $m \in \Lambda\left\{r_{1}, r_{2}\right\}$ implies $q_{1} \in \Lambda\left\{r_{1}, r_{2}, q_{2}\right\}$. Hence, $\Lambda\left\{r_{1}, r_{2}, q_{1}, q_{2}\right\} \subset \Lambda\left\{r_{1}, r_{2}, q_{2}\right\}$, i. e. $p \in \Lambda\left\{r_{1}, r_{2}, q_{2}\right\}$, which is the preceding case. c) $m \in \Lambda\left\{p, q_{1}, q_{2}\right\}$ is a minimal superposition. Then,
by MSP, there is $n \in \Lambda\left\{q_{1}, q_{2}\right\} \cap \Lambda\{m, p\}$. $n \in \Lambda\left\{q_{1}, q_{2}\right\}$ implies $n \in \mathbf{S}_{2}$ and $n \in \Lambda\{m, p\}$ implies $p \in \Lambda\{m, n\}, m \in \mathbf{S}_{1}, n \in \mathbf{S}_{2}$, hence $p \in \mathbf{S}$. This completes the proof.

Lemma 3.-For any $\mathrm{Q} \subset \mathrm{P}, \Lambda(\mathrm{Q})=\cup\{\Lambda(\mathrm{T}): \mathrm{T}$ is a finite subset of Q$\}$.
Proof. - Let us set $\mathrm{B}=\cup\{\Lambda(\mathrm{T}): \mathrm{T}$ is a finite subset of Q$\}$. Clearly, $\mathrm{Q} \subset \mathrm{B} \subset \Lambda(\mathrm{Q})$. We show that B is closed under superpositions. Indeed, let $p_{1}, p_{2} \in \mathrm{~B}$, then there are $\mathrm{T}_{1}, \mathrm{~T}_{2} \subset \mathrm{Q}$, finite subsets, such that $p_{1} \in \Lambda\left(\mathrm{~T}_{1}\right)$ and $p_{2} \in \Lambda\left(\mathrm{~T}_{2}\right)$. But then $p_{1}, p_{2} \in \Lambda\left(\mathrm{~T}_{1} \cup \mathrm{~T}_{2}\right)$, hence

$$
\Lambda\left\{p_{1}, p_{2}\right\} \subset \Lambda\left(\mathrm{T}_{1} \cup \mathrm{~T}_{2}\right) \subset \mathrm{B}
$$

From this it follows that $\Lambda(B)=B$, hence $\Lambda(Q)=B$.
Lemma 4. - If $\Phi \subset \mathscr{L}(\mathrm{P})$ is an ordered subset (by inclusion) then the set $\mathrm{B}=\cup\{\mathrm{T}: \mathrm{T} \in \Phi\} \in \mathscr{L}(\mathrm{P})$.

Proof. - We have to show that $\Lambda(\mathrm{B})=\mathrm{B}$. Let $p_{1}, p_{2} \in \mathrm{~B}$, then there are $\mathrm{T}_{1}, \mathrm{~T}_{2} \in \Phi$ such that $p_{1} \in \mathrm{~T}_{1}, p_{2} \in \mathrm{~T}_{2}$. There holds $\mathrm{T}_{1} \subseteq \mathrm{~T}_{2}$ or $\mathrm{T}_{2} \subseteq \mathrm{~T}_{1}$. Let $\mathrm{T}_{1} \subseteq \mathrm{~T}_{2}$, then $p_{1}, p_{2} \in \mathrm{~T}_{2}$ implies that $\Lambda\left\{p_{1}, p_{2}\right\} \subset \mathrm{T}_{2}$, hence $\Lambda\left\{p_{1}, p_{2}\right\} \subset \mathbf{B}$.

Theorem 1. - The lattice $\mathscr{L}(\mathrm{P})$ has the following properties:
$i)$ it is modular,
ii) it is atomistic and its atoms are the singleton subsets of P ,
iii) it has the covering property,
$i v)$ if ω is an atom in $\mathscr{L}(\mathrm{P})$ and A is a set of atoms in $\mathscr{L}(\mathrm{P})$ such that $\omega \in \Lambda(\mathrm{A})$, then there exists a finite subset $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right\} \subset \mathrm{A}$ such that $\omega \in \Lambda\left\{\omega_{1}, \ldots, \omega_{n}\right\}$,
$v)$ to any $\mathrm{S} \in \mathscr{L}(\mathrm{P})$ there is $\mathrm{T} \in \mathscr{L}(\mathrm{P})$ such that $\mathrm{S} \wedge \mathrm{T}=\varnothing$ and $\mathrm{S} \vee \mathrm{T}=\mathrm{P}$.
Proof. - i) Let $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3} \in \mathscr{L}(\mathrm{P}), \mathrm{S}_{1} \subseteq \mathrm{~S}_{3}$. Clearly,

$$
\left(S_{1} \vee S_{2}\right) \wedge S_{3} \supseteq S_{1} \vee\left(S_{2} \wedge S_{3}\right)
$$

Let $p \in\left(\mathbf{S}_{1} \vee \mathrm{~S}_{2}\right) \wedge \mathrm{S}_{3}$. Then $p \in \mathrm{~S}_{1} \vee \mathrm{~S}_{2}$ implies $p \in \Lambda\left\{q_{1}, q_{2}\right\}, q_{1} \in \mathrm{~S}_{1}$, $q_{2} \in \mathbf{S}_{2}$ (Lemma 2). Then

$$
q_{1} \in \Lambda\left\{p, q_{2}\right\} \subset \mathrm{S}_{3} \vee \mathrm{~S}_{2}, q_{2} \in \Lambda\left\{p, q_{1}\right\} \subset \mathrm{S}_{3} \vee \mathrm{~S}_{1} .
$$

Hence, $q_{1} \in\left(\mathrm{~S}_{3} \vee \mathrm{~S}_{2}\right) \wedge \mathrm{S}_{1}, q_{2} \in\left(\mathrm{~S}_{3} \vee \mathrm{~S}_{1}\right) \wedge \mathrm{S}_{2}$, so that $p \in \Lambda\left\{q_{1}, q_{2}\right\}$ implies

$$
\begin{aligned}
p \in\left[\left(S_{3} \vee S_{1}\right) \wedge S_{2}\right] & \vee\left[\left(S_{3} \vee S_{2}\right) \wedge S_{1}\right] \\
& =\left(S_{3} \wedge S_{2}\right) \vee\left[\left(S_{3} \vee S_{2}\right) \wedge S_{1}\right] \subset S_{1} \vee\left(S_{2} \wedge S_{3}\right)
\end{aligned}
$$

ii) Evidently, the singleton sets $\{s\}, s \in \mathrm{P}$, are atoms in $\mathscr{L}(\mathrm{P})$. If $\mathrm{S} \in \mathscr{L}(\mathrm{P})$, then $\mathrm{S}=\Lambda\{s: s \in \mathrm{~S}\}=\bigvee_{s \in \mathrm{~S}}\{s\}$.
iii) We have to show that for any $\mathrm{S}, \mathrm{Q} \in \mathscr{L}(\mathrm{P})$ and $s \in \mathrm{P}(s \notin \mathrm{~S})$, $\mathrm{S} \subset \mathrm{Q} \subset \mathbf{S} \vee\{s\}$ implies $\mathrm{Q}=\mathrm{S}$ or $\mathrm{Q}=\mathrm{S} \vee\{s\}$. Let $\mathrm{Q} \neq \mathrm{S}$. Then there is $r \in \mathrm{Q}, r \notin \mathrm{~S}$. From $\mathrm{Q} \subset \mathrm{S} \vee\{s\}$ it follows $r \in \mathrm{~S} \vee\{s\}$, i. e. there is $p \in \mathrm{~S}$ such that $r \in \Lambda\{p, s\}$ (Lemma 2). From this it follows that $s \in \Lambda\{r, p\} \subset \mathrm{Q}$. Then $\mathrm{S} \subset \mathrm{Q}, s \in \mathrm{Q}$ imply $\mathrm{S} \vee\{s\} \subset \mathrm{Q}, \mathrm{i} . \mathrm{e} . \mathrm{S} \vee\{s\}=\mathrm{Q}$.
iv) By Lemma 3, $\Lambda(\mathrm{A})=\cup\{\Lambda(\mathrm{S}): \mathrm{S}$ fisite subset of A$\}$. Hence, for any $\omega \in \Lambda(\mathrm{A})$, there is a finite subset $\mathrm{S}=\left\{s_{1}, \ldots, s_{n}\right\} \subset \mathrm{A}$ such that $\omega \in \Lambda(S)$.
v) Let Θ be the set of all $\mathrm{W} \in \mathscr{L}(\mathrm{P})$ such that $\mathrm{S} \wedge \mathrm{W}=\varnothing . \Theta$ contains \varnothing, therefore it is non-empty. If Φ is any ordered set of elements of Θ, let \mathbf{J} be the set-theoretic sum of all elements in Φ. By Lemma $4, \mathbf{J} \in \mathscr{L}(\mathrm{P})$; and, clearly $\mathbf{S} \wedge \mathbf{J}=\varnothing$. From this it follows that $\mathbf{J} \in \Theta$. By Zorn's lemma there is a maximal element $T \in \Theta$. Now let us consider the element $S \vee T$. Let $s \in \mathrm{P}, s \notin \mathrm{~T}$. Then $\mathrm{T} \subset \Lambda(\mathrm{T} \cup\{s\})$, and by the maximality of T , $\mathrm{S} \wedge \Lambda(\mathrm{T} \vee\{s\}) \neq \varnothing$. Let $p \in \mathrm{~S} \wedge(\mathrm{~T} \vee\{s\})$. By Lemma 2 then there is $t \in \mathrm{~T}$ such that $p \in \Lambda\{t, s\}$. Then $s \in \Lambda\{p, t\}$, and from $p \in \mathrm{~S}$ and $t \in \mathrm{~T}$ it follows that $s \in \mathbf{S} \vee \mathrm{~T}$, hence $\mathrm{S} \vee \mathrm{T}=\mathrm{P}$.

We shall say that the states $s_{1}, \ldots, s_{n} \in \mathrm{P}$ are independent if $s_{i} \notin \Lambda\left\{s_{j}: j \neq i\right\}, i, j=1,2, \ldots, n$.

If s_{1}, \ldots, s_{n} are independent states and q is a state such that

$$
s_{1} \in \Lambda\left\{q, s_{2}, \ldots, s_{n}\right\} \text { then } q \in \Lambda\left\{s_{1}, \ldots, s_{n}\right\}
$$

Indeed, there is a minimal subset

$$
\mathrm{I} \subset\{2, \ldots, n\} \text { such that } s_{1} \in \Lambda\left\{q, s_{i}: i \in \mathrm{I}\right\}
$$

From the MSP we obtain

$$
\{q\} \wedge \Lambda\left\{s_{1}, s_{i}: i \in \mathrm{I}\right\} \neq \varnothing
$$

hence

$$
q \in \Lambda\left\{s_{1}, s_{i}: i \in \mathrm{I}\right\} \subset \wedge\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}
$$

By permutation of the index set $1,2, \ldots, n$ we obtain that $s_{i} \in \Lambda\left\{q, s_{j}: j \neq i\right\}$ implies $q \in \Lambda\left\{s_{1}, \ldots, s_{n}\right\}$.

We say that a finite set of states $\left\{s_{1}, \ldots, s_{n}\right\}$ is a basis for $\mathrm{S} \in \mathscr{L}(\mathrm{P})$ if $s_{1}, s_{2}, \ldots, s_{n}$ are independent and $\mathrm{S}=\Lambda\left\{s_{1}, \ldots, s_{n}\right\}$. It can be shown by the same method as in [6] that if $\left\{s_{1}, \ldots, s_{n}\right\}$ and $\left\{p_{1}, \ldots, p_{k}\right\}$ are bases for S then $n=k$. If $\mathrm{S} \in \mathscr{L}(\mathrm{P})$ has a basis $\left\{s_{1}, \ldots, s_{n}\right\}$ then n is called the dimension of S and is denoted by $d(\mathrm{~S})=n$. If S has a basis, we say that S is finite dimensional. Recall that a dimension function on a lattice K is a real valued function on K with the properties:
i) $d(\varnothing)=0, d(a) \geq 0$ for all $a \in \mathrm{~K}$,
ii) if $a \leq b$ and $a \neq b$, then $d(a)<d(b)$,
iii) $d(a \vee b)+d(a \wedge b)=d(a)+d(b)$ for all $a, b \in \mathbf{K}$.

The following proposition can be proved analogically as Theorem 3.10 in [6].

Proposition 1. - Let $\mathrm{S} \in \mathscr{L}(\mathrm{P})$ be finite dimensional. Then d is a dimension function on $[\varnothing, \mathrm{S}]=\{\mathrm{T} \in \mathscr{L}(\mathrm{P}): \mathrm{T} \subseteq \mathrm{S}\}$.

Proposition 2. - Let $\mathrm{S} \in \mathscr{L}(\mathrm{P})$ be finite dimensional. Then [Ø, S$]$ is a complemented modular lattice.

Proof. - It follows from Theorem 1.
We can define in the set $\mathscr{L}(\mathrm{P})$, as in a projective geometry, the notions of lines and planes. An element $\mathrm{S} \in \mathscr{L}(\mathrm{P})$ is a line if $d(\mathrm{~S})=2$, and it is a plane if $d(\mathrm{~S})=3$. If $s_{1}, s_{2} \in \mathrm{P}$ are distinct states, then $d\left(\Lambda\left\{s_{1}, s_{2}\right\}\right)=2$ and hence $\Lambda\left\{s_{1}, s_{2}\right\}$ is a line. If S_{1} and S_{2} are distinct lines and $S_{1} \wedge S_{2} \neq \varnothing$ then $d\left(\mathrm{~S}_{1} \wedge \mathrm{~S}_{2}\right)=1$. In this case the identity

$$
d\left(\mathbf{S}_{1} \vee \mathbf{S}_{2}\right)=d\left(\mathbf{S}_{1}\right)+d\left(\mathbf{S}_{2}\right)-d\left(\mathbf{S}_{1} \wedge \mathbf{S}_{2}\right)
$$

shows that $S_{1} \vee S_{2}$ is a plane. This yields a new formulation of the SP: the superposition principle holds if and only if every line in $\mathscr{L}(\mathrm{P})$ has at least three distinct points lying on it. In this case $[\varnothing, S]$ is a geometry for any finite $\mathrm{S} \in \mathscr{L}(\mathrm{P})[12$, Th. 2.15 , p. 30).

Theorem 2. - Let (L, P) be a quantum logic such that the superposition principle (SP) and the minimal superposition principle (MSP) hold and let there exist at least four independent states in P . Then there exist a division ring K and a vector space V over K , such that the set $\mathscr{L}(\mathrm{P})$ is isomorphic to the lattice $\mathscr{L}(\mathrm{V})$ of all linear subspaces of V (in the sense that there exists a bijection between $\mathscr{L}(\mathrm{P})$ and $\mathscr{L}(\mathrm{V})$ that preserves their order structure). $\mathscr{L}(\mathrm{V})$ is the set of all linear subspaces of V ordered under set-theoretical inclusion and meet and join operations are defined by

$$
\begin{array}{lll}
\vee \mathrm{M}_{i}=\Sigma \mathrm{M}_{i}, & \mathrm{M}_{i} \in \mathscr{L}(\mathrm{~V}) \quad, \quad i=1,2, \ldots \\
\wedge \mathrm{M}_{i}=\cap \mathrm{M}_{i}, & \mathrm{M}_{i} \in \mathscr{L}(\mathrm{~V}), \quad i=1,2, \ldots
\end{array}
$$

Proof. - Proof of this theorem follows from Theorem 1 and Theorem in [1, Ch. VII, § 6, p. 375].

In [10], there is shown that the set P can be written as the union of sectors if and only if $\Lambda\{p, q, r\} \neq \Lambda\{p, q\} \cup \Lambda\{q, r\}$ for any distinct states $p, q, r \in \mathrm{P}$ such that $p \approx q, q \approx r, r \notin \Lambda\{p, q\}$, where $p \approx q$ means that there is a state $u \in \mathrm{P}, u \neq p, q$ such that $u \in \Lambda\{p, q\}$. Now we shall show that this condition is always fulfilled.

Theorem 3. - Let (L, P) be a quantum logic such that the MSP holds. Let p, q, r be distinct states in P such that $p \approx q, q \approx r$ and $r \notin \Lambda\{p, q\}$.

Then $\Lambda\{p, q, r\} \neq \Lambda\{p, q\} \cup \Lambda\{q, r\}$, so that P can be written as the union of sectors.

Proof. - From $p \approx q$ and $q \approx r$ it follows that there are $s_{1} \in \Lambda\{p, q\}$, $s_{1} \neq p, q$ and $s_{2} \in \Lambda\{q, r\}, s_{2} \neq q, r$. As
$\Lambda\left\{s_{1}, s_{2}\right\} \vee \Lambda\{p, r\} \subset \Lambda\{p, q, r\} \quad, d\left(\Lambda\left\{s_{1}, s_{2}\right\} \vee \Lambda\{p, r\}\right) \leq 3$. The relation $d(a \wedge b)=d(a)+d(b)-d(a \vee b)$ then implies that $d\left(\Lambda\left\{s_{1}, s_{2}\right\} \wedge \Lambda\{p, r\}\right) \geq 1$. But if $\Lambda\left\{s_{1}, s_{2}\right\}=\Lambda\{p, r\}$, then $s_{1} \in \Lambda\{p, r\} \wedge \Lambda\{p, q\}$ implies $s_{1}=p$, a contradiction. Hence, $d\left(\Lambda\left\{s_{1}, s_{2}\right\} \wedge \Lambda\{p, r\}\right)=1$. Let $\Lambda\left\{s_{1}, s_{2}\right\} \wedge \Lambda\{p, r\}=\{t\}$. We shall show that $t \notin \Lambda\{p, q\}, t \notin \Lambda\{q, r\}$. Indeed, if $t \in \Lambda\{p, q\}$, then $q \in \Lambda\{t, p\}$, but $t \in \Lambda\{p, r\}$ implies $q \in \Lambda\{p, r\}$, a contradiction. Analogically we show that $t \notin \Lambda\{q, r\}$. Hence, we found $t \in \Lambda\{p, q, r\}, t \notin \Lambda\{p, q\}$, $t \notin \Lambda\{q, r\}$.

We shall call the elements of $\mathscr{L}(\mathrm{P})$ the subspaces of P .

3. CLOSED SUBSPACES OF P

Let us set $\mathscr{F}(\mathrm{P})=\{\mathrm{S} \subset \mathrm{P}: \mathrm{S}=\overline{\mathrm{S}}\}$. Clearly, $\Lambda(\overline{\mathrm{S}})=\overline{\mathrm{S}}$, so that $\mathscr{F}(\mathrm{P}) \subset \mathscr{L}(\mathrm{P})$. The map $\mathrm{S} \mapsto \overline{\mathrm{S}}$ is a closure operation in the sense of Birkhoff [3], so that the set $\mathscr{F}(\mathrm{P})$ becomes a complete lattice whose join and meet operations are given by

$$
\bigvee_{j} \mathrm{~S}_{j}=\left(\bigcup_{j} \mathrm{~S}_{j}\right)^{-} \quad \text { and } \quad \bigwedge_{j} \mathrm{~S}_{j}=\bigcap_{j} \mathrm{~S}_{j}[5]
$$

The proposition $a \in \mathrm{~L}$ is said to be a carrier of a state m, if
i) $m(a)=1$,
ii) $b \not \perp a$ implies $m(b)>0$.

Notice that the carrier of a state $m \in \mathrm{P}$, whenever it exists, is uniquely determined by m, since it is the smallest element of the set $\mathrm{L}_{\boldsymbol{m}}$. The carrier of m, if it exists, will be denoted by carr m.

In the following we shall suppose that each state $p \in \mathrm{P}$ has the carrier.

Lemma 5. - If carr p is the carrier of the state $p \in \mathrm{P}$, then q (carr p) <1 for every pure state $q \neq p, q \in \mathrm{P}$.

Proof. - Suppose $q(\operatorname{carr} p)=1$ for some $q \neq p$. Then $p(a)=1$ implies $q(a)=1, a \in \mathrm{~L}$, so that $\mathbf{L}_{p} \subset \mathbf{L}_{q}$. But then $q=p$, a contradiction.

Proposition 3. $-i$) The logic L is atomistic and the correspondence carr : $p \mapsto \operatorname{carr} p, p \in \mathrm{P}$, is a one-to-one mapping of the set P onto the set of all atoms of the logic L.
ii) For every non-zero proposition $a \in \mathrm{~L}$ one has $a=\mathrm{V}\left\{\operatorname{carr} p: p \in \mathrm{P}_{a}\right\}$.

Proof. - See [7].
We shall say that two states m_{1}, m_{2} are mutually orthogonal and write $m_{1} \perp m_{2}$ if for some proposition $a \in \mathrm{~L}$ one has $m_{1}(a)=1$ and $m_{2}(a)=0$ [5]. For any $\mathrm{S} \subset \mathrm{P}$, define S^{\perp} to be the set of all pure states $p \in \mathrm{P}$ such that $p \perp \mathrm{~S}$ (i. e. $p \perp q$ for all $q \in \mathrm{~S}$). Obviously $\mathrm{S} \subset \mathrm{S}^{\perp \perp}$. For the empty set \varnothing we put $\varnothing^{\perp}=\mathrm{P}$.

Proposition 4. - For every non-empty subset $\mathbf{T} \subset \mathbf{P}$ one has $\mathbf{T}^{\perp \perp}=\overline{\mathrm{T}}$.
Proof. - See [7].
It can be easily seen that the map $\perp: T \mapsto T^{\perp}$ is an orthocomplementation in the set $\mathscr{F}(\mathrm{P})$ of all closed subspaces of P .

Theorem 4. - For every $a \in \mathrm{~L}$, the set $\mathrm{P}_{a}=\{s \in \mathrm{P}: s(a)=1\}$ belongs to $\mathscr{F}(\mathrm{P})$ and the mapping $a \mapsto \mathrm{P}_{a}$ is an orthoinjection of the logic L into the set $\mathscr{F}(\mathrm{P})$.

Proof. - See [7].

Theorem 5. - Let (L, P) be a quantum logic such that SP and MSP hold, and let there be at least four independent states in P. In addition, let each state $p \in \mathbf{P}$ have the carrier carr $p \in \mathrm{~L}$. Then there exist a division ring K , an involutorial antiautomorphism * : $\lambda \rightarrow \lambda^{*}$ of K , a vector space V over K and a Hermitian form f, such that $\mathscr{F}(\mathrm{P})$ and $\mathscr{L}_{f}(\mathrm{~V})$ are isomorphic (i. e. there exist, between them, a bijection which preserves order and orthocomplementation), where $\mathscr{L}_{f}(\mathrm{~V})$ is the set of all subspaces of V , closed with respect to the form f.

Proof. - By Theorem 2 there exist a division ring K and a vector space V over K, such that the set $\mathscr{L}(\mathrm{P})$ of all subspaces of P is isomorphic to the lattice $\mathscr{L}(\mathrm{V})$ of all linear subspaces of V . If the set $\mathscr{L}(\mathrm{P})$ is finite dimensional, then V is finite dimensional. In this case $\mathscr{L}(\mathrm{P})=\mathscr{F}(\mathrm{P})$. Since $\mathscr{F}(\mathrm{P})$ is orthocomplemented, $\mathscr{L}(\mathrm{V})$ has an orthocomplementation induced by the one of $\mathscr{F}(\mathrm{P})$; then Theorem of Birkhoff and von Neumann [12] ensures the existence of a pair $(*, f)$, such that

$$
\mathbf{M}^{\perp}=\mathbf{M}^{0}=\{v \in \mathrm{~V}: f(v, w)=0, \text { for all } w \in \mathbf{M}\} \quad, \quad \mathbf{M} \in \mathscr{L}(\mathrm{V})
$$

Every subspace of V is closed with respect to the form f, and $\mathscr{L}(\mathrm{V})$ and $\mathscr{L}_{f}(\mathrm{~V})$ coincide, so that the isomorphism between $\mathscr{L}(\mathrm{P})$ and $\mathscr{L}(\mathrm{V})$ preserves orthocomplementation.

Consider now the case of infinite dimension. We give a sketch of the proof, as in [2]. For the details see [8]. Let us denote by ω the isomorphism between $\mathscr{L}(\mathrm{P})$ and $\mathscr{L}(\mathrm{V})$. For every finite dimensional subspace M of V there exists a finite $\mathrm{T} \in \mathscr{L}(\mathrm{P})$, such that $\omega(\mathrm{T})=\mathrm{M} . \omega$ is an isomorphism between
[Ø, T$]=\{\mathrm{S} \in \mathscr{L}(\mathrm{P}): \mathrm{S} \subset \mathrm{T}\}$ and $\mathscr{L}(\mathrm{M})$, the mapping $\mathrm{S} \mapsto \mathrm{S}^{\perp} \wedge \mathrm{T}$ is an orthocomplementation of [Ø, T], hence $\mathscr{L}(\mathrm{M})$ has an orthocomplementation induced by the one of [Ø, T].

Let M_{0} be a fixed 4-dimensional subspace of V. Since $\mathscr{L}\left(M_{0}\right)$ is orthocomplemented, there exist, by the theorem of Birkhoff and von Neumann, an involutorial antiautomorphism $\lambda \mapsto \lambda^{*}$ and a Hermitian form f_{0} on M_{0}, such that for $\omega(\mathrm{S}) \in \mathscr{L}\left(\mathrm{M}_{0}\right)$,

$$
\omega(\mathrm{S})^{\perp} \wedge \mathrm{M}_{0}=\left\{w \in \mathrm{M}_{0}: f_{0}(v, w)=0 \text { for all } v \in \omega(\mathbf{S})\right\}
$$

For every finite dimensional subspace M of V containing M_{0}, there exists a pair $\left({ }_{*}, f_{\mathrm{M}}\right)$ such that, for all $\omega(\mathrm{S}) \in \mathscr{L}(\mathrm{M})$,

$$
\omega(\mathbf{S})^{\perp} \wedge \mathbf{M}=\left\{w \in \mathbf{M}: f_{\mathbf{M}}(v, w)=0 \text { for all } v \in \omega(\mathbf{S})\right\}
$$

Owing to the unicity of the pair $\left(\bar{*}, f_{0}\right)$ in \mathbf{M}_{0}, there exists a $\gamma \in \mathrm{K}$ such that $\lambda^{*}=\gamma^{-1} \lambda^{*} \gamma$ and $f_{\mathrm{M}}(v, w)=f_{0}(v, w) \gamma$ for every $v, w \in \mathbf{M}_{0}$. Then, substituting ($\left(\bar{*}, f_{\mathrm{M}}\right)$ by ($*, f_{\mathrm{M}} \gamma^{-1}$), we get a unique Hermitian form f_{M} (with respect to $*$) which induces the orthocomplementation of $\mathscr{L}(\mathrm{M})$ and $f_{\mathrm{M}}=f_{0}$ on M_{0} If $\mathrm{M}_{0} \subset \mathrm{M}_{1} \subset \mathrm{M}_{2}$, then $f_{\mathrm{M}_{1}}=f_{\mathrm{M}_{2}}$ on M_{1}.

For every pair $v, w \in \mathrm{~V}$ define

$$
f(v, w)=f_{\mathrm{M}_{0}+\mathrm{K} v+\mathrm{K} w}(v, w) .
$$

It can be shown that the function f so defined is a Hermitian form on V , that the image of the mapping ω is just $\mathscr{L}_{f}(\mathrm{~V})$ and that ω preserves order and orthocomplementation between $\mathscr{F}(\mathrm{P})$ and $\mathscr{L}_{f}(\mathrm{~V})$.

Corollary. - There exists an orthoinjection of the logic L into the set $\mathscr{L}_{f}(\mathrm{~V})$.

Proof. - By theorem 4, the mapping $j: a \mapsto \mathrm{P}_{a}$ is an orthoinjection of L into the set $\mathscr{F}(\mathrm{P})$. Then, by Theorem 5, the mapping $\omega \circ j$ is an orthoinjection of L into $\mathscr{L}_{f}(\mathrm{~V})$.

REFERENCES

[1] R. Baer, Linear algebra and projective geometry, Academic Press, New York, 1952 (Russian translation IL, Moscow, 1955).
[2] E. G. Beltrametti and G. Cassinelli, Logical and mathematical structures of quantum mechanics, Riv. Nuovo Cim., vol. 6, 1976, p. 321-404.
[3] G. Birkhoff, Lattice theory, Amer. Math. Soc., Coll. Publ., New York, 1967.
[4] S. P. Gudder, Ưniqueness and existence properties of bounded observables, Pacific. J. Math., vol. 19, 1966, p. 81-93.
[5] S. P. Gudder, A superposition principle in physics, J. Math. Phys., vol. 11, 1970, p. 1037-1040.
[6] S. P. Gudder, Projective representations of quantum logics, Int. J. Theoret. Phys., vol. 3, 1970, p. 99-108.

Vol. XXXII, n ${ }^{\circ}$ 4-1980.
[7] W. Guz, On the lattice structure of quantum logics, Ann. Inst. Henri Poincaré, vol. 28, 1978, p. 1-7.
[8] F. Maeda and S. Maeda, Theory of symmetric lattices, Springer-Verlag, Berlin, 1970.
[9] S. Pulmannova, A superposition principle in quantum logics, Commun. Math. Phys., vol. 49, 1976, p. 47-51.
[10] S. Pulmannova, The superposition principle and sectors in quantum logics, Int. J. Theoret. Phys., to be published.
[11] V. S. Varadarajan, Probability in physics and a theorem on simultaneous observability, Commun. Pure Appl. Math., vol. 15, 1962, p. 189-217.
[12] V. S. Varadarajan, Geometry of quantum theory, Van Nostrand, Princeton, N. Y., 1968.
(Manuscrit reçu le 19 février 1980).

