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ABSTRACT. -- It is shown that (-function renormalization is equivalent
to a form of analytic regularization with a prescription for taking the
finite part.

I INTRODUCTION

One of the techniques which has been developed [7, 2] to calculate the
index of a differential operator on a compact manifold uses generalizations
of the 0-function and its Mellin transform, the (-function [3 ]. Analogous
techniques have recently been applied to the problem of calculating effective
Lagrangians to the one-loop level [4,5,6]. However the use of the (-function
itself in this problem, as a method of analytically continuing a divergent
series is considerably older [7]. We would like here to remark that this
(-function renormalization is equivalent to a form of analytic regulari-
zation [8 with a prescription for taking the finite part.

In Section II, to fix notation, we briefly recall, using the (-function
technique, the calculation of Coleman and Weinberg [9] of the one-loop
contribution to the effective potential of a self-interacting scalar field.
In Section III we analytically regularize the two divergent one-loop graphs
and show that a simple prescription for taking the finite part leads to the
same result as that found in Section II. In Section IV we briefly and super-
ficially discuss the problem of gauge-invariance when the (-function
technique is applied to QED. The classical gauge-invariant results of
Schwinger [70] ] can be obtained using (-function renormalization, but
in general the latter is not useful as a gauge-invariant renormalization
scheme.
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II

In the Euclidean domain, the Lagrangian for a self-interacting scalar
field may be written

We have chosen

so that D is a positive operator and we shall work in a general dimension d
in order to use later dimensional regularization.
We suppose that 03C6 is defined in a box of volume V = L3 at a tempe-

rature 03B2-1 so that the spectra of the two operators P’ and P which we
shall define below are discrete, but we shall suppose that Land /? are
sufficiently large that we may neglect all effects of order L- or ~-1.

Let J be an external source and Z [J] the partition function. The classical
field is given by

The effective action, or free energy r[!&#x3E;c] ] is defined by the Legendre
transformation

The first-order quantum fluctuations around ~~ are determined by the
eigenvectors of the operator m2(P‘ + 1) where

and the one-loop expression for the effective action is [77] ]

S is the classical action, and P = 
Let ~[~c] be the eigenvalues of P’ (P). Then we have

In writing (II. 5) and (II.6) it is implicitly supposed that ~~ is sufficiently
smooth and small that the two spectra {03BD’n} and { are in one-to-one
correspondance.
The expression (11.6) gives r in terms of a divergent series. A finite
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value may be assigned to r by way of analytic continuation using a genera-
lization of the Riemann 03B6-function. One defines for s ~ 

and similarly in terms of { These series converge for

and therefore define analytic functions in this region. See, for example,
reference [3] ] for a discussion of Dirichlet series and their convergence
properties.
The functions (’ and ( possess analytic continuations to a neighbour-

hood of S = 0 [13 ]. One defines therefore the effective action by r = r(O),
where

In order to effectively compute ~’(s) in terms of ~. and its derivatives,
use must be made of the Mellin transform of a generalization of the 0-func-
tion. Define

and similarly 0(t) in terms of { ~}. Then

The function 8’(t) may be computed in terms of the Fourier transform
or symbol 6(P’) of P’ by the formula [2] ]

The symbol of P’ is given by

The difficult part of the calculation in general is to calculate 
in terms of ~’~ B However, here we are only interested in the effective
potential contribution to the effective action r. We may therefore neglect
derivatives of ~~ and we have the equality
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The preceeding six formulae, (11.9) to (11.14), now give r(s) in terms
of a known quantity (11.13). For example, from ( I I . 12. 13. 14)

From (II.11, 15)

From (11.9, 16) one can calculate the effective potential. For d = 4 we
find [9] ]

where we have replaced m by mR, defined by

and ’ / 0 »

The correction to m2 in (11.18) comes from the tadpole and we shall see
in Section IV that quite independent of the effect of higher order graphs,
there is no reason to ascribe a physical significance to the value )1. = 32~2.
The mass and coupling constant renormalizations are ultra-violet

finite but the limit ~ -~ 0 is still infra-red singular. If we shift the field

and define the coupling constant ÂR by

then [9] ]

)wR is singular as m tends to zero.

III

Before discussing analytic renormalization, it is of interest to compare
the ~-function result (11.18), for example, with the corresponding result
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using dimensional regularization. To the lowest order in ~,, from (11.16)
we have

From (II . 9), this yields a contribution I(d ; s) to the effective potential
given by

If we keep d ~ 4 and set s = 0 we obtain the dimensionally regularized
contribution of the tadpole to the effective potential and the limit d --+ 4
is singular :

On the other hand, if we set d = 4 and then take the limit s --+ 0 we obtain
the mass correction in (II. 18):

The two one-loop divergent graphs in the theory (II.1) are the tadpole
and the contribution to the 4-point function. The former involves the
divergent integral

Analytic regularization consists in replacing the propagator by

The integral I is then replaced by

~-function renormalization consists in then defining the renormalized
value of the integral (Ill. 5) as

which yields the mass correction in (II.18). If I(s) were finite at s = 0, the
prescription (111.7) would define I as 1(0).
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The one-loop contribution to the 4-point function contains the divergent
integral 

- .

A slightly modified version of analytic regularization consists in replacing I
by

(-function renormalization consists in then defining the renormalized
value of the integral (III. 8) as

This yields, for q2 - 0, the equality (II. 19), to within one-loop corrections.

IV

We now turn to QED and the problem of gauge-invariance. Schwinger
has given a gauge-invariant derivation [70] ] of the calculation of Euler
and Heisenberg [7] of the effect of electron-positron quantum fluctuations
around a constant classical electromagnetic field. We shall very briefly
recall this result using the (-function technique since it differs little from
Schwinger’s.

In the Euclidean domain with d = 4 we may write

where (0152;J is (anti-) self-dual. Decompose the electromagnetic field
tensor F ILV into self-dual and anti-self-dual parts and let ~ be their norms :

Define the operators P ± by

in the Lorentz gauge ~03BBA03BB = 0. Let vn be the eigenvalues of P± and vn the
corresponding free eigenvalues :

v n = lim vn .

l’Institut Henri Poincaré - Section A
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One can show that vn - each eigenvalue has multiplicity 2.

Then, as in Section II, the effective action is

The minus sign is due to the fact that there are now fermions in the loops.
As in Section II, one defines the generalized ~-function, ~’(s) and the

generalized 0-function, 8’(s) and one calculates the latter by the formulae
corresponding to (II .12). Now, however, the potential A~, is never constant
and one has no longer the equality corresponding to (11.14). One has
instead in the case where is constant the formula [70] ]

Using this and the steps outlined is Section II one obtains for example,
when the magnetic field vanishes, that is, when

the following expression for the effective Lagrangian :

Rotating back to Minkowski space, a = i(E + ~) yields a ~-function
regularized expression for a particular case of Schwinger’s for-
mula (3.44) [10 ]. See also [12 ].

This result is gauge invariant. However if one attempts to develop a
set of rules to regularize even the simple Feynman graphs analogous
to those discussed in Section II, one finds that gauge-invariance is broken.
For example consider the one-loop photon self-energy contribution. It
contains the divergent integral (in the Euclidean domain)

If one attempts to regularize this integral as we have regularized (111.8),
one finds that the renormalized value, given by an expression of the
form (111.9) when written in the form

has
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The reason for this may be seen by considering the field theory which
gives rise to the regularized Feynman integrals. The regularized values
of the two integrals which we discussed in Section II may be thought
of as the ordinary Feynman integrals given by the Lagrangian

That is, it is possible to change the propagator without changing the
vertex. Any attempt to find a similar higher-order Lagrangian generalizing
the QED Lagrangian, must be for example of the form

if gauge-invariance is to be maintained. That is, it is not possible to change
the propagator without also changing the vertex. For non-integral values
of s, the Lagrangian (IV. 7) gives rise to a non-local interaction.
To conclude, we would like to remark that the tadpole contribution

to the 2-point function using Lagrangian (IV. 6) is finite if s = 2. The most
physical theory therefore with d = 4 of which the result (III . 4) is an analytic
continuation is a 6th-order theory.
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