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Some non-markovian Osterwalder-Schrader fields

Z. HABA

Ann. Inst. Henri Poincare

Vol. XXXII, n° 2, 1980,

Section A :

Physique ’ théorique. ’

ABSTRACT. 2014 We consider local perturbations exp ( B 2014 JA UJ of the
generalized free Gaussian measure defined by the covariance

with

in d  3 dimensions. Lattice approximation is defined. It is shown that in
the lattice approximation the field theory is equivalent to a continuous
spin non-nearest neighbour Ising ferromagnet. The infinite volume limit
of the Schwinger functions is obtained via Griffiths correlation inequalities.
We can get in this way theories with a non-canonical short distance
behaviour.

I. INTRODUCTION

Euclidean Gaussian fields satisfying Osterwalder-Schrader positivity
condition [7] should have the covariance [2] ]

(*) Centre de Physique Theorique Theorique, C. N. R. S. Marseille.
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186 Z. HABA

(with some substractions if + s2)-1 is infinite). Then local

perturbations exp (-U(03C6)(x))dx) of the Gaussian measure preserve
~ 

the asterwalder-Schrader positivity if only n is invariant under time
reflection xo --~ - xo. For the perturbed measure

to exist and to have finite all moments it is sufficient that

If f dC1(S)  oo then

and exp B 2014 J A UJ p 

 oo follows from the classical results [3] ] [4] on

polynomial and exponential [S ] interactions via the conditional comparison
theorem of ref. [3] (quoted later on as GRS). In Appendix we show by

detailed examination of Nelson estimates [4] that exp ( 2014 J u) E Lp even
if is divergent. In such a case the sort distance behaviour of B(x - y)

is more singular. We show that for polynomial interactions of order 2n in

two dimensions exp ( B 2014 J n E Lp if B(x - y) ~ |x - y|-~ for short

distances, where ~  (n2 + n)-1. These estimates are true also for m = 0

provided  00.

In order to get a Euclidean invariant theory we have to perform the
infinite volume limit. This can be done in an easy way [3 ] if we have the
Griffiths correlation inequalities [6] [7]. We define the lattice approxima-
tion of the measures (1) (2) and show that under the assumption

these measures in the lattice approximation describe a continuous spin
Ising ferromagnet. Then correlation inequalities result. In order to get the
infinite volume limit we define an analogue of the half-Dirichlet measure.
Then we show that the half-Dirichlet Schwinger functions increase mono-
tonically, as a result of the correlation inequalities, to a finite infinite volume
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limit. The resulting Schwinger functions fulfil all the Osterwalder-Schrader
axioms.
We find models constructed by perturbation of the generalized free

measure interesting because of the possibility of obtaining a more singular
short distance behaviour. The freedom in the choice of the singularity of
the covariance (1) should give some insight into the problem of renormali-

zability. At the same time the short distance behaviour determines some

continuity properties of the Euclidean fields. So, we get an example of more

singular sample paths (see ref. [8]) than those resulting from models.

As we learned after completing this paper the perturbations of the gene-
ralized free measure are studied in ref. [9 ] (by means of different methods
as far as we know), where the problem of continuous symmetry breaking

in less than three dimensions is discussed. (There is a symmetry breaking if

m = 0 and  .

II LATTICE APPROXIMATION

We are going to define the lattice approximation to the finite volume
Schwinger functions

Following GRS [3] we introduce lattice fields ~pn (for simplicity we write
all formulae for d = 2 then n = n2) E Z2) as Gaussian random variables
with the covariance

Then ~ can be expressed in terms of ~

where B( p) is the Fourier transform of B(x) (eq. (1.1)) and is the

Vol. XXXII, n° 2-1980.



188 Z. HABA

Fourier transform of B(n - n’) (eq. (11.2)). is an infinite dimensional
matrix, which determines a bounded operator B on the space l2 of sequences.
It is easy to check that the inverse operator B -1 has the matrix elements

Denote ~, = 45’~ + m2 + s2, a , = 4~ - 2 + m2, , = and *

Then (B -1)n", is the Fourier transform of the inverse of

. f (z) considered as a function of a complex variable z is an analytic function
in the upper half-plane with a positive imaginary part there, i. e. it is a Pick
function [7~1. Moreover, f~(~) admits analytic continuation across the
interval ( - ~o, a) by reflection into the lower half-plane, i. e. it is a Pick
function of class ( - oo, a). Clearly

Then, - 1 is also a Pick function of the same class. From the general
representation theorem for Pick functions [10 ] we get

where a 0 and  is a measure on R with d (03BB)(03BB2 + 1)-1  oo. We can

compute now the integral in eq. (II . 4) directly using eq. (II. 6) or expand
first the r. h. s. of eq. (II . 6) in powers of x. We get then

where ao ~ 0 and

From cq. (II . 7) and , the formula  03C0 dx cos mx cosn x  0 we can see

Jo

’ Poincare-Section A



189SOME NON-MARKOVIAN OSTERWALDER-SCHRADER FIELDS

that (B -1 is non-positive for n ~ n’. In fact, the expansion (II . 7) is all
what we needed in order to derive the result. The argument using the theory
of Pick functions has been first applied by Glimm and Jaffe [77] to prove
that the Fourier transform - r(x) of the inverse of B( p) is non-positive
(for x ~ 0) in the continuum case.
We can define the Wick powers : ~ by means of the Wick powers of (p

through eq. (II.3). Assume that gk are functions with a compact support
and define

and

We have then

THEOREM II. 1. For all spectral functions 6 such that exp

Proof. Follows from GRS [3 ]. In i) and ii) we perform the explicit
computations, use pointwise convergence and dominated convergence
theorem. In iii) we apply the inequality ( e - a - + e-b I

the result ii) and the assumption exp - U E Lp. iv) follows from i)-iii).
Now the integral over the lattice fields ~pn in Theorem II .1 iv), is an integral

over a cylinder function with a finite base (see Ref. [12 ]). Hence it is equal
to the finite dimensional integral

where (x, g ) == ~xn and is the inverse of the matrix BA being
the restriction of B (eq. (II . 2)) to a finite dimensional submatrix correspon-

Vol. XXXII, n° 2-1980.
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ding to n, n’ E Z2 n A. It can be shown similarly as in Simon’s book [3] that

where CA is a matrix with non-positive matrix elements. So, BA has also
non-positive off-diagonal matrix elements, i. e. the Gibbs factor in eq. (II .10)
is ferromagnetic. From eqs. (11.6)-(11.7) and the formula

it can be seen that either (B -1 )nn, vanishes for ( n - n’ ~ &#x3E; 1 = 0).
or all the spins xn are coupled. From the point of view of the lattice systems
it is interesting to know the behaviour of (B -1)nn’ for large ( n - We
can prove the following

THEOREM 11.2. i) If m &#x3E; 0 then for certain K

ii) If m = 0 and

with ~ ~ for large n then

where {3 &#x3E;_ 1 + 2y for d = 1 and 03B2 &#x3E;_ 3 + 2y if d = 2 for certain directions
in the Z2-plane.

Proof i) follows from the representation (II. 6) and from theexponentral 1
decay of the similar integral (II . 2). ii) can be shown using the formula (11.11).
Consider first d = 2. Then clearly for n ~ n’ and any N

Annales de l’Institut Henri Poincare-Section A



191 SOME NON-MARKOVIAN OSTERWALDER-SCHRADER FIELDS

where

We choose the direction n1 - n’1 = n2 - n’2 = k and denote 2r = N - k.
Then according to eq. (II .12) we are to investigate the behaviour for large k
of the expression

Let us take r = k2. Then using the asymptotic representation of the r
function we get

This together with

gives Ak 3 2 ~ . The proof for d = 1 is similar.
Theorem (II 2) shows that if m = 0 we are dealing with forces decreasing

rather slowly with the distance n - n’ between spins. This suggests that
in this case the infinite volume limit may depend on the boundary conditions.

III. INFINITE VOLUME LIMIT

We will show in this section the existence of a unique infinite volume
limit of the finite volume Schwinger functions with certain boundary
conditions. From the uniqueness of the limit the Euclidean invariance
follows and the Osterwalder-Schrader positivity present in a finite volume
is preserved by the limit. So, the Osterwalder-Schrader axioms will be
satisfied with the possible exception of the cluster property (we have the
cluster property for exponential interactions). As is well-known [6 ] from
the Griffiths inequalities for ferromagnetic Ising model it follows that the
addition of further neighbour interactions increases the correlation func-
tions and decreases the mass gap. So the non-nearest neighbour system
is more susceptible to phase transitions.

First consider the case where we can show the cluster property.

Vol. XXXII, n° 2-1980.
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THEOREM 111.1. Consider the following models (with

with p(a) = /?( 2014 a) and in two-dimensions.

!~ ~ k &#x3E;_ 0 and B(O) finite in one-dimension.
Then the Schwinger functions (II. 1) are decreasing as A -~ Rd to a

non-trivial infinite volume limit. They are decreasing functions of the
coupling constants and therefore bounded by the correlation functions
of the generalized free measure The mass gap is not less than m and
all the Osterwalder-Schrader axioms are fulfilled (possibly without the
cluster property if m = 0).

Proof.The proof of this theorem is now standard thanks to refs. [3 ], [4 ],

[5 ]. The restriction I ~ 2j;, comes from the requirement

That S~ decrease as A or the coupling constants increase can be seen from
Griffiths inequalities by variation of A and coupling constants. The mass
gap is not less than m because S2(x) ~ B(x). It remains to be shown that
the infinite volume Schwinger functions are not zero. It will be shown below
that the infinite volume Schwinger functions of models i)-ii) are not less
than finite volume Schwinger functions with an analog of half-Dirichlet
boundary conditions.
We are going now to define certain quadratic form B confined

to the region A. For this purpose let us note the inequalities

Hence the quadratic form B(x - y) (1.1) corresponds to a bounded ope-
rator B bounded from below by

with certain r &#x3E; 0. Let x~~ be 
" the multiplication operator by the characte-

ristic function of the region A" = Rd - A. Then by the operator inequalities

Annales de l’Institut Henri Poincare-Section A
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of ref. [7.?] (p. 330) we get from eq. (Ill. 1) for any 0 (with a = Jo 

But (B -1 + is monotonically decreasing in co. So the limit

exists. This limit is not zero because from the left side of eq. (Ill. 2) we get

where ~D is the Laplacian with Dirichlet boundary conditions on 3A. The
equality in eq. (Ill. 4) can be seen from the Feynman-Kac formula

(here means integration over Brownian paths with x(o) = x
and x(t) = y) if we notice that 60 -+ oo forces all paths to be inside A. From
the right side of eq. (Ill. 2) we get

Owing to the existence of the limit (III. 3) we get

Define now (with A c A’ c 03A9, fi  0, supp fi c A)

The sequence in the limit (III. 8) is monotonically decreasing in Q and cc~

as a result of Griffiths inequalities. The existence of a non-trivial limit

Vol. XXXII, nO 2-1980.
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follows from eq. (III.7). It is easy to see that this limit does not depend
on A’ =3 A. To see it let us note that

and

In the limit OJ ~ oo the integral over f U vanishes due to eq. (Ill. 6)
A’-A

and only the variables with support in A give contribution to Applying
Griffiths inequalities to the correlation functions (111.8) we get

Letting ’ ~ R with Al fixed we get the non-triviality part of
Theorem 111.1.

Consider now the infinite volume limit of the ha!f-Dirich!et Schwinger
functions (111.8). According to eq. (111.9) these Schwinger functions are
monotonically increasing as A -~ Rd. Therefore to show that they converge
it is sufficient to get a bound from above. We have from the Griffiths first
inequality and inequalities (111.9).

where

In order to bound the right hand side of eq. (111.10) we will use the
Feynman-Kac formula for the generalized free field. Let us assume first
that 6(s) is differentiable i. e. do-(s) = and denote by a(xd + 1 ) the
Fourier transform of (a’(s))i. Then the generalized free field (1.1) can be
expressed as an integral over the free field cpm with mass 111 + 1 dimen-
sions

Because both sides are Gaussian eq. (111.11) follows from the equality

Annales de l’Institut Henri Poincaré-Section A
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where ~cm is the Gaussian measure with covariance ( - + m2) -1,
Using the representation (111.11) and the Feynman-Kac formula for the
free field in d + 1-dimensions we get (we write only the formula for d = 2 (*))

where

is the three-dimensional time-zero field and the scalar product
on the right hand side of eq. (111.13) is with respect to the (time-zero)
Gaussian measure with covariance ( - d2 + m2)-t.
The formula (III .13) holds for all such that

(see GRS [3] ] for explanation of the connection between Euclidean and
Glimm and Jaffe Hamiltonian formalism ( [14 ])). From the Feynman-Kac
formula (111.13) the Nelson-symmetry follows. Next, it is a direct conse-
quence of the Nelson symmetry that the energy per unit volume ( 1 is the

time-zero Fock space vacuum)

is a non-decreasing function of l (see [7~] for a simple proof). Using this
fact and the Feynman-Kac formula one can show (chessboard estimates [7~] ]
[7 7]) that

where is the limit when t ~ 00 of the energy per unit volume for
the interaction U(~p) + If is not differentiable we derive the for-
mula (111.16) first for a sequence 6n of differentiable functions and then
we get in the limit o-n ~ 6 the estimate (III. 16) for general ~. So to bound

(*) For f/= 1 there is no integration over .rl in eq. (III.13) and therefore no
dependence of HI on l.

Vol. XXXII, nO 2-1980.
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the Schwinger functions it is sufficient to show, that (:(00 is finite. But
using the spectral decomposition of H~ and Jensen inequality we get

Applying the Feynman-Kac formula (111.13) we get (*)

It can be easily seen from the derivation of the estimates (III .16) and (III .18)
that these estimates are also true for d = 1.

If oo then owing to eq. (1.3), the conditional comparison
theorem [~] and the finiteness of the pressure for P(~p)2 and exponential
interactions of refs. [3 ]- [J] we get  oo. We formulate this result as

THEOREM 111.2. Assume  oo and  oo if m = 0.

The Schwinger functions for U being a polynomial bounded from

below or 

the exponential interaction with p(oc) = p( - a)
and a I d6  2~/7r ~ are monotonically increasing to a finite infinite

volume limit. The resulting theory fulfills Osterwalder-Schrader axioms
with the possible exception of the cluster property.

In Appendix it is shown that exp - U E even if is

infinite. In order to bound 03B1~ in this case, we will define a quadratic form BN
and the corresponding Gaussian measure such that

Namely, define the quadratic form

where ON is the Laplacian with Neumann boundary conditions on ~A.
Consider two regions Al and A2 and denote A = int A2). Let L2(A)

(*) The bound of (III.16) by poo could be derived directly using a general form of
chessboard estimates obtained in Ref. [7~]. We thank Dr. J. Bellissard for this remark

l’Institut Henri Poincaré-Section A
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be the Hilbert space of square integrable functions with the support in A.
Then L2(A) = and as is shown in GRS ( [3 ]) we have
in the sense of quadratic forms

Then using the conditional comparison theorem we get

From this submultiplicativity it follows (see GRS) that p~ is a decreasing
function of A. Hence p x is bounded by p~ . Now, p is finite if

In one dimension one can compute G~ explicitly and show that

In two dimensions we can get a similar conclusion from the estimate
+ s2) c CG(m2 + s2) in the sense of quadratic forms on L2(A)

where C does not depend on A and (for dimensional reasons) is also inde-
pendent of s. So, we conclude that on L2(A)

Then exp - U / J is integrable with respect to is integrable
n

with respect to again by the conditional comparison theorem. We show

in Appendix that exp - E Lp(,uB) if B(x - y) ~ |x - y|-~ for

short distances with 11  (n2 + for d = 2 and ~  (2n2 + 2n) -1 for
~~ == 1 where 2n is the order of the polynomial P. Let us summarize the
considerations above in

THEOREM 111.3. Assume is a polynomial of order 2n, B( p) is
not singular at p = 0 and B(x) ~ x ( -’’ for small x| with ~  (n2 + n) -1
for d = 2 and ~  (2n2 + 2n) - I if d = 1. Then finite volume Schwinger
functions (III. 8) exist and are monotonically increasing as A -~ Rd

Vol. XXXII, n° 2-1980.
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to a finite infinite volume limit satisfying Osterwalder-Schrader axioms
with the possible exception of the cluster property.
The more singular short distance behaviour leads to more singular

sample paths of the random field. It follows from classical results [79] ]
on sample paths of Gaussian stochastic processes that the Gaussian sto-
chastic process cpt has discontinuous sample paths if

for small t. In two-dimensional case one can show that if B(x - y) ~ ~ x - y I ’’
for small distances then the generalized free field smeared
out with f in one coordinate is Holder continuous in t with the

continuity index x arbitrarily close to - 2014 -. We have proved [8] such

a behaviour of sample functions also for interacting Euclidean fields under
some assumptions on correlation functions. In this case continuity index a
is determined by the short distance behaviour of the covariance of the
interacting field. Our assumptions in ref. [8] ] are satisfied immediately
if we have the GHS inequality [20 ]. The GHS inequality holds true in our
ferromagnetic system with rp4 or exponential interaction. It is to be expected
that the short distance behaviour of the interacting field is the same as the
short distance behaviour of the corresponding generalized free field. So,

we get Holder continuity of with the continuity index 1 - ~ 2 (less
than for the canonical Euclidean field). 

2 2
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APPENDIX

In this Appendix we will repeat the classical estimates of Nelson [4] (sec also GRS [3 J)
in order to extend their validity to more singular short distance behaviour than the cano-
nical case.

LEMMA A.1. - Assume that is not singular at q = 0 and ~ 
large then

ii) Define = hx(x - where hx( q) = 8(x - I ). We have for arbitrary p &#x3E; 0

where 8 = 1 - r 2~ - E for d = 2 b = 1 - r (~ - 1) - E if d = 1 and E can be arbitrarily
amall. 2 2 2

Rernarks. - 1) We assume above that ~  1 in one-dimension, because if ~  1 then

Wick ordering and regularization are unnecessary.

2) We could replace the condition 1 B( q)I ,,; AI q|- 2 +. by ~ Lp with 03B2 &#x3E; 1 - - 2 -1.
Proof - Let us compute

By Young’s inequality we have

where j3, s~ &#x3E;_ 1 and

Assuming So = 1 we get

We must have 03B2(2 - ~) &#x3E; d if ~ B JL is to be finite. Take

Vol. XXXII, n° 2-1980.
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then

Now compute

This proves ii) for p = 2. The proof for arbitrary p follows from hypercontractive bounds [3] ]
[4 ]. The part i) can be proved in a similar way and in fact follows from the proof above

- 2 2
if we put hx = 0, x = oo and notice that from ii) ~ = - (1 - E 2014 5)  -.

r r

LEMMA A. 2. - Let be a (Wick ordered) polynomial of order 2n. Then for d = 2
and arbitrary p &#x3E; 0 we have the estimate

(for d = 1 if ~ &#x3E;_ 1 we replace ~ by ~ - 1 in the formula above).

Proof. - Follows from Lemma A.I, via Nelson argument [4] (but now  
instead of In x).
We choose now p depending on x in such a way that the right hand side of the estimate

above is minimal

Then

for large x.

LEMMA A. 3. - Let be a polynomial of order 2n then in two dimensions

in one dimension).

Proof. - Denote ~,(x) = ~cB ~ ~p : U(g)  jc} then

and the estimate of Lemma A. 2 shows that this integral is convergent if

b
is convergent, i. e. 

ItZLI. iJ 
&#x3E; 1. Together with Lemma A . 1 this gives the restriction on ~.
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