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Section A :

Physique ’ theorique. ’

ABSTRACT. 2014 The harmonic analysis of the elastic scattering amplitude
F(s, t~ of two spinless particles, at fixed t  0, is here revisited using the
non-euclidean Fourier analysis in the sense of Helgason, and the approach
of Ehrenpresis to the special functions. With these techniques it is possible
to derive the Fourier and Laplace transforms for the scattering amplitude.
Indeed these transforms are obtained by projecting the amplitude on
functions which play a role similar to that played by the exponentials
on the real line; here we show how to construct these functions, using
essentially geometrical tools. Since the harmonic analysis is a decomposi-
tion which separates the dynamics from the symmetry of the problem,
we obtain an explicit geometrical characterization of those terms which
reflect the symmetry.

1 ° INTRODUCTION

As is well known, the classical Fourier transform refers to the decompo-
sition of a function, belonging to an appropriate space, into exponentials
of the form (k real), which can also be viewed as the irreducible unitary
representations of the additive group of real numbers. However in the
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110 G. A. VIANO

current interpretation, particularly in connection with noncommutative
groups, the phrase harmonic analysis has lost its original function theoretic
meaning, and this term refers not to functions but to representations.
As it has been remarked by Furstenberg [1] « it became natural to regard
irreducible representations as the basic building blocks of the theory in
the place of the exponential functions ». However, there are examples, in
the theory of semi-simple noncompact Lie groups, where the classical
setup prevails [1 ], in the sense that one can find a class of functions which
appear to play a role similar to that played by the exponentials on the
real line. This fact is particularly significant in the Fourier analysis of the
scattering amplitude on the Lorentz group. Indeed this theory can be
viewed as a mathematical tool for separating the dynamics, which is
described by the « partial-waves », from the symmetry, which is represented
by these generalized « exponentials ».

Let us return to the real-line. If one considers functions which are not

square-integrable on the line (for instance polynomials), then the classical
Fourier transform does not work. One possibility is to extend the domain
of the Fourier integral operator to include polynomially bounded functions,
by recognizing that the range of the integral operator then contains gener-
alized functions (distributions). The other possibility is a generalization
of the Fourier transform which leads to the Laplace transform. This is
achieved by continuing the exponentials eikx in the complex k-plane,
away from the real line, to reach non unitary representations. Then, the
image of a power bounded function is an analytic function, regular in an
appropriate portion of a half plane. At this point the following question
arises : is it possible, in the case of the harmonic analysis on the three-
dimensional Lorentz group, to build functions which are in some sense

« nearly » etkx, k In this paper we shall give an answer to this question,
at least in the case of spinless particles. The problem is quite relevant ;
indeed the requirement of square integrability over the group manifold
implies a decrease of amplitudes faster than s-1~2 as s -+- oo (s is the

energy squared in the center of mass system), which is well below the
asymptotic bound indicated by experiments and by the Froissart bound [2 ].
In order to overcome this difficulty, Ruhl [3 ], [4] developed distribution-
valued transforms on Lorentz groups. On the other hand many
authors [2], [5 ] - [10 ], proposed a Laplace-like transform; one of the
intents of this note is precisely that of giving a more rigorous foundation
to the theory of this transform. In this note we essentially link different
ideas, which are dispersed in different mathematical frameworks. The

hope is that if we tie things together, then we gain insight in various ques-
tions of the harmonic analysis of the scattering amplitude which appear,
up to now, quite unclear.
The paper is organized as follows. In Section 2 we formulate the problem

and characterize a representation space for the three-dimensional Lorentz
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111ELASTIC SCATTERING AMPLITUDE OF TWO SPIN LESS PARTICLES

group. In Section 3 we construct the Legendre functions following the
method of Ehrenpreis. In Section 4 we derive the Harish-Chandra represen-
tation of the spherical Legendre functions and the non-euclidean Fourier
analysis in the sense of Helgason ; from the latter a Fourier transform for
the scattering amplitude follows. In Section 5 we derive the Laplace trans-
form. Finally we recall that some of the results of Section 4 have been
previously given, in a preliminary form, in a note of the author [77].

2° POSITION OF THE PROBLEM AND PRELIMINARIES

Let us denote by F(s, t) the elastic scattering amplitude of two spinless
particles (s and t are the usual Mandelstam variables). We limit ourselves
to consider the case of spinless particles, in order to make more evident
the geometry involved in the problem. As is well known, if one takes s &#x3E; 0
fixed and expands the scattering amplitude in functions of t, then one

gets the usual phase-shift analysis. In this case the little group is S0(3),
the basis of the expansion is given by the Legendre polynomials and the
kinematics is described by the cosine of the scattering angle in the center

of mass system; i. e. cos ~ = 1 + 2t s - 4m2 in the case of particles of equal
mass m. Here we leave the usual partial-wave decomposition aside, since
it has been analyzed in detail even in the relativistic case, and we turn
our attention to the following problem : take t  0 fixed, in the s-channel
physical region, and decompose the scattering amplitude in functions
of s. In this case the little group is the isotropy group of the space-like
momentum transfer, i. e. the noncompact SO(l, 2) group. Furthermore
the amplitude F(s, t) can be written in terms of a hyperbolic function as

follows : F(s, ~) == / (cosh where cosh 6 = 2s - 1 in the case of
particles of equal mass. If the masses of the particles are arbitrary, then
cosh {3 is given by [2 ] :

where ~, is the square root of the following function :

Henceforth we shall keep the scattering amplitude f (cosh (3) as the

typical function which we want to decompose in the sense of Fourier
and Laplace. However we will attempt to refrain from physical terminology.
Therefore we shall adopt hereafter the notations which are more proper
from the mathematical point of view. Indeed the translations of the results
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112 G. A. VIANO

from the mathematical to the physical language will be quite evident.
Let us consider the group of linear transformations of R3 leaving the

x3 invariant. We denote this group by G and by g its
elements. Now we shall characterize a representation space of G. At this
purpose let us recall that a representation of G on function f on R3 can
be written as follows :

where T( g) is an operator function on G. Indeed, equality (2 . 3) determines
a representation of G since, for any two elements gl and g2 of G, we have :

Now the space of homogenous functions is invariant for shifts; indeed
if a function f(x) is homogeneous, then is also a homogeneous
function of the same degree. Moreover, if we denote by D the wave operator

i. e. D = a a2 2 - a2 2 -- -8 2 ’ then D commutes with any g E G. There-B Xl ax2 ax3
fore G acts on the space formed by those solutions of the wave equation
(i. e. 0 f = 0) which satisfy a condition of the following form :

for some complex v (fixed), and for all real a &#x3E; 0.
Now we replace R3 by the two sheets hyperboloid : xi - x2 - x3 = 1;

its points can be described by the following coordinates :

Then, following Ehrenpreis [72], we write formally the solutions of the
wave equation (i. e. Q h = 0) as Fourier integrals of suitable measures
on the light cone, as follows :

3° THE SPHERICAL LEGENDRE FUNCTIONS

The Fourier analysis on R2 is a decomposition of functions into expo-
nential plane waves. Moreover, if one makes use of polar coordinates
and if the functions to be decomposed are radial, then in the Fourier
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113ELASTIC SCATTERING AMPLITUDE OF TWO SPINLESS PARETICLES

integral the zero-order Bessel function appears. The latter is a continuous
superposition of plane-waves, it has rotational symmetry and it is related
to the matrix elements of the unitary representations of the group of
motions of the plane. In order to obtain a Fourier transform on the space
associated to the three-dimensional Lorentz group, we shall proceed
in a direction analogous to that followed in the case of R2. Moreover,
since the scattering amplitudes are radial (as we shall see below), one
must construct a function with properties resembling those of the zero-
order Bessel function. It must be a continuous superposition of « plane-
waves » (or more precisely of the non-euclidean analog of the plane-wave),
and it must have rotational invariance. To this purpose, let us recall that

80(2) is the maximal compact subgroup of S0(l, 2). More specifically,
the elements of the group of rotations about the x 1 axis, which leave
invariant the form x2 + x3, can be represented as follows :

Then, following a procedure due to Ehrenpreis [12 ], we make the func-
tion h, given by formula (2.7), invariant under 80(2), by choosing for
the measure  of (2.7) the invariant measure of the orbit of Z0 under the
rotation group S0(2), where z° is a point belonging to the light cone.
Then starting from formula (2.7), and following closely Ehrenpreis [72],
we write :

where m~ is the adjoint of Then the orbit of belongs to
the light cone) is given by :

Choosing for d~u a measure invariant on this orbit, we get :
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where (2~~ -1 is a normalization factor. Next we must impose the condi-
tion (2.5). This is achieved by taking the Mellin transform, i. e.

Indeed one has :

and putting : at = r(a &#x3E; 0), one obtains :

which proves the statement. Now let us observe that it holds :

which simply derives from the integral representation of the eamma func-

tion, i. e. r(v) = 
Jo 

Exchanging the order of integration in
formula (3 . 5) and using (3 . 8) we obtain :

Finally substituting for the coordinates xi (i = 1,. 2, 3) the expressions (2 . 6),
and omitting some inessential factors, we obtain the following integral
representation of the spherical Legendre functions :

Moreover from the group multiplication law (2.4), the multiplication
formula for the Legendre spherical functions follows (for a detailed proof
see Vilenkin [7~], p. 325), i. e.

Annales de Henri Poincare-Section A



115ELASTIC SCATTERING AMPLITUDE OF TWO SPINLESS PARTICLES

Finally we can say that the Legendre functions (3.10) are analogous to
the exponentials on the real line, since the relationship (3 .11) is the analo-
gous of the following multiplication property : = 

4° THE FOURIER TRANSFORM

Now we want to show that the functions (3.10) are a continuous super-
position of non-euclidean « plane-waves ». The geometrical nature of
this part of the problem requires a more specific characterization of the
space where we want to work. We can refer, for instance, to the SL(2, R)
group, which is homomorphic with respect to S0(l, 2), and acts transitively
on the upper half-plane Im z &#x3E; 0, by means of the mappings :

Then the symmetric space associated to SL(2, R) (i. e. SL(2, R)/(SO(2))
can be identified with the upper half-plane Im z &#x3E; 0; its curvature is - 1
and the Riemannian structure can be written, in terms of geodesic polar
coordinates (N, r), as follows [14 a ] :

On the other hand, the upper half-plane is conformal to the interior of
the unit disk by a linear fractional transformation. This mapping is linked
with the existence of the isomorphism between SL(2, R) and SU( 1, 1 ).
Indeed to matrices, belonging to SU(1, 1), correspond linear fractional
transformations which map the unit disk onto itself. Therefore we can also
work in the symmetric space SU(1, 1)/SO(2) (i. e. in the non-euclidean

disk). Hereafter we shall generally work in the non-euclidean disk.
We parametrize the points of the non-euclidean disk by the following

coordinates :

Then we write the following Riemannian structure :

which induces the usual non-euclidean distance on the open unit disk

D(~+~l);i.e....
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where : z == I z = tanh (- ~. Now we are prepared to construct the
analog of the plane-wave using the Lobacevskij geometry of the non-
euclidean disk.
Here we shall closely follow the geometric approach of Helga-

son [7~(~)-(~)]. First of all one must look for the analogs to hyperplanes
in R". These shall be given by the orthogonal trajectories to a family of
parallel geodesic. A pencil of « parallel straight-lines » is given by arcs
of circles orthogonal to the unit circle, lying in its interior and intersecting
the boundary B of the unit disk D (the horizon) at a common point b = 
The trajectories, orthogonal to this pencil of parallel geodesics, are the
circles tangent from within to the horizon at the point b. These circles are
the euclidean images of the horocycles and form the analogs to hyper-
planes in R", or more precisely to the oriented hyperplanes in R", since
the space of horocycles is antisymmetric. Then we refer to the point of
contact b as the normal to the horocycle.
Now the level lines of the Poisson kernel P(z, b) are circles tangent to

the unit circle at the point b [73]. Furthermore P(z, b) being the real part

of201420142014, is a harmonic function of z and [P(z, b)]", is an eigen-

function of the Laplace-Beltrami operator on D [14 b ]. Finally P(z, b) is
invariant with respect to any transformation that preserves the unit disk [15 ].
All these considerations make possible to state that the analogs of the
exponential plane-waves are given by :

where z = I z and b = In fact [P(z, is constant on each horo-

cycle of normal b, it is an eigenfunction of the Laplacc-Beltrami operator
on D, and finally  z, b ~ gives the non-euclidean distance from the center
of the unit disk to the horocycle with normal b and passing through z
(  z, b ~ is negative if the center of the unit disk falls inside the horo-

cycle) [14 b ]. Then substituting z = tanh in the Poisson kernel we
obtain : 2

and therefore the Legendre functions (3.10) can be rewritten as follows :

where ’ db is the usual angular measure ’ on the boundary B of D [14 b ].
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Formula (4.8) gives the Harish-Chandra representation of the Legendre
spherical functions. Finally let us recall that P_ ~ + i~ (cosh r) R) corres-
pond to the principal series of the irreducible unitary representation of
the SU(1, 1) group.

REMARKS. i) Let us write the Laplace-Beltrami operator, correspond-
ing to the Riemannian structure (4 . 2) :

Next we consider those radial functions which are eigenfunctions
of the operator (4.9), i. e. the solutions of the following differential equa-
tion :

where a is a complex constant. This equation can be put in the usual
Legendre form [76] ] by substituting : cosh r = z, a = v(v + 1 ). Now

Pv (cosh r) is the most general solution of eq. (4.10), which is 1 for r = 0.
We can say that in this sense, also, the analogy between the Legendre
spherical functions Pv (cosh r) and the exponentials on the real line is

precise. Indeed the latter are the eigenfunctions of all differential

operators on R, with constant coefficients, normalized by = 1.

ii) There is another way of looking at the integrand of formula (3.10).
If a, then the transformation

maps D onto itself. Let us specify ’t by taking

then evaluate the Jacobian of the mapping b -+- r. b ~b E B) [7~] ]

It coincides with the integrand of formula (3.10), if in the latter we put .9=0.
iii) Let us recall that the Laplace-Beltrami operator in the non-euclidean

disk is given b : _ _ _ _

Therefore the euclidean harmonic functions coincide with the non-euclidean

ones. Then the classical Poisson integral formula for a harmonic func-
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tion u on D, with continuous boundary values u(b) on B, can be rewritten
as follows [14 b ] :

Now we come to the Fourier analysis on the non-euclidean disk. In analogy
with the classical case, it is essentially a decomposition of a function into
non-euclidean plane-waves. Moreover in order to give a natural domain
to the mapping f -+- f ( f denotes the Fourier transform), one must
specify the space for the functions f It is convenient to start with func-
tions f nice enough, say f E C~(D), then to see if the mapping can be
extended to L2 spaces. At this purpose a positive answer is given by the
following fundamental theorem of Helgason.

THEOREM (Helgason [14 cD. 2014 For f E C~(D) let f denote the « Fourier
transform »

where is the non-euclidean surface element on D.

Then

where

d~, being the euclidean measure on R, db the angular measure on B. More-
over if R + denotes the set of positive reals, the mapping f -+- f extends
to an isometry of L2(D, dz) onto L2(R+ x B, 2J~).
Formula (4.15) can be proved [7~] by a simple reduction to the case

of radial f, in which case it becomes the inversion formula for the Mehler
transform with the conical Legendre functions (i. e. (cosh r)) as
kernel [16 ]. As we have seen in Section 2, the scattering amplitude of
spinless particles is simply f (cosh ~3), which can be rewritten as f (cosh r),
identifying {3 (given by formula (2.1)) with the geodesic coordinate r.

Then formula (4 .14) becomes (omitting 03C0 factors) :

and formula (4 .15) reads as follows :
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119ELASTIC SCATTERING AMPLITUDE OF TWO SPINLESS PARTICLES

which are the classical Mehler transforms [1 b ]. These formulae have
been used in high energy scattering theory [17 ]- [18 ], but without a clear
understanding of their geometrical meaning.
Now let us briefly mention the Radon transform and its relationship

with the Fourier transform. In the euclidean case the Radon transform
is simply the decomposition of a function f E over the various

hyperplanes in Rn. More precisely if co E R" is a unit vector, r E R, and dm
is the euclidean measure on the hyperplane (x, co) = r then the function

is called the Radon transform of f [14 d ]. It is easy to show that the rela-
tionship between the Radon and the Fourier transform is given by [19 ] :

Using once more the analogy between horocycles and hyperplanes, we
write the Radon transform on the non-euclidean disk D, as follows [14 c ] :

where ç is any horocycle in D, do- the measure on ç induced by the Rieman-
nian structure of D and f is any function on D for which the integral (4. 21)
exists. Writing f (~) = f(b, r) if ç has normal b and distance r from the
origin, then in analogy with the euclidean case we have [14 c] ]

which gives the relationship between the non-euclidean Fourier and
Radon transforms.

Finally, in order to characterize the space ~c(D), let us give a Paley-
Wiener type theorem. We call a Coo function 03C6(03BB, b) on C x B a holomorphic
function of uniform exponential type, if it is holomorphic in ~, and if there
exists a constant A ~ 0 such that, for each integer N ~ 0 [14 d ]

Then reducing a result of Helgason [14 e ], written in a very general setting,
to the specific case of the non-euclidean disk, we can state the following
proposition.

PROPOSITION. 2014 The Fourier transform /(z) -+- /(~, b) is a bijection
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of C;&#x3E;(D) onto the set of holomorphic functions of uniform exponential
type satisfying the identity :

5° THE LAPLACE TRANSFORM

Let us recall once more that in the classical case the Laplace transform
generalizes the Fourier transform making use of the exponentials of the
form which are in general non unitary representations of the
additive group of real numbers. Now we want to copy, as closely as possible,
the classical procedure. Therefore we must find out a prescription in order
to construct functions which are, in some sense, the analogue of eikx, k E C.
Then let us return to the representation (2.7). In Section 3 we have

obtained the Legendre spherical functions by choosing for the measure ~u
of formula (2. 7), the invariant measure of the orbit of a point z°, belonging
to the light cone, under the rotation group SO(2). At this purpose we used
the unitary representations (3 .1 ) of the group SO(2). Therefore a possibility
which we have here is to choose a measure in formula (2.7), which is
invariant under the orbit of z° generated by non-unitary representations
in the place of the representations (3.1). Then we should choose  as the
invariant measure of an orbit of z0 under SO(2, C) (that is, allow 03C6 to be
an arbitrary complex number). However such is too large to yield a
meaningful function [12 ]. A way for overcoming this difficulty is to consider
another subgroup ofSO(2, C), by taking ~p pure imaginary : rp = There-
fore instead of matrix (3 .1 ), we shall use the following one :

Then we choose for the measure /1, a measure which is invariant under
the orbit

instead of the orbit (3 . 3). Next, repeating the same steps made in Section 3,
we obtain, instead of formula (3.10), the following one :
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121ELASTIC SCATTERING AMPLITUDE OF TWO SPINLESS PARTICLES

which is an integral representation of the second-kind Legendre function.
Then from the group multiplication law (2.4), the following multiplica-

tion formula derives (see also ref. [6 ]) :

which is the analogue of formula (3.11).

REMARK. - Let us return to the eq. (4.10). We have seen that a solution
is given by P, (cosh r), a second linearly independent solution, which
presents a logarithmic singularity at r = 0, is given by Qy (cosh r). Further-
more the following asymptotic behaviour holds true [76]:

Therefore if, in the place of the Mehler formula (4 .17), we write :

we have a Laplace-like transform. Indeed, as it has been shown by Crons-
trom and Klink [2], if f(x) (x e (1, + oo)) is an arbitrarily locally integrable
function such that the following integral exists

for some real values of p &#x3E; - 2 , then /(/L) is regular analytic in the half-
plane Re ~, &#x3E; p. Let us recall that formula (5.6) has been originally intro-
duced in high energy scattering theory by Gribov [20] long time ago:
then it has been reproposed by many authors [5 ] - [70].

Finally let us rapidly sketch, for the sake of completeness, the inversion
of formula (5 . 6), which has been derived by Cronstrom [9 ] for those
amplitudes which belong to the class specified above by formula (5.7).
One starts from the following integral representation of the second-kind
Legendre functions :

Then the Laplace transform (5 . 6) can be rewritten as follows :
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where

Eq. (5.9) is the usual Laplace transform of an auxiliary function g(cp);
eq. (5.10) is Abel’s equation. Both the eqs. (5.9) and (5.10) can be inverted.
Therefore inserting the inverse of eq. (5.9) into the inverse of eq. (5.10)
one obtains the following formula :

where the line of integration runs to the right of the singularities of 1(2),
and

The contour in the representation (5.11) can be pushed into the left half
of the ~,-plane (i. e. the complex angular momentum plane), provided
proper account is taken of the singularities of /(/L) for Re ~,  p.
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