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Physique ’ théorique.

ABSTRACT. The paper presents the geometrical aspects of the relati-
vistic electromagnetic fluid flows involving the kinematical parameters
associated with the congruences of time-like and space-like curves and

explores certain theorems which are valid in the domain of the electro-
magnetic fluids.

1. INTRODUCTION

The modern investigations in astronomy and astrophysics have stimu-
lated interest in relativistic matter fields which are more general than the
familiar perfect fluid models. Lichnerowicz [1] initiated fundamental
studies of more general hydro dynamical matter field solutions of Einstein
field equations and later extended his investigation to relativistic magneto-
hydrodynamics (RMHD). His RMHD field equations are used by Yadzis [2]
and Banerji r3] to infer the magnetic effect in galastic cosmogony, gravita-
tional collapse and pulsar theory. Yodzis [2] deduced the relation
s = - 203C9ihi for a medium with infinite conductivity, where E is the charge
density, cv~ the vorticity vector and hi the magnetic field vector. Mason [4]
however criticized the method of deduction of Yodzis on the ground that,
while the electric field ei ~ 0 for a perfectly conducting medium, the conduc-
tivity k ~ oo so that kei may not vanish contrary to Yodzis assumption.
The above relation had been also deduced by Raychaudhuri [5] et al. and
Ellis [6] et al. Banerji [3] has derived some simple relations which generalize
the well-known results of classical magnetohydrodynamics and obtained
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18 G. PRASAD

the relativistic analogue of Ferraro’s theorem and Von Zeipel’s theorem in
steady state condition. Esposito [7] et al. have investigated the conservation
of magnetic energy for shear free expanding motions and proved that the
acceleration and magnetic field are orthogonal when the magnetic fields are
(( frozen-in ». RMHD field equations have been studied by Date [8J cons-
tructing the stress-energy-momentum tensor for thermally conducting,
viscous, compressible fluid with infinite electrical conductivity and constant
magnetic permeability. Recently several consequences of RMHD field
equations have been investigated by the author [9-13] using kinematical
parameters associated with the congruences of streamlines, electric and
magnetic field lines.
The purpose of this paper is to deduce relations governing the general

behaviour of electromagnetic fluids employing the theory of space-like
congruences developed by Greenberg [14]. In particular, we shall study the
RMHD field equations constructing the « magnetic » and « electric » vorti-
city vectors on the basis of Greenberg’s theory of kinematical parameters
associated with the congruence of space-like curves. We shall also establish
certain theorems which hold in the domain of electromagnetic fluids in
sec. 4 after writing field equations in sec. 2 and kinematical parameters
associated with the congruences of time like and space-like curves in sec. 3.

2. FIELD EQUATIONS

The Maxwell field equations read as

and

where BI is the magnetic induction vector, D~ the electric induction vector,
Ji the electric current vector, ei the elect ric field vector and hi the magnetic
field vector. The electric current vector is decomposed as

where G is the charge density and k the conductivity of the fluid.
Einstein field equations are

where the stress-energy-momentum tensor [10], Tij, for a self-gravitating,
thermally conducting, viscous, compressible and charged fluid with constant
magnetic permeability and electric permitivity is given by

de l’Institut Henri Poincaré - Section A



19RELATIVISTIC ELECTROMAGNETIC FLUID FLOWS

where

Here p is the matter energy density of the fluid, p the isotropic pressure,
v( 0) the coefficient of viscosity, qi the heat energy2014flux vector and V
the electromagnetic energy2014flux vector. The matter energy density p is

connected with the proper energy density i by the relation

The relations [1, 15] connecting thermodynamical variables are

and

where S, T, S’, K and X denote the entropy, the rest temperature, the entropy-
flux vector the heat conduction coefficient and the fluid index respectively.

3. KINEMATICAL PARAMETERS

The kinematical properties of the fluid stream lines are characterized by
the usual decomposition for the rate of change of the flow vector [16] M’;

where denote the shear, rotation and expansion of the congruence
of streamlines respectively. D stands for the directional derivative along
the fluid flow.
The covariant derivative of the 4-vector nt tangential to the space-like

congruence is decomposed according to Greenberg [14] as follows ;

where the shear tensor rotation tensor and scalar expansion 0 of
the space-like congruence are defined by

Vol. XXX, n° 1 - 1979.
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and 0

*

respectively. The projection tensor 03B3ij is defined as

= can be interpreted as the curvature vector associated with
the congruence of space-like curves. The space-like curve is geodesic when

vanishes.

4. GENERAL RELATIONS AND THEOREMS

Now the situation permits us to begin the study of various consequences
of RMHD field equations involving the kinematical parameters associated
with the congruence of time-like and space-like curves which are already
mentioned in Sec. 3. In this section, we present the results of purely theore-
tical interest and extend the theory of RMHD relaxing the assumption of
infinite conductivity. Following the concluding remarks made by Green-
berg [14], we can apply his theory to study the behaviour of the congruences
of electric and magnetic field lines. We may interpret the kinematical

* * *

parameters as the shear, rotation and expansion of the congruence
formed by magnetic field lines (magnetic field tubes). It is known that the
shear and rotation of the space-like congruence reside in 2-space of metric
*

Further, this may be interpreted as the shear and rotation of the magnetic
field tubes reside in 2-space quotient to the streamlines and magnetic field
lines. Thus it would be reasonable to define an alternating tensor on the
2-space quotient to the streamlines and magnetic field lines by the relation

satisfying the properties

where ni defines unit magnetic field vector.
By virtue of (3 .1 ), (3.2) and (4 .1 ), we have

where

Annales de l’Institut Henri Poincaré - Section A
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Using (4.3) in (2.2), we get

where .~u denotes Lie differentiation with respect to the flow vector u‘ and ai
is defined by

Similarly the counterpart of (4. 6) may be deduced trom (2.1) in e following
form ;

where overhead caret (A) is used to denote the nematica parameters
associated with the congruence of electric field lines and (x’ is defined as

where al denotes unit electric field vector.
Splitting up (4.6) orthogonal to u~ and Di with the help of Greenberg’s [14]

law of transport

we get

Similarly (4.8) yields

Contracting (4.11) with nk and (4.12) with ak, we get

and

respectively. From (4.5), it is easy to verify that

Thus in view of (4. 5), (4.13) and (4.15) we may conclude that there exists

a space-like vector orthogonal to the now vector and magnetic field
vector having the magnitude equal to half of the magnitude of the rotation
tensor associated with the congruence formed by magnetic field lines. Thus

Vol. XXX, nO 1 - 1979.
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it seems reasonable to call the vector cvi the « magnetic vorticity )) vector.

Similarly the « electric vorticity )) vector will be denoted by 
Using (3 . 5) in the resulting equation obtained by the contraction of (4 . 8)

with u i, we get

where I B (&#x3E; 0) is the magnitude of the magnetic induction vector BB
With the help of definition [l4]

where A* is the proper area subtented by the magnetic field lines as they
pass through the screen in the 2-surface dual to the surface formed by ui
and hi, (4.16) reduces to

The magnetic fields are said to be « frozen-in » if the magnetic fl.ux through
an area bounded by the particles of the fluid remains constant

i. e. D* In I A * = 0. Thus in view of (4.18) we state the following
theorem :

THEOREM (4.1). The electric field and vorticity of the fluid are ortho-
gonal when the magnetic fields are « frozen-in ».

Similarly the counterpart of (4 .18) can be obtained from (4 . 6) as follows :

The electric fields are said to be « frozen-in » if the electric flux through an
area bounded by the particles of the fluid remains constant i. e.

D D A = 0. When the electric fields are « frozen-in o, (4.19) assumes
the form

which explains the orientation of magnetic field in a charged rotating stars
provided the electric fields (due to the presence of charge) are « frozen-in o.
The « steady rigid rotation )) is characterized by the conditions

and with respect to a Fermi triad the rate of change of the magnetic and

electric induction vectors must vanish i. e. 0. Splitting
up (4.6) and (4.8) orthogonal to ui, we get

anc
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23RELATIVISTIC ELECTROMAGNETIC FLUID FLOWS

respectively. Assuming the electromagnetic fluid to be in « steady rigid rota-
tion » one can obtain from (4 . 22) and (4 . 23) in view of (4 .11 ) and (4.12)
the following result

which states the following theorem :

THEOREM (4.2). The electromagnetic energy2014nux vector and vorticity
of the fluid are orthogonal when the electromagnetic fluid is in « steady
rigid rotation ».
When the electromagnetic fluid is in « steady rigid rotation )) then (4.23)

yields

which gives the theorem :

THEOREM (4. 3). The « electric vorticity » and magnetic field are ortho-
gonal when the electromagnetic fluid is in « steady rigid rotation » and the
electric field is parallel or antiparalled to the magnetic field.

Using (2.4) and (2.5) in the relation [16]

we get

Contracting (4.27) with OJ and using theorem (4.2) and kinematical rela-
tion (3.2) for 03C9i - li, where lI is unit vorticity vector, we get

where denotes the rotation of vortex tubes. This explains the orientation
v

of heat2014nux tubes in thermodynamically imperfect stars. If the rotation
of the vortex tubes happens to be zero, the heat fl.ux tube will be orthogonal
to the axis of rotation of a rotating star. Similarly (4.27) yields

which gives the theorem :

THEOREM (4.4). The heat-flux tubes and magnetic fields are orthogonal
when the magnetic field tubes are parallel or antiparallel to the axis of
rotation of the electromagnetic fluid which is in « steady rigid rotation o.
Similarly the counterpart of theorem (4.4) can be stated as follows.
Vol. XXX, n° 1 - 1979.
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THEOREM (4. 5). - The heat flux tubes and electric fields are orthogonalwhen electric field tubes are parallel or antiparallel to the axis of rotation ofthe electromagnetic fluid which is in « steady rigid rotation ».
From (4.3), we obtain divergence identity for the « magnetic vorticity »vector,

which demands further investigation to understand the behaviour of « magne-tic vorticity )) vector on the basis of kinematical prameters associated withthe congruence formed by « magnetic vorticity )) lines. Though this con-gruence is a space-like congruence but differs from the congruence formedby fluid vortex lines in the sense that the « magnetic vorticity )) is ortho g onalto the flow lines and magnetic field lines while the fluid vorticity is ortho-gonal to the flow lines only. With this remark we postpone above discussion
at present.
By means of (2 . 4), (2.5), (3 .1 ), (3.2) and the Ricci identity for space-likevector ~ 

we obtain

which may be regarded as space-like  magnetic ) counterpart of Ray-chaudhuri’s [l7] equation in the context of electromagnetic fluids.
The electromagnetic energy-flux vector is defined by

which yields the divergence identity

U sing (4 . 34) in the resulting equations obtained by the contraction of (4 . 6)
with ei and (4. 8) with hi, we get

Annales de l’Institut Henri Poincare - Section A
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where

Assuming the conservation of particles number i. e. 0, one can

express (4.35) as below ;

which may be regarded as electromagnetic energy equation which shows
that the presence of differential rotation with electromagnetic field causes
the electromagnetic energy to be exchanged back and forth for the fluid
energy and such process of exchange of energy with its surroundings is

responsible for the production of Joule’s heat. It is easy to show that = 0

is equivalent to

Combining (4.35) and (4. 37), we get

Using (2.9)-(2.13) and the matter conservation law i. e. === 0 in (4. 38),
we have

which shows that the generation of entropy depends upon Joule’s heat
besides shear viscosity and thermal conductivity of the fluid. The generation
of entropy is positive only when the following inequality

is satisfied. The entropy is not constant when the fluid is usually intractable.
For example, plasmas are often reactive gases with elaborate equations of
state and that heat radiation can be dominant due to high effective heat
capacity associated with their chemical reactivity and their isothermal
flows. Thus entropy generation should always be positive.
One can show that = 0 is equivalent to

Vol. XXX, nO 1 - 1979.
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Substituting the resulting equation obtained by the contraction of (4.8)
with ui and using (3.2) and theorem (4.4) in (4.40), we finally obtain

which yields the theorem :

THEOREM (4.6). The fluid acceleration and magnetic fields are ortho-
gonal when parallel or antiparallel magnetic field tubes (*) to the vortex
tubes and the electromagnetic fluid are in « steady rigid rotation )) and the
magnetic fields lie in the surfaces of constant partial pressure (isotropic
pressure + supplementary pressure due to electric fields).
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