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Section A :

Physique ’ théorique. ’

SUMMARY. A general method devised to construct oscillatory approxi-
mate solutions is applied to the system of General Relativistic Magneto-
hydrodynamics (G. R. ML H.), assuming the phase to be a solution of the
magnetosonic wave equation.
The growth equation is established and the case of propagation into

a constant state is explicitely worked out.
Finally the critical time is evaluated for :

i) flat spacetime in general;
li) conformally flat spacetimes in the case of a radiative fluid.

RESUME. 2014 On applique au systeme de la Magnetohydrodynamique en
Relativite Generale (M. H. R. G.) une methode générale pour construire
des solutions approchées oscillatoires, en prenant la phase solution de
1’equation des ondes magnetosoniques.
On etablit 1’equation qui regle Ie premier terme de la perturbation et

on considère en particulier Ie cas de propagation dans un état constant.
Enfin Ie temps critique est evalue dans les deux cas suivants : pour une

metrique minkowskienne et pour une metrique conformement plate dans
Ie cas du fluide radiatif.
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1. INTRODUCTION

In a recent paper Y. Choquet-Bruhat [1] gives a general method for cons-
tructing asymptotic solutions to quasi-linear partial differential systems.
These solutions are formally given as series expansions around a known
solution in terms of a real parameter 03C9 » 1, the frequency, and a scalar
real function, the phase. For consistency the latter must be a solution of the
characteristic equation of the system corresponding to the chosen unper-
turbed state.

Essentially, let u be the solution corresponding to the unperturbed state
(0)

(assumed to be known). One seeks a solution for the perturbed state in
the form

(where the x’s are the independent variables, is a numerical para-
meter and ir, u, ... are the perturbation terms to be determined).

(1)(2)
Here this method will be applied to the system of perfect (infinite conducti-

vity) general relativistic magnetohydrodynamics (G. R. M. H.) in order
to find first-order approximate solutions :

where u is the ten components field vector and u is an unperturbed state

independent of ç = ay. 03C6 is chosen to obey the magnetosonic wave equa-
tion. In general these waves correspond to simple roots of the characteristic
equation and are not exceptional [2] for a generic state equation.
Then the first-order perturbation term will be governed by only one

function II = ç) obeying a non-linear partial differential equation
(the growth equation). The non-linearity gives rise to the conspicuous pheno-
menon of the distortion of signals and to the occurrence of non-linear
shocks at the so-called critical time.
The main results obtained in this paper are :

i) an explicit form is given for the growth equation, embodying an earlier
result of Lichnerowicz [3] for the propagation of weak discontinuities;

ii) in flat spacetime the critical time is evaluated in the case of propagation
into a constant state ;

iii) a general method for generating solutions to the conservation equations
in conformally flat spacetimes is given in the case of traceless energy-
tensors. By applying this method to the G. R. M. H. system one can evaluate
the critical time for a radiative fluid in a conformally flat spacetime. The
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259GENERAL RELATIVISTIC MAGNETOHYDRODYNAMICS

important Robertson-Walker models are included as particular cases.

It is noteworthy that lately radiative fluids have attracted the interest

of many people working in the fields of Cosmology and relativistic astro-
physics [4], [s], [6].
The scheme of the paper is the following.
In Section 2 first the basic system for perfect G. R. M. H. is recalled.

Then, after choosing the phase to be a solution of the magneto sonic wave
equation, the method is carried out up to the determination of the zeroth
order approximate waves.

In Section 3 the growth equation for the first perturbation term is expli-
citely derived.

In Section 4 the case of propagation into a constant state is investigated
in some detail.

In Section 5 the critical time for plane waves is evaluated.
In Section 6 the system for a radiative magnetofluid in a conformally

flat spacetime is investigated.
It is found that, by a suitable transformation, it can be reduced to an

equivalent system in flat spacetime. Finally the results of the previous sec-
tions are applied leading to an evaluation of the critical time for a radiative
fluid in the Robertson-Walker models.

Notation. 2014 Spacetime is assumed to be a four-dimensional manifold M4
whose normal hyperbolic metric, ds2, with signature + - - 2014, can be

expressed in local coordinates in the form ds2 - the metric
tensor is assumed to be of class C 1, piecewise C 2 ; the four-velocity is defined

which implies u"u - I. B1 0153 is the operator of covariant diffe-

rentiation with respect to the given metric.
a" or a comma denotes the operator of ordinary differentiation.
Everywhere the units are such that the velocity of light is unity, c = 1.

2. ZEROTH ORDER APPROXIMATION

Let one consider a perfect charged relativistic thermodynamical fluid
with constant magnetic permeability  and infinite conductivity. Following
Lichnerowicz [3] the field equations can be written :

where is the energy tensor :
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260 A. M. ANILE AND A. GRECO

~ being the proper material density (particle number), f = 1 + i the index
of the fluid, i the specific enthalpy, p the pressure ; u" the unitary 4-velocity
(u"u" - 1) and |b|2 = - with b03B1 = *F03B103B2u03B2, *F03B103B2 being the dual
of the electromagnetic tensor Fu,, ; obviously b" is a spacelike vector 
Furthermore the relation

which comes from thermodynamic principles, is assumed to hold. T and S
are the proper temperature and specific entropy of the fluid respectively.

In the following it will be assumed that p and S are the independent
thermodynamic variables.
By straightforward calculations the systems (1), taking into account

eq. (3) can be transformed into the following equivalent one

where ~ == rf, 03BB == 11 + |b|2, 03B303B103B2 ~ g03B103B2 - u03B1u03B2 is the projection tensor

and y = frp with the prime denoting partial differentiation with respect
to the subscripted variable.
Now one looks for the solution u = b«, p, S) as a series expansion

of the form

cc&#x3E; » 1 being a real parameter, 03C6 a real scalar function, 03BE = 03C903C6 a numerical

parameter, and where u = bo, po, So) is solution of (4)-(7) independent
(0)

of ç which is assumed to be known.
One says that the series (8) is an asymptotic wave [1] for the system (4)-(7)

if, when formally substituted into these equations (in which the coefficients
have been developed in Taylor series in a neighbourhood. I of the given

00

solution u , the resulting series has all the coefficients F
(0) ¿ (q) (q)

q=-1

identically vanishing with respect to x and ç = 

Henri Poincaré - Section A



261GENERAL RELATIVISTIC MAGNETOHYDRODYNAMICS

m

One says that the truncated expansion u = ccy) is an approxi-
(q)

q =0
mate wave of order m - 1 if the following condition holds :

where u 2014~ M(u) is the operator defined by eqs. (4-7) (i. e. such that these
equations can be written in the form M(u) - 0) and 1B II is a suitable
norm [1].
For this to hold it is sufficient that the functions u, q - 0, 1, ..., m belong

( q)
to I, be bounded together with their derivatives with respect to x, ç, and
verify F = 0 for q  m.

(R) 
.

In the case under investigation F = 0 follows from M = 0 (where a dot
(- 1) (0)

denotes the derivative with respect to ç) because u is a solution of eqs. (4-7)
(0)

assumed to be independent of ç.
The condition F == 0, in its turn, gives

(0)

where U == B == 

The suffix 0 denotes that the quantity is evaluated in the unperturbed state.
In the sequel we shall omit it whenever it does not lead to any confusion.
In order to have non trivial solutions for u the phase qJ must be a solution

(1)
of the characteristic equation

where

Vol. XXIX, nO 3 - 1978.



262 A. M. ANILE AND A. GRECO

with

The contravariant index 03B2 is at the same time the row index while the cova-
riant index a is also the column index. By expanding det A one finds

where

Henceforth only the case when ~p is a solution of N4 = 0 will be considered.
It corresponds to the magnetosonic waves which, in general, are simple
roots 

With this choice it is a well known result [1] that Lr can be expressed as

follows 
(1)

where ’ lz is the right eigenvector of the matrix d corresponding ’ to the chosen
solution ({1 i and o n is an arbitrary differentiable function.
One finds for /? = { ~ lr 3 + °‘, 1~8, 

One has thus obtained the zeroth order approximate wave u = ~ + 2014 u
(0) 

with u given by ( 17) where the values ( 18) have been substituted for h.
(1)

3. THE GROWTH EQUATION

In order to obtain the 1 st order approximate waves F is required to

vanish. This yields

l’Institut Henri Poincaré - Section A
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The explicit expressions g3+03B2, g8, g9} are rather compli-
(1) (1) (1) (1) (1)

cated and are given elsewhere [7].
The algebraic compatibility conditions for the system (19-22) in u require

(2)

the orthogonality condition

where lz = { h3 +«, /?8. h9} is the left eigenvector of A corresponding
to the chosen p. When evaluating g, u must be expressed as in eq. (17).

(1) (1)

One finds for A

Then, after a long and tedious calculation, one obtain from (23)

where

N0152 
1 aN 4 , 

bein g the ma g netosonic ra Y direction

In the general case the expression for 03B2 is extremely complicated and is
given in the Appendix.
Thus one obtains the first order approximate wave i

Vol. XXIX, nO 3 - 1978.
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in/ is given by eq. (17) with n a solution of eq. (24) which is bounded together

with its derivatives with respect to x and ~.
Eq. (24) is the growth equation which governs the intensity n of the first

perturbation term.
Its apparent non-linearity gives rise to the well known phenomena of

distorsion of the signals and breaking of the waves. Of course this does not
occur when x = 0 which corresponds to the exceptional case.
The expression for oc given here corresponds exactly to that previously

obtained by one of the authors [2] in a study directly concerned with the
exceptionality conditions.

4. PROPAGATION INTO A CONSTANT STATE

The growth equation derived in the preceeding section simplifies consi-
derably when the unperturbed state is a constant solution of the system ( 1 ).

Before considering the G. R. M. H. system one wants to comment briefly
on the general case.

Let one consider a general 1st order quasi-linear hyperbolic system,
which we write in the form

For an explanation of the symbols the reader is referred to Choquet-
Bruhat’s paper [1].
The aim of what follows is to find a rather suggestive expression for the

coefficient 03B2 of the linear term in the growth equation appropriate for
the system (27). It turns out that this is analogous to that of Boillat [8]
in the noncovariant formalism.
The general expression for 03B2 is [1]

which, in the case of a constant unperturbed solution, ui = constant,
(0)

reduces to

where

Now one has

because ~ = const.
(0)

Annales de Henri Poincare - Section A



265GENERAL RELATIVISTIC MAGNETOHYDRODYNAMICS

It follows that ~3(x) can be written in the form

with

Moreover it is [1]

where A~~ is the element belonging to the j-th row and i-th column of the
adjoint matrix of and k is a normalization factor.

By contracting eq. (31 ) with /?~ one obtains

where N = h~h’ ~ 0 because the system (27) is hyperbolic.

From 32 it follows hq, but 
a~ 

~j whererom It 10 OWS i0 N t0 q , ut t0 r 
= 

ocp). 
r r’ were

Q = det hence

By differentiating (33) one gets

The rays system associated with the characteristic equation is

For a constant unperturbed state one has 2014 = 0 whence it follows
c~

Finally, substituting (34) into (29), with the help of (36) yields

where

Vol. XXIX, nO 3 - 1978.
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Now let one return to the system (4-7) in the case of propagation into
a constant state.

One finds

with

Therefore the growth equation, with the positions of Section 3, writes

It is convenient to introduce a minkowskian comoving frame,

Without loss of generality the spatial coordinate xl 1 can be chosen along
the unperturbed magnetic field so that b03B1 = (0, b, 0, 0) and B = b03C61.
One looks for solutions of N4 - 0 in the form of plane waves ~p = 

l« = = constant. Then one obtains

3

where II 12 = 03A3(li)2 and () is the angle between the magnetic field b03B1

i= 1

and the spatial direction defined by /", B l ~ cos 9.
It is convenient to introduce the following quantities

Then the solutions to eq. (40) write

where the double sign refers to the fast and slow magnetosonic waves
respectively.
A straightforward calculation gives for the magnetosonic ray direction

Annales de l’Insritut Henri Poincare - Section A
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and for oc

with

Also, ~ - 0, because for plane waves = 0.

Eq. (41 ) gives two solutions for the ratio for each mode, corresponding
to forward and backward propagation.

In the case of forward propagation one has lo and the growth
equation writes

where ni is the spatial unit vector in the direction of 0152.

i. e.

The bicharacteristics of eq. (45) are defined by

By integration of (46.3) one gets

where  and W are the initial values of ç and n respectively.
Let one assume that the initial perturbation has a sinusoidal profile

It is physically suggestive to express W 0 in terms of the initial value of
the relative pressure perturbation 5,

Then, by using (46 .1 ), eq. (47) writes

From eq. (48) one obtains both the signal distortion and the critical time.
In order to obtain the signal distortion one proceeds as follows.

Vol. XXIX, nO 3 - 1978.
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Eq. (46.4) yields

where of course  must be expressed in function of ç.
If ones writes

eq. (48) reads

when 1/ I  1 the above relationship can be inverted for  and yields

where Jq is the Bessel function of order q.
Therefore one sees that an initially sinusoidal profile is subsequently

distorted by creation of the higher order harmonics. Explicitely one gets

It is easily seen that the critical time t±c corresponds to the value for
which |e| I = 1. Therefore

In many situations encountered in Relativistic Astrophysics and Cosmo-
logy one deals with a barotropic fluid [6]. This corresponds to a fluid where
the rest-mass energy is negligible compared to the internal energy, i. e. the
fluid is in the so-called ultrarelativistic regime [9].
A barotropic fluid is defined by the following relationships :

S = constant, p == yp, y = constant.

In this case the critical time is obtained from (50) by inserting the following
expression for 

where Y == 2014 is an adimensional parameter measuring the ratio of the

magnetic energy to the fluid’s energy.
For the sake of physical interpretation it is helpful to consider separately

the cases of propagation along and normal to the magnetic field.

[’Institut Henri Poincaré - Section A
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In the former case 0=0 and one finds

while t~ goes to infinity.

In the latter case 8 - ~ 2 and

while t-c goes to infinity. This is consistent with the well known results

that the slow waves degenerate into Alfven waves and material waves in
the cases of propagation along and normal to the magnetic field. Of course
in these cases the slow waves do no longer correspond to simple roots
of the characteristic equation and therefore they must be handled separately.

6. CONFORMALLY FLAT SPACETIMES

The barotropic fluids of interest in relativistic astrophysics and cosmo-
logy have y = 1 [7~] or y = 3 [4]. In the first case the system is completely
exceptional [2], in agreement with our previous results which show that tc
goes to infinity for y === I.

The case y = 3 corresponds to a radiative fluid.
Astrophysically it occurs in the latest stages of the gravitational collapse

of a star to a black hole (where the radiative energy density and pressure
are dominating) and in the radiative period of cosmic evolution.

Because of its astrophysical importance and analytical simplicity only
the case y = 3 will be treated here. It is easily seen that, for p - 3p, the
energy tensor of G. R. M. H. is traceless, = 0.

At this stage it is useful to employ the following Lemma, which holds
for any symmetric traceless conservative energy tensor.

LMMEA. Let be a conformally flat manifold

and a traceless tensor.

Then

with

Vol. XXIX, no 3 - 1978.
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Pr~oof :

From (52) one has

Hence, by using (53), it follows

From the above Lemma it follows that, in our case, the conservation equa-
tions in a conformally flat metric (52) write

where

Since the fluid is assumed to be barotropic, S = const. everywhere and the
only remaining equations to be considered are Maxwell’s :

A straightforward calculation shows that the above equations reduce to

under the transformation (54’).
Therefore, in the case of a radiative fluid, one has a method of generating

exact solution of G. R. M. H. in conformally flat spacetimes, starting from
exact solution of G. R. M. H. in Minkowski’s spacetime.

It follows that, when y = 3, the results of the preceeding section on the
signal distortion and the critical time can be transferred to the case of an
arbitrary conformally flat spacetime by the transformation (54’).

It is well known [77] that all the Robertson-Walker models are confor-

mally flat. Also, a suitable model for the universe in the radiative period
is provided by the Robertson-Walker spacetime with vanishing spatial
curvature. In this case one has for the proper time

where

a being the expansion factor of the universe [10].
It follows

Annales de , l’lnstitut Henri Poincare - Section A



271GENERAL RELATIVISTIC MAGNETOHYDRODYNAMICS

which gives the relationship between the proper time T and the conformal
coordinate time t.

The results of the preceeding section are then seen to hold also in this
case provided that t is interpreted as the conformal coordinate time. In

particular the critical time ’!; is simply given by

where ~~ is any of the critical times previously evaluated, computed for y = 3.
Detailed applications to more general situations of astrophysical and

cosmological importance are under current investigation and will be published
elsewhere.

APPENDIX

We give here the explicit expression for the coefficient ~ of the linear term in the growth
equation (24), in the general case

where
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