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SUMMARY. - Generalized Hamiltonian dynamics formulated origi-
nally by Dirac is reformulated in terms of symplectic geometry. A classi-
fication of constraints is given. Importance of first class constraints is
stressed. Examples from particle dynamics illustrating various aspects
of the generalization are given.

RESUME. 2014 On formule en termes de geometric symplectique la genera-
lization de la dynamique hamiltonienne donnee par Dirac. Apres la clas-
sification des contraintes on souligne 1’importance des contraintes de

premiere classe. Plusieurs aspects de cette generalisation sont donnes par
des exemples tires de la dynamique d’une particule.

1. INTRODUCTION

In an attempt to provide a canonical framework for relativistic dynamics,
Dirac [3] formulated a generalization of Hamiltonian dynamics associated
with submanifolds of the phase space of a physical system. A classification of
the Poisson algebra was given. Dirac’s theory was formulated in the language
Annales de l’lnstitut Henri Poincaré - Section A - Vol. XXVIII, n° 4 - 1978. 23



350 M. R. MENZIO AND W. M. TULCZYJEW

of local coordinates. A coordinate independent discussion of dynamics
associated with submanifolds of a symplectic manifold was given by
Lichnerowicz [5]. Lichnerowicz also included the case of non-zero Hamil-
tonians.
We give a systematic discussion of the generalized Hamiltonian dyna-

mics in terms of symplectic concepts such as lagrangian submanifolds
and symplectic relations. Classification of constraints is given. Importance
of first class constraints and integrability is stressed. Lagrangian descrip-
tion of dynamics is not included. Examples including both zero and non-
zero Hamiltonians are given.
The program of symplectic interpretation of dynamics with constraints

was initiated in a seminar conducted at the Warsaw Institute for Theore-
tical Physics by one of us (W. M. T.) in 1967-1968. Results remained unpu-
blished except for a paper by Sniatycki [7] who as a participant in the semi-
nar had access to the material.

2. SYMPLECTIC MANIFOLDS
AND LAGRANGIAN SUBMANIFOLDS

DEFINITION 2.1. Let P be a manifold, and co a 2-form on P. The pair
(P, is called a symplectic manifold if :

i) co is non-degenerate ;
ii) co is closed : d03C9 = 0.

A more explicit statement of condition i) is that 
for each vector field Y, it follows that X = 0. Condition i) implies that the
dimension of P is even : dim P = 2m.

If local coordinates are introduced in P and the local expression

of co is co A (~ then these two conditions can be expressedas: 2 p

Coordinates pj) of P such that 03C9 = dqi A dpi are called canonical
coordinates. Local existence of canonical coordinates is guaranteed by
Darboux’s theorem.

DEFINITION 2.2. Let (P, be a symplectic manifold. A submanifold
N c P is called a lagrangian submanifold of (P, (D) if

e) We follow the tensor calculus conventions of reference [6]. In particular, the summa-
tion convention is used.

Annales de l’Institut Henri Section A



351SYMPLECTIC RELATIONS AND GENERALIZED HAMILTONIAN DYNAMICS

A submanifold N c P is said to be isotropic if condition i) is satisfied.

We show that the dimension of an isotropic sub manifold can be at most

equal to m. At any point p E P, wp is a non-degenerate skew-symmetric
form on TpP. The vector space TpP together with the form give an exam-

ple of what is called a symplectic vector space. For any subspace V of TpP
we define the symplectic polar

The dimension of the symplectic polar is obviously equal to the codimen-
sion of V in TpP. In particular, if p is an element of an isotropic submani-
fold N c P, then the condition 03C9 | N = 0 implies (TpN)§ ~ TpN. Let n be
the dimension of N. Since the dimension of is 2m - n, we have
2m - n &#x3E;- n, n. Hence the dimension of N is at most m. It follows

from the discussion above that a lagrangian sub manifold is an isotropic
submanifold of maximal dimension.

Let Q be a manifold and let T*Q be its cotangent bundle. We denote
by 1tQ the bundle projection of T*Q onto Q. A 1-form 8Q on T*Q is defined
by : _

The mapping TT*Q -~ TQ is the tangent mapping oi ~Q and

TT*Q ~ T*Q is the tangent bundle projection. The 1-form 8Q
is called the canonical 1-form on T*Q and the 2-form (DQ = d03B8Q is called

the canonical 2 form.
Let (qi) be local coordinates of Q. At each point q E Q, the differentials

dqi of the coordinates form a basis of the cotangent space T q *Q. The com-
ponents p~ of a covector pET q *Q together with the coordinates qi of q
form coordinates (qi, p~) of the covector p. In this way we obtain coordi-
nates (qi, p~) of T*Q canonically associated with coordinates qi. It is easily
seen that the local expression of the canonical 1-form 8Q is 9Q = 
and the local expression of the canonical 2-form 03C9Q is (DQ = dpi A dqi.
It follows that (T*Q, is a symplectic manifold and the coordinates

p~) are canonical coordinates. -

If ~p is a 1-form on Q, then the pullback of the canonical 1-form 9Q
by Q -~ T*Q is equal to ~p. This property is proved by evaluating 
on an arbitrary vector v E TQ:

From cp, it follows that the image N of the mapping
Q ~ T*Q is a lagrangian submanifold of (T*Q, if and only if ~p

is a closed 1-form. If ~p is exact, and cp = dF, then F is called a generatin~g
function of N. The image of a closed 1-form is a special case of a class of

Vol. XXVIII, n° 4 - 1978.



352 M. R. MENZIO AND W. M. TULCZYJEW

lagrangian submanifolds generated 0 by functions defined 0 on submanifolds
of Q.

PROPOSITION 2.1. - Let C c Q be a submanifold i and let F : 
be a ’ differentiable function. The set

is a , lagrangian submanifold 1 of 

Proof Using canonical coordinates of T* Q, one can easily show
that N is a submanifold of T* Q of dimension m = dim Q. Let z be any
vector in TN c TT*Q. Then

where F = F o N). It follows that 9Q N = d F and consequently

= 0. Since N is isotropic and dim N = 2 dim T*Q, it follows
that N is lagrangian, q. e. d. 

, 

2

3. THE STRUCTURE OF THE TANGENT BUNDLE
OF A SYMPLECTIC MANIFOLD

Let (P, be a symplectic manifold. Then the tangent bundle TP is
isomorphic to the cotangent bundle T*P. The isomorphism is established
by the vector bundle morphism j8

Objects in TP corresponding to 9p and COp are Tp = ?Cp o /3, x = 
and d) = dx = respectively.
We note that (TP, cb) is a symplectic manifold. Since TP is isomorphic

to the cotangent bundle T*P, it is possible to generate Lagrangian sub-
manifolds of (TP, c~) from functions defined on submanifolds of P. Appli-
cations of such sub manifolds to particle dynamics will be studied in sub-
sequent sections.

4. INFINITESIMAL RELATIONS

Let (P, OJ) be a symplectic manifold representing the phase space of a
mechanical system (2). Let us consider the set of all differentiable curves
in P. Possible histories form a subset D of the set of all curves. The set fØ

itself, or any law which characterizes ~ completely will be referred to as

(2) In the present section we make no use of the symplectic structure x).

Annales de l’Institut Henri Poincaré - Section A



353SYMPLECTIC RELATIONS AND GENERALIZED HAMILTONIAN DYNAMICS

the d ynamics of the system. It usually happens that the set ~ is the set of
all solutions of an ordinary differential equation of first order.

DEFINITION 4 .1. A submanifold D’ of TP is called a first order diffe-
rential equation. A differentiable mapping y : I ~ P is called an integral
curve of D’ if the vector y{t) tangent to y at t belongs to D’, for each t e I.
We denoted by I an open neighbourhood of 0 E IR.
When a differential equation D’ is used to describe the dynamics of a

mechanical system, it is important that each element of D’ is tangent to
an integral curve.

DEFINITION 4.2. A differential equation D’ c TP is said to be inte-
grable if for each element u E D’ there is an integral curve y of D’ such
that y(o) = u. An integrable differential equation will be called an infini-
tesimal relation.

Examples. - a) Let X : P ~ TP be a vector field : then the image
D’ = Im (X) is a differential equation. It follows from the geometric
version of Cauchy’s theorem that D’ is integrable. A vector field is fre-

quently called an infinitesimal transformation since it generates a (local)
one-parameter group of transformations. An integral curve of D’ is called
an integral curve of the vector field X.

b) Let D’ be a distribution on P (3) : D’ is again an example of a differen-
tial equation. Integrability of distributions is the subject of Frobenius
theory. This theory deals with the problem of existence of sub manifolds
of P whose tangent vectors belong to the distribution. Such submanifolds
are called integral submanifolds. A distribution is said to be completely
integrable if for each point there is an integral submanifold of dimension
equal to the dimension of the distribution. Integrability in the sense of
Definition 4.2 always holds for a distribution. A completely integrable
distribution leads to a foliation of P by maximal connected integral mani-
folds ; this foliation can be interpreted as defining an equivalence relation
in P. Consequently, an integrable distribution can be regarded as an infi-
nitesimal equivalence relation.

c) Let (P, B, ~u) be a differential fibration [2], and let X : B -~ TB be a
vector field. We define a differential equation

Let belong to D’ and let y : I ~ B be an integral curve of X such
that y(o) _ Jl(P). It is easily seen that any lift of y to P is an integral curve
of D’ ; in particular a lift can be chosen to be tangent to u. It follows that D’
is an infinitesimal relation.

e) A distribution on P is a subbundle of TP, also known as a field of p-directions.

Vol. XXVIII, n° 4 - 1978.
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B be the one-parameter group of transformations generated
by X. For each t we have a submanifold Dt c P x P defined by

This submanifold is not the graph of a mapping but can still be considered
a relation in P. The one-parameter family {Dt} of relations is in a sense
generated by D’. This justifies the use of the term « infinitesimal relation »
for D’.

5. HAMILTONIAN DYNAMICS

Dynamics of nonrelativistic particle systems is usually described by
a hamiltonian vector field on a symplectic manifold (P, representing
the phase space of the system. We show that a hamiltonian vector field
provides a special example of a lagrangian submanifold of (TP, cv).

DEFINITION 5 .1. A vector field X : P ~ TP is said to be locally hamil-
tonian if the form X J ú) is closed : d(X J OJ) = 0. The field X is said to
be globally hamiltonian if X J OJ is exact. A function H : P ~ !? is called

a Hamiltonian for the field dH [7].
Since = d{X J + and cc~ is closed, a vector field

X : P -~ TP is locally hamiltonian if and only if = 0. It follows that,
if X is locally hamiltonian, it generates a one-parameter group of symplectic
transformations. For this reason, locally hamiltonian vector fields are

called infinitesimal symplectic transformations.

PROPOSITION 5.1. 2014 A vector field X : P ~ TP is locally hamiltonian if
and only if the image D’ of X is a lagrangian submanifold of (TP, d)).

Proof 2014 It is obvious that D’ is isotropic if and only 
We show that X*X is closed if and only if X is locally hamiltonian :

Since dim D’ = dim P == - 2 1 dim TP, , D’ is lagrangian if and only if X is

locally hamiltonian, q. e. d.
Relativistic generalizations of hamiltonian dynamics require passing

from infinitesimal transformations to infinitesimal relations. Proposition 5.1

suggests a generalization of the concept of a locally hamiltonian vector
field. We consider infinitesimal relations in P which are lagrangian sub-
manifolds of (TP, co).

DEFINITION 5.2. A differential equation D’ c TP is called an infini-
tesimal symplectic relation if it is integrable and is a lagrangian submani-
fold of (TP, c~).

Annales de l’Institut Henri Poincaré - Section A
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6. GENERALIZED HAMILTONIAN DYNAMICS

A generalization of Hamiltonian dynamics was proposed by Dirac [3].
The characteristic feature of this generalization is the appearance of a
constraint sub manifold on which the Hamiltonian is defined. We give a
construction of differential equations appearing in Dirac’s generalized
dynamics independent of local coordinates.

PROPOSITION 6.1. - Let K c P be a submanifold and H : 
differentiable funetion. The set

lagrangian submanifold q~ (TP, cb).
- Let

be the lagrangian submanifold of (T*P, generated by H in the sense
of Proposition 2.1. The inverse image ~3-1(N) of this submanifold by the
diffeomorphism ~: TP ~ T*P defined in Section 3 is a lagrangian
submanifold of (TP, 6). It follows from the definition ofj9 that = Tp(W)
and  u, (3(w) , _ ~ u, w J = ( w A u, o ). We see that w e D’ if and
only if Hence, ~3 -1 (N) = D’ and D’ is a lagrangian submanifold
of (TP, d)), q. e. d.

DEFINITION 6.1. The lagrangian submanifold D’ introduced in Pro-
position 6.1 is said to be generated by the function H, and H is called a
Hamiltonian of D’. The submanifold K is called the constraint submanifold
and D’ is called a generalized Hamiltonian system.

If D’ is to describe the dynamics of a mechanical system, it must be inte-
grable, that is it must be an infinitesimal relation. Integrability of D’
depends on certain properties of the constraint submanifold K. We give
a classification of constraints in the next section and return to the problem
of integrability in Section 8.

7. CLASSIFICATION OF CONSTRAINTS

At each point p of a submanifold K c P we consider spaces TpK c TpP
and (TpK)~. In terms of these two spaces we have the following defini-
tions [77] :

a) K is said to be isotropic at p if TpK c 
b) K is said to be coisotropic at p if 

Vol. XXVIII, n° 4 - 1978.
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A coisotropic submanifold K c P is also called a first class constraint
submanifold.

c) K is said to be lagrangian at p if it is isotropic and coisotropic :
TpK = 

d) K is said to be symplectic at p if TpK n (TpK)~ = { 0 }.
These definitions are related to the classification of submanifolds of P,

introduced by Dirac [3]. We derive Dirac’s classification of constraints
by coordinate independent methods.

Let Np be the intersection of TpK and and let t and k denote the
dimension of Np and the codimension of K, respectively.

DEFINITION 7.1. The pair of numbers (t, k - ~ is called the class of
the submanifold K at p.
We note that k - l is even. The 2-form (Dp restricted to is in general

degenerate. However, the 2-form induced .on the quotient space 
is non-degenerate. Since is a symplectic vector space, and 
its dimension, it follows that k - t is even. Further, we note that

and consequently l  rn .
Since k - l is the rank of 03C9 | K at p, the class of K at p can also be defined

as the pair (k - r, r), where k is the codimension of K and r is the rank of
K at p. The integer r is even being the rank of a 2-form.
In terms of the class of a submanifold K we have the following criteria :
a) K is isotropic at p if and only if t = 2m - k.
b) K is coisotropic at p if and only if = k.
c) K is langrangian at p if and only if t = k = m.

d) K is symplectic at p if and only if t = 0.
Let K be isotropic at p. Then TpK c (TpK)~ or equivalently TpK = Np.

The dimensions of T)( and Np are 2m - k and respectively. It follows
that 2m - k = 1. Conversely, if 2m - k = t, then TpK = Np since Np
by its definition is contained in TpK. It follows that TpK c (TpK)~. This
proves criterion a). The remaining criteria are equally easy to prove.
We establish a relation between our classification of constraints, Dirac’s

original classification and the interpretation given by Lichnerowicz.
Let X denote the Lie algebra of vector fields on P and let H be the subal-

gebra of (globally) hamiltonian fields. We define subalgebras f c !!£
and 

We also introduce subsets and N

Annales de l’Institut Henri Poincaré - Section A
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PROPOSITION 7.1. - The set N is an ideal of Jf.

Proof Let X, Y and Z be elements of ~, Jf and Jf respectively.
Then

It follows that [X, Y] E Hence ~ is an ideal of ff, q. e. d.
Dirac’s classification of constraints is based on the Poisson bracket

structure, which is equivalent to the symplectic structure [4] [10]. Let ~’
and g be functions on P. The Poisson bracket of f and g is the function

Introducing a bivector field G on P such that

for each 1-form ~ we write

The family ~ of functions on P together with the Poisson bracket { , }
form a Lie algebra called the Poisson algebra. Following Lichnerowicz [5]
we define subsets and s~ of f!}J:

Elements of tfl are called constraints, elements of f!Ã are first class functions
and elements of .xl are called first class constraints.

PROPOSITION 7 . 2. - A function f belongs to  if and only if

PROPOSITION 7.2. - A unction f ’ if and only if

The following conclusions can be drawn from the two propositions
above :

i ) if and only 
ii) ~‘ is a subalgebra of the Poisson algebra 9,

iii) j~ is an ideal of ~.

Vol. XXVIII, n° 4 - 1978.
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Throughout the remainder of this section it is assumed that the class
of K is constant. An immediate consequence of this assumption is that

N = is a distribution on K. We note that N is exactly the charac-
peK

teristic distribution of K :

PROPOSITION 7.4. - The distribution N is completely integrable.
Proof - Let X : K ~ TK and Y : K ~ TK be vector fields such

that im (X) c N and im (Y) c N. Then X J K) = 0 and Y J K) = 0.
The identity _

holds for any differential form p on K. Setting p = K we obtain

Hence im ( [X, Y] ) c N. It follows from Frobenius’ theorem that N is

completely integrable, q. e. d.
The foliation of K by maximal integral manifolds of N is called the cha-

racteristic foliation of 03C9 | K.
In a suitable neighbourhood of each point of K it is possible to find k

independent constraints = 1, ... , k such that = 0. Simple
algebraic considerations show that functions K form a
matrix of constant rank k - t. Let functions a = 1, ... , t be linearly
independent solutions of equations (Ca ~ 0. Then K = 0

and { I K = (Ca 0. It follows that functions = 

are first class constraints. Let a = 1, ... , l ; A = 1, ... , k - t
are independent constraints then functions {03C6A, 03C6B}| K form a non-

singular matrix. Dirac calls functions 03C6A second class constraints.
The following proposition relates our classification of constraints to

Dirac’s classification.

PROPOSITION 7.5. - The class of a submanifold K c P is (l, k - 
and only if in a neighbourhood of each point of K there is a system of inde-
pendent constraints of which t are first class and k - t are second class.
One part of the proposition is proved above. The other part is easy to

prove.

8 . INTEGRABILITY

We return to the problem of integrability of generalized Hamiltonian
systems introduced in Section 6.

THEOREM 8.1. - The generalized Hamiltonian system D’ generated by

Annales de l’lnstitut Henri Poincaré - Section A
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a Hamiltonian H defined on a constraint submanifold K is integrable if
and only if K is a first class constraint manifold and H is constant on leaves
of the characteristic foliation of K.

Proof 2014 We assume first that D’ is integrable. If y : I ~ P is an integral
curve of D’, then we have E D’ and zP(y(t)) = y(t) for each t ~ I. It follows
from Tp(D’) c K that y(t) E K for each t ~ I. Since D’ is integrable, each
vector wED’ is tangent to an integral curve and consequently belongs
to TK. We conclude that D’ c TK. At each point p E K, we have the set

A M,~) = - M~H)}. Comparing this
set with the subspace (TpK)§ _ ~ WE TpP ; Vu E 
we see that (TpK)~ = D - wp, where wp is any fixed element of Dp. Since
Dp c TpK, it follows that (TpK)~ c TpK. We conclude that K is a first
class constraint. For a first class constraint the characteristic distribution

is (TK)~ = Let u be an element of (TpK)~ and let w be any
pEK

element of Dp. Then w ~ TpK and ( u, dH&#x3E; = - w A u, Since

w ~ TpK and u E (TpK)§, it follows that  w A = O. dH ) = 0
and consequently H is constant on the characteristic foliation of K.
Now we assume that K is a first class constraint. Let w be an element

of Dp, and let S be a local section of the characteristic foliation of 03C9| K
which passes through p and is tangent to w. We show that S is a symplectic
submanifold of P ; this means that at each point p’ E S we have

Tp.S n (Tp.S)~ = { 0}. Since S is a section of the characteristic foliation,
we have Tp.S n (TpK)~ = { 0 } and Tp.S + (Tp.K)§ = Tp,K. It follows that

The Hamiltonian H restricted to S generates a Hamiltonian vector field
X : S -~ TS c TP such that X J S) = - S), let y : I ~ S c= P
be an integral curve of X. Then = X(y(t)) and for each vector u E 
we have  X(y(t)) A u, OJ ) =  u, X J = - ( u, dH ~. It follows that y
is an integral curve of D’. If in particular y(o) = p, then y(o) = X(p). Since
X(p) E Dp and w is the unique element of Dp which is tangent to S, we con-
clude that y(o) = w. Hence D’ is integrable, q. e. d.

Let K be a constraint submanifold of constant class but not necessarily
purely first class. Integrability does not hold for the lagrangian submani-
fold D’ generated by a Hamiltonian H constant on the leaves of charac-
teristic foliation although D’ n TK can be shown to be integrable. The
infinitesimal relation D’ n TK is an isotropic submanifold but not a lagran-
gian submanifold when second class constraints are present.
We do not consider second class constraints important for dynamics.

In our opinion it is unreasonable to expect dynamics with second class
constraints to be the classical limit of quantum dynamics. No natural

Vol. XXVIII, n° 4 - 1978.
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examples of second class constraints in particle mechanics are known.
Artificial examples can be easily given : interpreting the phase space of
a system as the configuration space leads to purely second class constraints.
It is our opinion that second class constraints arise only when the phase
space of a system is incorrectly interpreted.

9. EXAMPLES

a) Nonrelativistic dynamics of a charged particle. Gauge dependent
formulation.
We consider the motion of a particle of mass m and charge e in an exter-

nal static electromagnetic field. The configuration space of the particle
is a riemannian manifold M of dimension 3. The riemannian structure
of M is represented by metric tensors

The electromagnetic field is represented by the scalar potential V : M ~ IR,
the vector potential A : M ~ T*M, the electric field E = - dV and the
magnetic induction B = dA.
The phase space of the particle is the cotangent bundle P = T* M,

there are no constraints and a Hamiltonian H : is defined by

where x = The infinitesimal symplectic relation D’ generated by
the Hamiltonian is the image of the hamiltonian vector field 
We decompose this field into horizontal and vertical components using
the riemannian connection in T*M.

If (xi) ; i = 1, 2, 3 is a coordinate system of M and p~); i, j = 1, 2, 3
is the induced coordinate system of P such that 9M = pidxi then OJM = dp~ A dxi.
This is true in particular when (xi) is a geodesic normal coordinate system
at any point x E M. It follows easily that

where u and v are vectors in TPP at some point p E P, hor (u) and hor (v)
are vectors in TxM, x = obtained by projecting to TM the horizontal
components of u and v, ver (u) and ver (v) are covectors in T*xM obtained
by identifying vertical components of u and v with elements of T *M.

Let u E TpP be a vertical vector. From X J 03C9M = - dH we obtain

Annales de l’Institut Henri Poincare - Section A



361SYMPLECTIC RELATIONS AND GENERALIZED HAMILTONIAN DYNAMICS

If v E TpP is a horizontal vector then

where is the covariant derivative of A in the direction of hor (v).
Let (xi) ; i = 1, 2, 3 be a coordinate system of M and Pj); i, j = 1, 2, 3
the induced coordinate system of P. The content of equations (9.3) and

(9.4) is transcribed into differential equations

and

equivalent to the familiar second order system :

We denoted by gij and gkl components of tensors g and g respectively,
D is the absolute (covariant) derivative and t is interpreted as time.
dt

b) Relativistic dynamics of a charged particle. Gauge dependent for-
mulation.
We consider the motion of a particle of mass m and charge e in an exter-

nal electromagnetic field in space-time. The configuration space of the
particle is a pseudoriemannian manifold M of dimension 4 representing
space-time. The pseudoriemannian structure is represented by metric

tensors g : M ~ T* M Q T* M and g : M ~ TM ~ TM. The electro-

magnetic field is represented by the potential A : M ~ T* M and the
field F = - dA.

The phase space is the cotangent bundle P = T*M. A first class cons-
traint submanifold K c P of codimension 1 is defined by

and the Hamiltonian is zero. The infinitesimal symplectic relation D’
generated by the Hamiltonian is the characteristic distribution N of t K
Phase space trajectories of the particle are the integral manifolds of D’.

It is convenient for technical reasons to introduce the hamiltonian

vector field X = - G L dH, where H is the function

Vol. XXVIII, n° 4 - 1978.
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differentiable everywhere except when p = eA(x). Since H is a first class
constraint the field X = X K belongs to the ideal N. Integral curves of X
are parametrized phase space trajectories of the particle. From

we obtain

for each vertical vector u ~ TpP and

for each horizontal vector r e TpP.
The field X satisfies

1

for each vertical vector MeTpP, and

for each horizontal vector v E TpP. From (9.14) we see that the horizontal
component of X(p) projected to TM is a unit vector in TxM. It follows
that integral curves of X are trajectories parametrized by proper time.
We write differential equations for parametrized trajectories in terms

of coordinates (xA); x = 0, 1, 2, 3 of M and the induced coordinates 

These first order equations are equivalent to the second order system :

c) Nonrelativistic dynamics of a charged particle. Gauge independent
formulation.

Let M be the riemannian manifold of Example a) and let S be a principal
Annales de Henri Poincaré - Section A
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fibre bundle [2] with base M and projection 03BE : S ~ M. The structure group
is the group R of real numbers with respect to addition. The action of the
structure group on S defines a one-parameter group e tR ofdifferentiable
transformations of S. The infinitesional generator of this group is a vector
field Z : S -~ TS called the fundamental vector field. There is a connection
form a on S and a curvature form ~3 = da. The connection form a is a 1-form
such that ( Z, o: ) = 1 and = 0. Each vector w E TS has a unique
decomposition w = wv + wh into the vertical component wv in the direction
of Z and the horizontal component wh satisfying wh, x ) = 0. The curvature
form 03B2 satisfies conditions = 0 and = 0 necessary and suffi-

cient for the existence of a 2-form B on M such that ~3 = ç*B. The form B
represents the magnetic induction and a is the gauge invariant potential.
The electric field is represented by the 1-form E = - dv, where V : M -~ ~
is the scalar potential.
We consider the motion of a particle of mass m and charge e. The confi-

guration space is S and the phase space is R = T*S. The true configuration
space of a classical particle is M. The principal fibre bundle S is used only
as a device for introducing gauge independent quantities. No direct inter-
pretation of S can be given except in quantum mechanics and the Hamil-
ton-Jacobi theory [9]. Each element has a unique decompo-
sition r + r~ into the vertical component r" = r - ~ Z, r ) such

that  u, = 0 for each vertical vector u E TSS, and the horizontal com-
ponent rh = ( Z, r ) a(s) such that ( = 0 for each horizontal vec-

tor m E TSS. The number q == ( Z, r ) representing the horizontal component
rh of r is interpreted as the charge of the particle. We introduce the mapp-
ing % : R --&#x3E; T*M defined by = ç 0 ~s and ( T~), x(r) ~ _ ~ 
for each vector = The covector p = x(r) representing the
vertical component of r is interpreted as the gauge invariant canonical
momentum of the particle.
A constraint submanifold K c R is defined by

and a Hamiltonian H : K ~ IR is defined by

The physical meaning of the constraint is clear : the charge q of the particle
is equal to e. The Hamiltonian represents the energy of the particle.
The action of the structure group on S generates a one-parameter group

y*, L E IR of symplectic transformations of R. It is easily seen that the first
class constraint submanifold K is invariant under the group action. It

follows that orbits belonging to K form the characteristic foliation of
OJs I K. It also follows that the reduced symplectic mani, f’old. exists [77].
The action of the structure group preserves the connection form a and the
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decompositions into vertical and horizontal components defined in terms
of a. We have = y*(?-") and also ç 0 yt = ç. It follows that

Hence x(y*(r)~ = x(r). The mapping x restricted to K is a submersion
onto P = T* M with one-dimensional fibres. It follows that the fibres
of x ~ K are the orbits of the structure group. Consequently the reduced
phase space is diffeomorphic (although not symplectomorphic) to P. In
order to find the correct reduced symplectic structure of P we calculate
(x I K)*9M. Let u E TR be a vector tangent to K. Then

Hence

By differentiating we obtain

The result is that the reduced symplectic manifold is (P, &#x26;), where
c5 = 03C9M + 
The Hamiltonian H is constant on leaves of the characteristic foliation

of Consequently there is the reduced Hamiltonian 

such that H = H 0 (x ~ I K). Trajectories of the particle in the reduced phase
space are integral curves of the hamiltonian vector field X generated by H.
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Corresponding to (9.2) we have the formula

for each vertical vector MeTpP and

for each horizontal vector v E TpP. In terms of coordinates p~) ; i, j =1, 2, 3
of P we have the differential equations

and

equivalent to

and

These equations contain no gauge dependent quantities.
The above example is an elegant illustration of the version of generalized

dynamics formulated by Lichnerowicz [5]. The Hamiltonian is not zero
and leads to a hamiltonian vector field in the reduced phase space.

d) Relativistic dynamics of a charged particle. Gauge independent for-
mulation (cf. [81 [9] ).

Let M be the pseudoriemannian manifold of Example b) and let S be
a principal fibre bundle with base M, projection ~ : S 2014~ M and structure
group [R. There is a connection form a and a curvature form ~p = - da.
The 2-form F on M such that ~p === ç*F is interpreted as the electromagne-
tic field and a is the gauge independent potential.
The manifold S is the configuration space of a particle with mass m and

charge e. The phase space is R = T*S. The dynamics of the particle is

generated by a zero Hamiltonian defined on the first class constraint
submanifold

where Z and x are objects defined as in Example c). The constraint subma-
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nifold can be considered as the intersection of two submanifolds of codi-
mension 1 :

and

Reduction with respect to Ke leads to the reduced phase space (P, c5),
where P = T*M and cio = The reduced constraint is

As in Example b) we introduce the hamiltonian field X = - (G J K,
where 

1

The field D satisfies

for each vertical vector MeTpP, and

for each horizontal vector v E TpP. In terms of coordinates (x", p~);
x, ~, = 1, 2, 3 the corresponding differential equations are

and

or

and

These equations are gauge independent.
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(Manuscrit reçu le 2 novembre 1977)

In the second part of the proof of Theorem 8. we omitted the case of the vector w
tangent to the characteristic foliation of 03C9 | K. The proof of integrability in this case is
obvious.
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