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Remarks on the use of the stable tangent bundle
in the differential geometry

and in the unified field theory (*)

Izu VAISMAN

Department of Mathematics, University of Haifa, Israel

Ann. Inst. Henri Poincaré

Vol. XXVIII, n° 3, 1978,

Section A :

Physique theorique.

SUMMARY. A method of generating the stable tangent bundle of a
differentiable manifold from its differentiable structure is indicated, which
may be used to describe higher dimensional unified field theories and to
overcome the difficulty of the high dimensionality. This idea is exemplified
by the Einstein-Mayer-Cartan theory.

Also, some applications of the stable tangent bundle in the differential
geometry are considered. These include interpretations of affine, projective
and conformal connections and of the so called fstructures, with comple-
mented frames, where f is a ( 1, 1 )-tensor field with f 3 = :t f .

It is known that the general aim of the unified field theory was not achieved.
However, it gave interesting developments and it is still worthy of attention.
A largely developed type of unified theories are the so-called five-dimen-

sional theories, which are based on the consideration of a five-dimensional
physical universe. (Actually, there are also higher dimensional theories.)

(*) Research partially supported by the Merkaz Leclita Bemada, Israel. AMS (MOS)
Subject classifications ( 1970) Primary 83 E 15, 53 C 99. Secondary 53 C 05, 53 C 15.
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318 I. VAISMAN

One of the important difficulties of such theories is the lack of a physical
interpretation for the fifth dimension.
However, by an examination of the mentioned theories we may see that

they are actually using only four point coordinates but five vector coordi-
nates, and that for the five vector coordinates there are physical interpre-
tations. Hence, if we are able to develop the theory by using a naturally
defined vector bundle with 5-dimensional fibre on a four dimensional

manifold, the previous difficulty disappears.
Then- the simplest idea is to take the stable tangent bundle where

0 is the trivial line bundle M x R. This bundle might be introduced either
formally or as the restriction of the usual tangent bundle of the mani-
fold But, we think that such definitions are unsa-

tisfactory for the philosophy of the unified theories because the first gives
no unification and the second makes an indirect use of a fifth point coor-
dinate.

Hence, we have to answer the question of whether it is possible to gene-
rate the bundle T(M) from the manifold structure of M only, and
whether we may define for this bundle the operations which allow the
development of the unified theories.

In this note, we shall answer the previous questions in the affirmative
for any bundle of the form T(M) 0 8h. Also, we shall use this opportunity
in order to develop some purely geometrical applications of the stable
tangent bundle T(M) (~ 1).
The whole development is in the C~-category, which, as a matter of

fact, is necessary for the intended definition of the stable tangent bundle

only. But the fields of the geometric objects used by the unified theories
may be of an arbitrary class Ck.

1 THE STABLE TANGENT BUNDLE

OF A DIFFERENTIABLE MANIFOLD

If Mn is an n-dimensional differentiable manifold and T(M) is the usual

tangent bundle of M, then the stabte tangent bundle is defined as T(M) ~ 03B8h,
where 8h denotes the trivial vector bundle M x Rh on M. This bundle is

used in some problems of differential topology, and here we want to use
it in the differential geometry and in the unified field theories. In order

to answer to the questions listed in the introduction, we shall define the
stable tangent bundle by the help of some general schema.

Let us consider the manifold M above and let A be an associative and

commutative algebra over the real field R.
Then, a function f : M ~ A will be called differentiable iff, for every

R-linear A ~ R, the composed function 03C6  f : M ~ R is diffe-

rentiable. Clearly, if A is either the real or the complex field this is the same
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319REMARKS ON THE USE OF THE STABLE TANGENT BUNDLE

with the classical notion of differentiability. Also, the introduced notion
has a local character, i. e. it depends on the germs of f only.
Now, if x EM, any operator vx which sends the germs at x of the A-valued

differentiable functions into A and has the properties

will be called an A-tangent vector to M at x. The set of such vectors defines
the A-tangent space Tx(M ; A), and this is a linear space over R.

Next, if for every x E M we have some vx and if for every differentiable
function f : M -~ A the function ~(jc) = vx(f) is also differentiable, we
shall say that v = { is an A-vector field on M and we shall denote

4&#x3E; = v( f ). Hence, we see that the A-vector fields are operators on the
A-valued difrerentiable functions which satisfy the properties correspon-
ding to 1) and 2) above. Also, it is clear that we may define in the classical
manner the bracket of two A-vector fields and that the set of these fields
defines a Lie algebra over R.

Further, we may define the A-tangent covectors as elements of the dual
space T,(M; A), and, next, using the definition of the general tensors
as R-multilinear functions on tangent vectors and covectors, we may define
all the spaces of the A-tensors on M, A-tensor fields and the usual ope-
rations with them.

Particularly, we may define R-valued A-differentialforms and the exterior
differential calculus.

Moreover, we may also construct an exterior differential calculus with
A-valued A-differential forms. The exterior derivative will be defined by
the usual global formula, which is possible because we have the bracket
operation. To see that the usual properties hold, it suffices to consider
the global proofs encountered in the classical case. (See, for instance, [9]).

Especially, it follows that we may associate to M and A the de Rham

cohomology spaces Ri(M ; A) (not to be confused with the cohomology of M
with coefficients in A), constructed in the usual way but with A-valued
forms. These spaces are invariant by diffeomorphisms of M.

Finally, it is important that one may also obtain the absolute differential
calculus for A-tensors.

Namely, an connection will be an operator V, which associates
to every A-tangent vector vx (x E M) and every germ w of an A-field around x
a new A-vector sx = Vvw in such a way that

where a E Rand f is the germ of a real valued differentiable function
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320 I. V AISMAN

around x. Moreover, we shall ask that whenever we have the A-fields v,
w defined on some open subset U ~ M, the values of define again
an A-field on U. Then, it follows just like in the classical case (see for ins-
tance [7]) that the connection is defined by its action on global A-fields.
V will be called the covariant derivative and it may be extended in the clas-
sical manner to all the A-tensor fields. Moreover, because we have the
bracket operation, we may define, again in the classical manner, the torsion
and the curvature of V [8] and derive the Bianchi identities.

Hereafter, we shall apply the previous definitions to the R-algebra
generated over R by the basis (1, al, ... , ah), whose multiplication table
is defined by

We shall denote this algebra by ~(h). Clearly ~(o) = R and ~(1) is the
so-called algebra of the dual numbers. If

(where xo, x~, yo, yi E R) are elements in we have

Then, it is simple to see that a function f : M -+- ~(h) is differentiable
iff all its real components are such and if we put

we see just like for the classical tangent vectors that R(h)) is a finite-
dimensional real linear space.
Namely, if (’- (a = 1, ..., n) are local coordinates at x E M, we have

by [7, p. 21]

where x has the local coordinates x’ has the local coordinates and

Annales de Henri Poincaré - Section A



321REMARKS ON THE USE OF THE STABLE TANGENT BUNDLE

where

It follows that for any v at x we have

where the derivatives of / are taken componentwise and all the functions
have to be evaluated at x.

Hence, ~ is defined by the values in ~(~) of ~ and of Since, by (1.1),
~

we get easily that we must have vai = I 03B1jiaj, it follows that a natural

j= 1

basis of R(h)) over the reals consists of the operators and
where

whence the dimension of Tx(M ; ~(h)) is n + nh + h2.
Also, we see that

is a vector bundle on M, namely T(M) @ ... @ T(M) (B where Bh2
(h + 1 ) times

denotes the trivial bundle M x Rh2.
Now, let us consider the stable tangent bundle T(M) 3 9B which we

shall denote thereafter by T(M ; R(h)). It is clear that this is a subbundle

of T(M, which is generated by the local bases Ta and = 

Moreover, we shall see immediately that this subbundle is closed with

respect to all the considered operations and constructions for 
vectors. The elements of T(M; R(h)) will be called vectors

and all the corresponding operations will get the label instead of 

By the previous development, T(M ; ~(h)) and also T(M : R(h)) are
generated by the manifold M thereby achieving the goal which we proposed.

Thus, every R(h)-vector (field) has a unique representation of the form

where X is a classical tangent vector (field) which we’ll call the projection
Vol. XXVIII, n° 3 - 1978. 21



322 I. VAISMAN

of v. We also see that the classical vectors are R(h)-vectors too. The following
formulas may be easily established.

h

where u and f are as above and w = Y Also, M ~ N

i= 1

is a differentiable mapping we have

Next, the R(h)-tensor calculus and exterior calculus may be developed
and we only mention the following formulas

where (dt", 8‘) are the dual cobases of Pi) and the rest of the notation
is obvious.

Let us mention that, while we have of course d2 - 0, we have no Poincare
type lemma. In fact, we have 0, but there is no U 5; M and no func-
tion f : U -+ R(h) such that 8‘ = df, since the contrary assumption leads
to a contradiction.
As for the corresponding cohomology spaces we have

PROPOSITION. - ~f Hi(M, R) are the classical real cohomology spaces
of the manifold, there is an injection a : Hi(M, R) -+ R’(M; R(h)) and
a surjection 03B2 : Ri(M, ; R(h)) -+ Hi(M, R) such that 03B2  a = id., whence the
exact sequences

split.
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323REMARKS ON THE USE OF THE STABLE TANGENT BUNDLE

In fact, ~3 is defined by restricting the arguments of the representative
form of a class of R’(M; R(h)) to usual vector fields, and a is obtained by
extending trivially the classical differential forms on M to R(/t)-forms such
that the extended form be zero whenever an argument is Pi. (Of course,
R’(M; R(/!)) is not to be confused with R’(M; 

Finally, we may consider R(h)-linear connections V, for which covariant
derivatives, curvature and torsion are available. Then, the projection of
the restriction of V to usual vector fields on T(M) defines the induced
connection, which is a usual linear connection VB Similarly, the projections
of ~xPi (i = 1, ..., h) define h classical tensor fields of type ( 1,1) on M.
Also, if we project ~PiX on the 03B8h-component of the stable tangent bundle
we get h new tensor fields of type (1,1) and from we get h2 scalar func-
tions. Conversely, the R(h)-connection V may be reconstructed from the
previously mentioned objects.

If we define DTa(v) = = we get the local expression
of the connection V under the form

(1.11)

where cva, are scalar valued R(h)-Pfaff forms, which form a
matrix cv defined on coordinate neighbourhoods of M and with the classi-
cal transformation law

As in the classical theory, it follows that the curvature of V is given by
the local matrices of scalar valued R(h)-two-forms

the Bianchi identities are DS2 = 0, where D is the couariant-exterior deri-
vative and the Chern-Weil construction of the characteristic classes may
be mimiced.

Also, the torsion of V may be expressed by the following local forms

Vol. XXVIII, n° 3 - 1978.



324 I. VAISMAN

where

It is interesting to point out that the class of the R(h)-connections contains
many classical connections as particular cases.

First, if we ask == 0 (i = h ..., h), we get a usual linear connection
on the vector bundle T(M ; R(h)) and if we ask moreover that = 0

(i = 1, ..., h), we get a usual linear connection on T(M), which is the
induced connection V.

Next, let us consider the set of the 1-dimensional subspaces of the local
fibres of T(M ; R(h)). This set obviously defines a locally trivial bundle
with fibre the (n + h - 1 )-dimensional real projective space, and we may
consider the principal bundle of the corresponding projective frames,
which we shall denote by P(M ; R(h)). Moreover, the local bases {T03B1, Pi}
define local cross-sections of P(M ; R(h)).

It follows that an infinitesimal connection on P(M ; R(h)) may be expres-
sed, by the help of the previous local cross-sections, under the form (1.11),
where the matrix OJ consists of classical Pfaff forms and it satisfies the
law (1.12) and the normalization condition

It is natural to call such a connection a (n + h - 1~-dimensional projec-
tive connection on M. Particularly, for h = 0 we get connections on the
space of the tangent directions of M, for h = 1 we get E. Cartan’s projective
connections on M, and for h = 2, and replacing (1.15) by the system of
conditions

we get E. Cartan’s conformal connections on M.
It is clear now that all the mentioned infinitesimal connections may be

identified with R(h)-connections. Namely, the (n + h - 1)-dimensional pro-
jective connections are R(h)-connections V such that

and, for h = 1, we have the usual projective connections. For the conformal
connections we must have h = 2, ( 1.17) and (1.16). Essentially, such inter-
pretations of the projective and conformal connections go back to R. Konig
(1920) and J. A. Schouten (1924). By the present interpretation we also get
a natural definition of the torsion of these connections.

Let us finally remark that the fibres of the previously introduced projec-
tive bundle have a special structure. Namely, they have a distinguished
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325REMARKS ON THE USE OF THE STABLE TANGENT BUNDLE

(n - 1)-plane defined by the points Ta and other h distinguished points Pi,
which enables us to consider different principal subbundles of P(M ; R(h)).
For instance, if we take the bundle of the projective frames which have n
vertices in the distinguished plane, its infinitesimal connections will be R(h)-
connections V which satisfy ( 1.17) and

for any two vector fields,X and Y on M. If, moreover, h = 1 these are just
the affine connections on M (8].

Before ending this section let us still make the following remark. If we
intend to use the stable tangent bundle in geometry only, without any
relation to unified field theories, it suffices to define it simply as the restric-
tion of T(M x Rh) to M x { 0 }. We have a natural action of the group R"
on M x Rh by translations on the last coordinates and the R(h)-vector
fields may be identified with invariant cross-sections of T(M x Rh). All
the operations considered in this (and the next) section are then induced
by the corresponding operations on T(M x Rh).

2. STABLE ALMOST COMPLEX
AND ALMOST PRODUCT STRUCTURES

In view of the definitions of Section 1, we may define on T(M ; R(h))
structures which are similar to the classical structures studied in differential

geometry. Usually, such structures define some corresponding structures
on T(M) and the first may be used for an easier description of the latest.
Our aim in this section is to consider from this viewpoint the stable almost
complex and stable almost product structures which seem to give more
interesting results.

DEFINITION. 2014 Let F be a differentiable field of endomorphisms of the
fibres of T(M ; R(h)), and suppose that

where I is the identity transformation. Then, if ~ _ - 1, F is said to be
a stabte almost complex (s. a. c.) structure on M and if E = + 1, F is a stable
almost product (s. a. p.) structure on M.

In both cases, F is clearly non-degenerate and for an s. a. c. structure
we must necessarily consider n + h even.

PROPOSITION. - An s. a. c. (s. a. p.) structure F on M may be identified
with the G-structure defined on M by the following system of tensor fields :
i) a tensor field f of type (1, 1 ), ii) h vector fields Çi and h covector fields ~i
Vol. XXVIII, n° 3 - 1978.



326 I. VAISMAN

globally defined on M and h2 scalar functions I&#x3E;{ (i, j = 1, ..., h), such that
the following o relations hold

Proof . 2014 In fact, if we have F we shall define

where the notation is like in Section 1. Then (2.2) holds because it is just
a transcription of (2 .1 ).

Conversely, by (2.3) we may reconstruct F and get (2.1).
The proposition suggests us to consider distinguished s. a. c. (p.)

(d. s. a. c. (p.)) structures, defined by the supplementary condition that F
sends all the R(h) vector fields Pi into T(M). This means (1){ = 0 and (2.2)
become

It follows that a d. s. a. c. structure is the same thing as an ~-structure
( f 3 + f = 0) with complementary frames and, in the case h = 1, with an
almost contact structure on M. For E = 1 we have ~’ 3 - f = 0 and, in
order to consider both cases simultaneously, we shall understand thereafter

by an ( f , ~)-structure a structure with f 3 - E f = 0. (The difference bet-
ween the two cases E = ± 1 is however essential in many respects.)
For further considerations, we need also R(h)-Riemann metrics, i. e. R(h)-

tensor fields g of type (0, 2) symmetrical, non-degenerate and positive
definite. The simplest manner of obtaining such metrics is the following :
we start with a classical Riemann metric y on M and define

where

In this case we’ll call g the triviat extension of y.

Annales de I’Institut Henri Poincare - Section A



327REMARKS ON THE USE OF THE STABLE TANGENT BUNDLE

Naturally if we have a s. a. c. (p.) structure F and any R(h)-metric g
they are to be called compatible iff

and in this case we call (g, F) a metric s. a. c. (p.) structure.
Now, if we suppose that F is distinguished and g is the trivial extension

of some Riemann metric y, (2. 7) may be expressed by the help of the cor-
responding (/B ~)-structure. Namely, we have

for v of (2.6), and a similar expression for Fw, whence the compatibility
relation (2. 7) becomes

It is easy to see that the first condition (2. 9) implies the other two condi-
tions and, in view of known definitions, we see that (g, F) may be identified
with a metric ~, f; ~) -structure with complementary frames and, for h = 1,
8 = - 1, with a metric almost contaet structure.

Let us remark that (2.8) may also be written as

where f’, are the trivial extensions of f and ?/ respectively and 8‘ are
the 1-forms of the cobases of Section 1.

In the 1, there is one more interesting object, namely the
fundamental forrn Q which is a scalar defined by

or, in view of the formulas (2.5)-(2.9)

The term y(X, = 8(X, Y) defines a classical two-form, called the
fundamental form of the fstructure. (If E = 1, Q is a symmetric tensor
and we don’t use it.)

Vol. XXVIII, n° 3 - 1978.



328 I. V AISMAN

In view of Section 1, we may consider F-structures such that dQ = 0,
i. e. stable almost Kähler structures. If we remark from (2.11) that

where 0’ is the trivial extension of 0, it is easy to see that dn = 0 is equi-
valent to d0 = 0 and d~i - 0. In this case, we’ll say that the respective
fstructure is closed and if, moreover, h = 1, that it is a metric cosymplectic
structure. If we replace dS2 = 0 by the weaker condition dS2 = 0 (mod. 0’ = 0),
we have the equivalent condition d0 - 0 and the corresponding ~-structure
is sometimes called a K-structure. Finally, if we consider h = 1 and the

more special condition

we get the equivalent condition E&#x3E; == i. e. we have just a contact metric
structure on M.

Further, and coming back to the consideration of both cases ~ = ± 1,
since there is a generalized bracket, we may define the R(h)-Nijenhuis
tensor

and if N(v, w) = 0 we’ll say that F defines a formally integrable structure.
Using the previous formulas, one sees that N(v, w) = 0 is equivalent to
the following set of relations

where N f is the classical Nijenhuis tensor of f and L denotes the Lie deri-
vative. By the same calculations like in [1, p. 50], we can see that the first
relation (2.15) implies all these relations and this first relation characterizes
the so-called normal f-structures. It follows that the normality of ~’ is

equivalent with the formal integrability of F.
Now, before proceeding with the F-structures let us consider an arbi-

trary Riemann metric g on the stable tangent bundle T(M ; R(h)}. Then,
it follows, by just the same calculations like in the classical case [8], that

there is a unique R(h)-connection ~ which has no torsion and is such

that Vg = 0. This will be the connection of (M, g). It is

easy to see that if g is the trivial extension of a usual Riemann 
metric y,

the R(h)-Levi-Civita connection of g will be the trivial extension of the
Levi-Civita connection of y.

l’Institut Henri Poincaré - Section A



329REMARKS ON THE USE OF THE STABLE TANGENT BUNDLE

Consider a metric d. s. a. c. (p.) structure (F, g) on M and let V be the
R(h)-Levi-Civita connection of g. Then, we may consider a lot of conditions
which are used to delimitate important classes of almost Hermitian mani-
folds (see, for instance, [6]) and thus introduce corresponding classes of
f-structures.
Such are, for instance, the conditions

etc., which are respectively equivalent to

These conditions define special classes of ( f, ~-structures which probably
deserve more attention. For instance, for G = - 1, we may see like in the
classical theory that the manifolds satisfying (2.16), i. e. (2.16’), are charac-
terized by the normality condition (2.15) together with the closedness
of the forms ~i and e. In the compact case, these forms are harmonic and,
since clearly ~i A ... A is a volume element, we get

where bt(M) are the Betti numbers of the manifold M. Particularly, for a
compact manifold which has a metric cosymplectic normal structure all
the Betti numbers are nonvanishing.
We see from the discussion in this section that the consideration of the

stable structures gives a unified viewpoint on interesting classes of usual
structures on a differentiable manifold.

3. COMMENTS ON UNIFIED FIELD THEORIES

We do not intend here to give an essentially new unified field theory
nor to discuss the physical significance of such theories. As we said in the
introduction, our aim is simply to provide a mathematical argument in

Vol. XXVIII, n° 3 - 1978.
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favor of the five-dimensionat unified field theories and we shall discuss this
in the case of an interesting example, the Einstein-Mayer-Cartan theory.
One of the main physical difficulties of the previously mentioned unified

theories is just their five-dimensional character. Actually, under the usual
interpretations, this implies a five-dimensional physical universe, which
is in contradiction with the generally accepted views about the physical
reality.
As a matter of fact, this difficulty arises only if we want to have five

coordinates for the points of the universe, because we have no interpreta-
tion for the fifth coordinate. But if we are interested in five-dimensional
vectors over a four-dimensional manifold, such an interpretation exists. For
instance, following E. Cartan [4], we may attach to a particle a vector of the
form rszot + ~ where t is the usual unit tangent vector to the trajectory
of the particle, v points into the fifth dimension, mo is the rest-mass and e
is the charge of this particle.

Hence, if we are able to develop the mathematics of the five-dimensional
unified theories using some kind of five-dimensional vectors over four-
dimensional manifolds, the mentioned difficulty disappears. Such a mathe-
matical development may be obtained using for vectors the elements of
the stable tangent bundle T(M4 ; R(I)). And, moreover, we have a develop-
ment where we need in no way five punctual coordinates.
One more thing. Most of the relativistic and unified theories consider

that the fundamental geometric structure of the universe is defined by
a metric. Hence, if we want it to be a pseudo-Riemann metric on the four-
dimensional universe we are not able to derive a unitary theory. In this
note, we shall agree with an argument of E. Cart an [3] showing that it is
sensible to consider that the fundamental geometric structure of the uni-
verse is given by a connection. Namely, the mentioned argument says that
the fundamental physical fact is that any two sufficiently near observers
are able to locate the reference frame of each other. This may be interpreted
geometrically by the existence of a connection. And now, since our vectors
are in T(M4 ; R(I)) it is natural to consider an R(1)-connection V.

Thus, our main hypothesis is that the physical universe is a four-dimen-
sional differentiable mani~fold M4 endowed with an connection V,
which satisfies some field equations.

In the sequel, we shall show that this hypothesis is consistent with the
unified theory of Einstein-Mayer in the form given by E. Cartan [5]. In
fact, this is an older theory but it allows a good illustration of the main idea
and we are not interested in other aspects of unified theories.
To get the Einstein-Mayer-Cartan field equations, we begin by asking

for V the following conditions (where the notation is like in the previous
sections) :

1) OPV = 0 for every R(1)-vector field v (P = P1); intuitively this means
that there is no displacement along P ;

de l’Institut Henri Poincaré - Section A



331REMARKS ON THE USE OF THE STABLE TANGENT BUNDLE

2) the universe M4 has a pseudo-Riemannian metric y whose trivial
extension g to T(M, R(l)) is invariant by V, i. e. Vg = 0 ;

3) the torsion To(X, Y) is collinear with P for every two classical vector
fields X, Y on M ;

4) for every vector field X on M, VxX is also a vector field.
In order to get the consequences of these hypotheses, we shall write

the operator V under the form

which together with 1) defines V. In (3.1), V is the induced connection
on M, h is a tensor field of type (0, 2) and f a tensor field of type (1, 1),
and k a 1-form on M.

Now, it is easy to see that 4) is equivalent with the skew-symmetry of
the tensor h, 3) is equivalent with the fact that V is without torsion, which,
in view of 2) shows that V is the Levi-Civita connection of y, and we also
have

and

where T denotes the torsion of the connection V. The relations (3.2) show
that k and f are well defined by the other elements of (3.1) and we shall
have 16 fietd potentiats namely the components of the tensors y and h.

Hence, h is a quadratic skew-symmetric tensor field related to the tor-
sion ofV and, in the considered theory it is accepted that h is just the electro-
magnetic field.

Further, in order to define the field equations the following tensor
fields related to the curvature of V are introduced :

where R’ is the usual curvature of the induced connection V and R is
the projection on T(M) of the curvature of V, and

which is the projection of the curvature of V onto P.
By the usual contractions, we may associate to R a Ricci tensor 03C1 and

a scalar curvature F, which allow us to introduce

Also, we shall consider the vector field B defined by contraction from
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Now, following [4], the field equations are

where T is the momentum-energy tensor field and L is the vector field
related to the electricity.
Hence, all the equations of [4] are available without asking for an embed-

ding of M as a totally geodesic submanifold of a five-dimensional manifold
like in the original exposition, and this is just what we wanted to obtain.

Let us make one more remark. Because of the hypothesis ~Pv = 0 we
could simply ask in the previous theory that V be a usual connection on
the vector bundle T(M, R(I)) rather than an R(l)-connection. But, by
considering it as an R(1)-connection we have the torsion and thus obtained
a schema where the electromagnetic field is related to the torsion, while
the gravitational field is related to the curvature of a connection. On the
other hand, it is possible to renounce to the hypothesis ~Pv = 0 and consider,
if so desired, theories with more field potentials.

Finally, we shall remark that the previous manner of introducing five-
dimensional theories may also be applied for the Kaluza-type theories
(see, for instance, [3, 10~).
To obtain such theories, we shall start from a different main hypothesis,

namely, that the physical universe is a four-dimensional differentiable mani-
fold, endowed with an R(1)-pseudo-Riemann metric g.
Then, we have the R(1)-Levi-Civita connection of g and we have, both,

enough field potentials and enough analytical machinery to develop unified
theories.
For instance, most authors are asking a condition which is equivalent

to g(P, P) = 1. Also, there is a canonical 1-form p defined by

whose restriction to T(M) defines a classical 1-form a on M. Consider
next g defined by

and the metric y induced by g on T(M). Then g is defined by y and a i. e. by
a configuration on M alone and (y, a) may be considered as the basic field
potentials ~5~. Let us remark that the contravariant vector field A defined
on M by g(X, A) = a(X) gives the intersection line of T(M) with the hyper-
plane orthogonal to P with respect to g.
An ample study by Thiry [70] studies the integrability of the field equa-

tions in a Kaluza type theory, which, in our notation, does not use the
condition g(P, P) = 1. As for the field equations themselves, in view of
a result of E. Cartan [2], they must be the Einstein 5-dimensional equations
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where R is the Ricci tensor and p the scalar curvature of the R(l)-Levi-
Civita connection of g.

But of course, our proposed schema does not give any answer to the
difficulties related to the integration of the field equations (which led, for
instance, to the essentially five-dimensional theory of [5]), but this is beyond
the aim of our note.
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