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ABSTRACT. 2014 This is the third of a series of papers where we study a class
of non linear Schrodinger equations of the form

in where m is a real constant and f a complex valued non linear function.
Here we consider the case of space dimensions n = 1, 2 and 3. Under
suitable assumptions on f, we prove the existence of global solutions of
the initial value problem. These solutions are continuous functions of
the time with values in n L 00 «(Rn). We also study the scattering
theory for the pair of equations that consists of the previous one and of
the equation

In particular, we prove the existence of the wave operators and asymp-
totic completeness for a class of repulsive interactions. The assumptions
made on f cover the case of a single power f (u) _ ~, ~ u with various
restrictions on p and /L For the existence of global solutions, we require
p ~ 2 and in addition p  5 if n = 3 and A &#x3E; 0, p  1 + 4/n if A  0.
For asymptotic completeness, we require ~, &#x3E; 0 and p &#x3E; 1 + 4/n, and in
addition p  5 if n = 3.
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288 J. GINIBRE AND G. VELO

0 INTRODUCTION

This is the third of a series of papers where we study a class of non linear
equations related to the Schrodinger equation. The equations we consider
are of the following type

where Ho = - 4 + m, ~ is the Laplace operator in is a real constant

and f is a non linear complex valued function.
In the first two papers we have developed a general theory for the equa-

tion (0.1) in space dimension n  2, concentrating our attention on two
problems :

(1) Existence and uniqueness of solutions of the Cauchy problem.
(2) Asymptotic behaviour in time of the solutions, and in particular

scattering theory for the pair of equations consisting of (0.1) and of the
free linear Schrodinger equation

In [1], under suitable assumptions on the interaction and for initial data
in the Sobolev space H1(!Rn), we have proved the existence and uniqueness
of a global solution of the Cauchy problem for the equation (0.1). In [2]
for suitable interactions and for suitable initial data, we have proved the
existence of solutions of the Cauchy problem at infinite initial time and
thereby the existence of the wave operators, and established asymptotic
completeness for a class of repulsive interactions. The whole treatment
makes extensive use of three conservation laws : the conservation of the

L2-norm, the conservation of the energy and a third conservation law
which we called pseudoconformal conservation law.
The general theory developed in [1] and [2] is satisfactory in several

respects. First all dimensions n  2 can be treated in a unified way. Second

the spaces where one proves the existence of global solutions are large
and natural in the sense that they are the largest spaces where the relevant
conservation laws make sense. These spaces are H1(!Rn), corresponding to
the conservation of the L2-norm and of the energy, and another space
called E (see (1.6)), corresponding to all three conservation laws. However
this general theory exhibits the following complication : the space where
one first solves the local Cauchy problem at finite time is different, in

fact larger, than the natural space (H ~ ((~n)) mentioned above. As a conse-
quence, while the solution remains in for all times if the initial

data belong to the continuity properties of the solution appear
l’Institut Henri Poincaré - Section A



289ON A CLASS OF NON LINEAR SCHRODINGER EQUATIONS. III

naturally in terms of a weaker topology, and continuity in is reco-

vered by an additional compactness argument. Another feature of this
theory is that the assumptions made on the interaction term f(u) include
(for n &#x3E; 3) an unnatural coupled restriction between the behaviour of
f(u) for large and small values of u.

In this paper we develop a special theory for n = 2, 3 in which the global
Cauchy problem for the equation (0.1) is solved in In
such a theory the first complication mentioned above disappears and the
solution comes out naturally as a continuous function of the time with
values in H’(f~") n Furthermore for n = 3, the unnatural restric-
tion which relates the behaviour of f(u) for large and small values of u
is removed. In contrast to the general theory however this special theory
does not extend immediately to higher dimensions (*). The present paper
contains also a treatment of the case of dimension n = 1. This case is espe-
cially simple since one can solve the Cauchy problem in H1([R). In order to
save space, this theory will be presented together with those for n = 2, 3. The
assumptions on f that ensure the solvability of the global Cauchy problem
cover the case of a single power u ~ IP- 1 u where p~ 2, and in addition
p  5 if n = 3 and ~, &#x3E; 0, p  1 + 4/n if A  0. Existence of the wave

operators is ensured if in addition p &#x3E; (n + 1 + 2n + 1)/n and asymp-
totic completeness if in addition 03BB  0 and p &#x3E; 1 + 4/n.
There is a certain amount of freedom in the choice of the spaces where

to look for solutions of the equation (0.1), and the choice made here seems
to be one of the simplest. On the other hand for n = 1 one can develop
various theories in spaces larger than similar to the general theories
of [1] and [2]. An example of such a theory with basic space L 2(~) n 
is briefly described in the Appendix.

This paper is largely self-contained as far as the results are concerned.
However proofs will be shortened or even suppressed whenever they are
similar to those contained in [1] and [2], to which we send back the reader
for details and for a number of side remarks.
The paper is organized as follows. Section 1 contains some notation,

definitions, preliminary results, and in particular the list of assumptions
on the interaction term f Section 2 is devoted to the proof of existence
and uniqueness of the solution of the Cauchy problem in a small time
interval. Section 3 contains the statement of the conservation laws and an
outline of their derivation. Section 4 contains the proof of existence of
global solutions of the Cauchy problem. Section 5 is devoted to the study
of the Cauchy problem with initial time in a neighbourhood of infinity

(*) The case n = 3 has been also considered by Lirr and STRAUSS, who obtain results
which partly overlap with those of the present paper [3]. The existence problem for n = 2
and 3 has also been studied in [4J.
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290 J. GINIBRE AND G. VELO

and to the extension of the three conservation laws to infinite times. Sec-
tion 6 is devoted to the study of the asymptotic behaviour of solutions
and in particular to the proof that all solutions are dispersive for repulsive
interactions. Section 7 contains a brief description of the continuity pro-
perties of the solutions as functions of the initial time and of the initial
data. In section 8 we collect the results from sections 5, 6 and 7 concerning
the wave operators. In the Appendix we describe briefly an alternative
theory for n = 1 with basic space n 

1 PRELIMINARIES

In this section, we introduce the main notation and definitions that
will be used in this paper. Most of this material is common to this paper
and to [7] and [2] and it is already contained in sections 1 of [1] and [2] to
which we refer for more details. In particular, all the notation is the same
as in [1] and [2] with the notable exception of the spaces X, ~.(.) and Y.(.)
which are slightly different.
We denote by n the number of space dimensions, which in this paper

can be 1, 2, 3, Ilq the norm in Lq = 1  q  oo, except for

q = 2 where the subscript 2 will be omitted. Pairs of conjugate indices are
written as q and q with 2  q  oo and ~ 1 + 1 

= 1. will denote
the usual Sobolev space with norm defined by

We shall use extensively the following Sobolev inequalities :

which is valid for any q such that

wi th 1] defined by

which we will use for any q &#x3E; n and satisfying (1.3). Actually (1.2) also
holds (and will be used in section 4) for n = 3 and q = 6 (i. e. 11 = 0).
The free evolution, associated with the equation (0.1), is defined by

Its relevant properties can be read 0 in the following £ lemma . (cf. lemma . 1.2

of [1]).
Annales de l’Institut Henri Poincaré - Section A



291ON A CLASS OF NON LINEAR SCHRODINGER EQUATIONS. III

LEMMA 1.1. 2014 For 2, for any t ~ 0, U(t) is a bounded o operator
from LR to Lq and o the U(t) is strongly continuous. Moreover
for all one has

for all v E Lq (for q = 2, is unitary and strongly continuous for all

We shall also need the Hilbert space X that consists of those v E HI
such that xv E L2 with the norm defined by

The free evolution maps X into ~. Furthermore, for all 

The space E satisfies the following property :

LEMMA 1. 2. 2014 (Cf. lemma 1.3 of [2]). Let v ~ 03A3 and let q satisfy (1. 3).
Then for all t E IR, U(t)v E Lq and satisfies the estimate

where 11 is defined by ( 1. 4) and the are constants depending only on n
and q.

For any interval I of the real line ~, for any Banach space 84, we denote
by ~(I, 84) (respectively 84)) the space of continuous (respectively
bounded continuous) functions from I to 84. ~(1, 86) is a Banach space
when equipped with the uniform topology and coincides with ~(1, 86)
for compact I. For any interval I of the real line [R, we denote by I the closure
of I in R, where R is the compactification of R with two points + oo and
-~ (i. e. with the obvious topology.
We shall need the Banach space X = n with the norm

given by , , .. _ _ ............ _.

For any interval I c IR, we define the following spaces :

for some r such that ~ 2 for n = 1, 2, 3 and r  6 for n = 3, with 8 defined
by l/r = 1/2 - ( 1 - E)/n, so that 1/2 ~ 8 ~ 1 for n = 1 and 0  8 ~ 1
for n = 2, 3.

Y(I) = 1 r : r(f) == U(t - for all s and t in I }.

Vol. XXVIII, n° 3 - 1978.



292 J. GINIBRE AND G. VELO

and ~’o(I) are Banach spaces with respective norms

and |v101 defined above, and are Frechet spaces when equipped
with the topology of the uniform convergence on the compact subsets of I.
As a consequence of the Sobolev inequality ( 1. 2), for n == 1, X == H1 

1 and
= ~. Furthermore Y(I) is equal to Yb(I) and isomorphic to H1 for all I.

If I and J are two intervals of [R, we shall use the notation

for the norms in the Banach spaces Yb(J)) and Yo(J)) respectively.
We stress again that the spaces defined above are different from those

denoted by the same symbols in [7] and [2]. We have kept the same notation
because they play the same role as the previous ones. Note also that the
relation between X and !!£ and ~’b on the one hand and between ~. and Y.
on the other hand are the same as previously.
As in [1] and [2] we make the convention that the letter C, possibly with

subscript, shall denote a real non negative constant depending only on
the dimension of the space n and on f, but independent of any time, interval,
or other functions appearing in the same equation. Constants C without

subscript may vary from equation to equation, constants Ci with the same

subscript i are the same in all equations where they appear.
The assumptions made on f will be taken from the following list :

(H 1 a) f is a twice continuously differentiable function from C to C,
with /(0) = 0 and /’(0) = 0, where f ’ stands for or 

(H2 a) If n = 2, 3 : there exists a real number p2 with 2 ~ p2  (n + 2)/(n - 2)
such that for all z ~ C

Under assumption assumption (H2 a) restricts only the behaviour
of and at large 
(H2h) f satisfies the estimate

where /"(z) stands for any of the second derivatives with respect to z and z,
and pi satisfies 

~.,. /~ ~B

with the same e as in the definition of the spaces ~’o(I).
(H3) For all z E C, = 7(z). For all z e C and all OJ e C with = 1,

l’Institut Henri Poincaré - Section A



293ON A CLASS OF NON LINEAR SCHRODINGER EQUATIONS. III

If f is continuous, it follows from (H3) that there exists a (unique) real
function V(z) = with V(O) = 0 such that

(H4) f is continuous and satisfies (H3). Furthermore, there exists a
real number p3 and a constant C3 such that

and, for all /? ~ 0,

(HS) f is continuous and satisfies (H3),and, for all V(z)~0
and W(z) ~ 0, where

Remark 1.1. - The assumption /’(0)=0 in is unnecessary
for n = 1 as will be clear in the subsequent estimates. In any case, if (H3)
holds, a linear term in f can be included in the free evolution Ho, so that
this condition does not restrict the class of admissible ,f’’s.
Remark 1. 2. - For n = 2 the condition (H2 a) can be weakened to

requiring only that f be bounded for large values of z by a power series
with suitably restricted coefficients.

Remark 1. 3. 2014 The optimal value of G in (H2 b), namely that giving the

weakest restriction on pl, is G = (3 - ~/2~ + 1)/2. For this G the restric-
tion on pl becomes

As in [1] and [2], in the proof of the conservation laws, we shall need to
regularize the basic equations. For this purpose we shall use functions h
and g from (Rn to [R satisfying the following assumptions :

(hl) h is even, positive, hE L 1 and = 1.
(gla) ~~ 1 and 1.
For any hand g satisfying (M) and (gl a) respectively, we introduce a

subscript v which can represent either the pair (h, g) or g or the empty
set. Then the regularized interaction is defined by

Vol. XXVIII, n° 3 - 1978.
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and, correspondingly, if ~’ satisfies (H3) and is continuous,

2. EXISTENCE OF LOCAL SOLUTIONS

In this section, we recast the Cauchy problem for the equation (0.1)
in the form of the integral equation

and we prove the local existence and uniqueness of solutions by a fixed

point technique.
Let and let be a family of complex valued functions defined

on !R" and depending on a parameter We define the operators
fo) by the formula

where the /~ are defined by ( 1.19).
We first derive some properties of these operators. For this purpose,

we introduce the following notation. If f satisfies assumption 
we define a continuous non decreasing function R(p) from 

Clearly

and

for all z 1 and z2 E C, where f ’ stands for ~f/~z or 

LEMMA 2.1. 2014 Let f satisfy let h satisfy (hi), let g satisfy (gl a).
Then. for any r, for any interval I, the maps t2, r) -+ t,)z~ are

continuous from I x I x to Moreover for any t1, t2 ~ I, t1  t2,

for any compact interval L such that for any t E tR, for any
the G~s satisfy the following estimates :

Annales de l’Institut Henri Poincare - Section A
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and

Proof. 2014 The proof is similar to that of lemma 2.1 of [7], with however
different estimates for the quantity

It follows from (2. 4) and (2. 5) that for all v, for all v~ and v2 E X and for
all q satisfying (1. 3), f~, satisfies the following estimates :

and

where t = n/(1 - ~) and ~ is defined by ( 1. 4).
Now application of lemma 1.1 yields immediately

and

By taking q = 2 in (2.11) and (2.12), using the definition and
integrating over the variable !, we obtain (2.6). For n = 1, (2. 7) follows
from (2 . 6) by the use of (1.5) with q = 2. For n = 2 or 3, one estimates

1100 by the use of the Sobolev inequality (1.5) with q satisfying (1.3)
and in addition q &#x3E; n (or equivalently 1]  2 - n/2), and one uses the
estimates (2.11) and (2.12). The estimate (2.7) is obtained for the special
choice q = 1/n.
From lemma 2.1, one derives immediately the following corollary.

Vol. XXVIII, n° 3 - 1978.
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COROLLARY 2.1. - With the same notation and assumptions as in
lemma 2 .1, the Gv’s satisfy the following estimate :

for all and all v 1 and v2 in X(I).
As in [1], we rewrite the equation 2.1 and its regularized version in

terms of Gy. We define, for all v,

and

where h and g satisfy (hi) and (gl a) respectively. Then the equation (2.1)
becomes 

,, ._ ~.~

and the corresponding regularized equations are defined by

We now state some elementary properties of the equation (2.18).

LEMMA 2 . 2. 2014 Let f satisfy (H 1 a), let h satisfy (M) and g satisfy (gl a).
Let I and J be two intervals of [R, I c J, let t~ E I, let uo E X be such that the

function t -. U(t - to)uo belongs to Y(J) and let be a solution

of the equation (2.18). Then :
(1) The function

belongs to and satisfies for all sand s’ E I the relation

Furthermore, if for some sel, then

(2) For any s E I, u satisfies the equation

Proof. 2014 Identical with that of lemma 2.2 of [1].
We now study the existence and uniqueness of local solutions of the

equation (2.18).

PROPOSITION 2.1. 2014 Let f satisfy let h satisfy (hl), let g satisfy (gl a).

Annales de l’Institut Henri Poincaré - Section A
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Then for any p &#x3E; 0, there exists To(p) &#x3E; 0, depending only on p and f
(but independent of v), such that for any t0 ~ R and for any uo E X such
that U(. - to)uo E B(I, p), where I = [ta - To(p), to + To(p)] and B(I, p)
is the ball of radius p in ~(1), the equation (2.18) has a unique solution
in ~(1). This solution belongs to B(I, 2p).

Proof 2014 It follows from corollary 2.1 that if we define To(p) by

we ensure that

for all v2 in B(I, 2p). 
"

From there on, the proof is identical with those of propositions 2.1,
2.2 and 2. 3 of [1].

3. CONSERVATION LAWS

In this section, we state the conservation laws for the L2-norm and
the energy, and the pseudoconformal conservation law. We then briefly
outline their derivation. The energy function Eg is defined by

for all v E X and all g satisfying (gl a).

PROPOSITION 3.1. 2014 Let f satisfy 3), let g satisfy (gl a), let J be
an interval of tR, let to E J, let uo E X and let u E ~(J) be solution of the equa-
tion (2.18) with v = g. Then for all s and t in J, u satisfies the equalities

If in addition and then M~~(J, E) and for a!l  and
t E J, u satisfies the equality

Remark 3.1. 2014 If u is a solution of (2.18) in ~(J), then by lemma 2.1,
U(. - to)uo E Y(J).

Vol. XXVIII, n° 3 - 1978.
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Remark 3 . 2. 2014 The statement xuo E L2 is equivalent to uo e Z if already
u0 ~ X.

Sketch of the proof 2014 The proof is similar to the proof of the same con-
servation laws in [1] and [2]. One first proves them for the regularized
equation, and then one removes the regularization by a limiting procedure.
One first shows (cf. proposition 3.2 of [1]) that if, for some interval I

containing to, a solution of the equation (2.18) with v = (h, g),
and satisfying (~1), then for all non negative integer t, HI)

and M~, satisfies the equation (3.3) of [1]. If in addition g has compact sup-
port and xu~ E L2, then (cf. proposition 3 . 2 of [2]) also xuh E Ht) and
u~ satisfies the equation (3.1) of [2]. Here H~ is the usual Sobolev space.
The proof is almost identical with those of propositions 3.2 of [1] and 3 . 2
of [2], with the only difference that r and q are replaced by 2 and 1 respec-
tively in the estimates (3.5) of [1] and (3. 5) of [2]. Such a uh is sufficiently
regular so that one can derive a regularized version of the conservation
laws, as expressed by propositions 3.3 of [1] and 3.3 of [2]. The proof is
a direct computation starting from the regularized differential equation
and it is identical with those of propositions 3.3 of [1] and 3.3 of [2].

Let now be the solution of the equation (2.18) mentioned in
proposition 3.1. In order to prove the proposition, it is sufficient to prove
it for s and t in a small neighbourhood of f~ where t 1 is an arbitrary point
in J (and under the assumption that for the proof of (3.4))
(cf. the proof of proposition 3.4 of [1] and 3.4 of [2]). In such a small inter-
val, the solution u can be defined by the contraction method of proposi-
tion 2.1, and furthermore the regularized equation (2.18) with v = (h, _ g)
also has a unique solution uh which can be defined by the same method. It
is therefore sufficient to derive the conservation laws for u from those

for uh by a limiting argument on h in the situation of proposition 2.1.
For this purpose, one picks a fixed function h E ~, h satisfying {h 1) and
one defines a sequence { = 1, 2, ... , by

With the same notation as in proposition 2.1, one proves that uh~ tends
to u in L 2) when ~ -~ oo. The proof is similar to that of proposition 3 .1
of [1]. It rests on the facts that

in ~(1, L2) when j -~ oo for fixed v E ~(1), and that

for all v1 and v2 in B(I, 2p), uniformly in j. These 
’ two facts are easily proved 0

Henri Poincare - Section A



299ON A CLASS OF NON LINEAR SCHRODINGER EQUATIONS. III

by the same methods as in the proofs of lemma 2.1 and proposition 2.1.
Now for fixed t ~ I, the convergence of to in L2 implies that

thereby proving (3.2).

since is a continuous function of v in the L2-topology for v

in a bounded set of X. By the same compactness argument as in the proof
of proposition 3.4 of [1], this implies (3.3).

The proof of this fact is similar to that of the corresponding fact in the proof
of proposition 3.4 of [2], using the continuity property of V mentioned
above and the analogous property of W. The only difference is that r and q
are replaced by 2 and 1 respectively in the estimates (3.24) and (3.27) 

a

of [2]. By the same compactness argument as in the proof of proposition 3 . 4
of [2], this implies that u E E) and that u satisfies (3 . 4) for all  and t

in I, provided g has compact support. In order to remove this last restric-
tion, one finally uses a limiting argument on g, which is of the same type
as that in proposition 3.5 of [2].

4. EXISTENCE OF GLOBAL SOLUTIONS

In this section, we prove the existence of global solutions of the equa-
tion (2.1). This result is obtained by establishing an a priori estimate on
the X-norm of the solution. The H1-norm is controlled by the conservation
of the L2-norm and of the energy, while the control of the L~-norm comes
directly from the equation (2 .1 ).

THEOREM 4.1. 2014 Let f satisfy (H1 a, 2 a, 3, 4), let g satisfy (~1 let J
be an interval of ~ let to E J and let uo E X be such that U(. - E Y(J).
Then :

(1) The equation (2.18) with v = g has a unique solution in ~"(J). This
solution belongs to 

(2) For all sand t E J, u satisfies the equalities (3 . 2) and (3 . 3).
Vol. XXVIII, n° 3 - 1978.
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(3) If in addition and xu0 ~ L2 (or equivalently MoeE), then
E) and for all  and satisfies the equality (3 . 4).

Proof 2014 It is sufficient to prove part (1) since once part (1) is proved,
parts (2) and (3) are restatements of proposition 3.1. Let I be a bounded
open interval, the closure of which is contained in J, let to E I and let u E 
be solution of the equation (2.18) with v = g. By a standard argument,
it is sufficient to obtain an a priori estimate for ~U(t 2014 for all s
and 

By assumption (H4), lemma 3 . 2 of [1] and corollary 3 . 2 of [1], the conser-
vation laws (3.2) and (3. 3) imply the uniform estimate

for all  and where M o is a continuous increasing function from 0~ +
to !R + with Mo(0) = 0, polynomially bounded for n = 2 or 3, depending
only on f and n (see theorem 3.1 of [7]). This settles the case n = 1, where
X = H1.

In order to complete the proof for n = 2 and 3, we now derive an a priori
estimate for ~ U(t - s)u(s)~~ with s, te I. From (2 .18) and (2 . 20) it follows
that for all s, t ~ I

By the Sobolev inequality (1.5) the second term in the r. h. s. of (4.2) can
be estimated as

with n  q  2n/~n - 2). On the other hand, from assumptions (HI a)
and (H2 a), it follows that for all z e C

By Holder’s inequality, by (1.11), (4.4) and lemma 1.1, one has

and

with 11 defined by (1.4) and l = M/(l 2014 11).
For n = 2, all the norms in the r. h. s. of (4.5) and (4.6) are estimated

in terms of the H1-norm via the Sobolev inequality (1.2). Collecting the

Annales de l’Institut Henri Poincaré - Section A
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previous estimates, one finds after an elementary computation, for all s
and t in I,

for arbitrary q, 2  q  oo (the constant C depends on q). This completes
the proof for n = 2.
For n = 3, since p2  (n + 2)/(n - 2) = 5 by assumption (H2 a), we

can find a q such that

and

We fix such a q. From (4.8) it follows that p2q  6, and therefore, by the
Sobolev inequality (1.2), by (4.1) and (4.5), we obtain

Similarly, since 3  l  6, the expression ~u(03C4)~l in (4.6) can be estimated
in terms of !! The same estimate holds provided
(p2 " ~ ~ 6. If(p2 " 1)t &#x3E; 6, one obtains, by the Sobolev inequality (1.2),

Let now L be a compact subinterval of I containing to and let

From the previous estimates we obtain

where M depends only on ~ Mo I is the length of Land

The condition (4.8) is equivalent to the condition a  1, and therefore
implies the required a priori estimate for the case n = 3. This completes
the proof.

5. THE CAUCHY PROBLEM AT INFINITY

In this section, we analyze the integral equation

for to in a neighbourhood of infinity in R and we prove the existence of
Vol. XXVIII, n° 3 - 1978.
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a unique solution in 0 , 00 for T sufficiently large by a fixed point
technique. We also prove the existence of the limit of U( 2014 t)u(t) when t

tends to infinity and we extend the conservation laws of the L2-norm, of
the energy, and the pseudoconformal conservation law up to infinite
time. Similar results holds in a neighbourhood of - oo. For simplicity,
we consider only the original equation (5.1) without regularization and
without cut-off. We recall that the quantities f V and similarly G, F, A
and W for v = 0 are written without subscript (cf. ( 1.19, 1. 20)).
We first collect some preliminary estimates which give a meaning to

the expression (2. 2), including the case where tl or t2 is infinite. If f satis-
fies assumptions (HI a) and (H2 b), we define a continuous non decreas-
ing function Ro(p) from to (R + by :

Clearly

and

for all Z1 and z2 E C, where f ’ stands for or 

LEMMA 5.1. 2014 Let f satisfy 2 b). Then for any interval I c )?,
the map t2, v) -+ G(t~, continuous from I x I to 

Moreover, for any 1 ~ t2), for any interval L such that [t 1, t 2] c L c= I,
for any and for any vl, v2 t2) satisfies the following esti-
mates :

and

where
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with

and is the function defined by (5.9) with ?y replaced by G. (Note that y  0

by assumption (H2 b)).
If t1  t2  0, one obtains similar estimates with t1 replaced by - t2

and t2 replaced by - 
If t1  0  t2, one obtains estimates of the same type by combining

the previous ones for the intervals 0] and [0, 
Remark 5.1. 2014 It is proved in lemma 1.4 of [2] that the function 

is increasing, ~-Hölder continuous and bounded.

Proof of lemma 5.1. 2014 The proof is similar to that of lemma 2.1 of [2].
We have to obtain suitable estimates for the HI, Lr and L~-norms of the
quantity

Now

by (5.3) and ’ lemma # 1.1,
r ~

by the definition of (see section 1). Similarly

by (5.3), (5.4) and lemma 1.1,

The estimate (5 . 5) follows from (5.12) and (5~13) by integration in the
variable r.

On the other hand
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by (5. 3) and lemma 1.1,

by Holder’s inequality,

where y is defined by (5.8). In (5.14), we have estimated ~vi ~p1r by inter-
polation between ~vi~ and ~ vi~r if p1r  r and between ~vi~r and ~ vi~~
if r. The exponent of ( 1 + I ’t I) that comes out naturally from this
estimate is

The estimate (5.6) now follows from (5.14) and from lemma 1.5 of [2].
Finally, by the Sobolev inequality (1.5), we have

with q satisfying (1. 3) and in addition q &#x3E; n, or equivalently  2 - n/2.
By the same method as above, we obtain

where ~ is defined by ( 1. 4) and t = n/(1 - ~),

where

Similarly, one obtains the same estimate (5.17) and by (5.15),
this estimate holds also In order to obtain the t dependence
stated in the lemma, we need to take ~  E (or equivalently q  r). This

implies /3 &#x3E; y. It is then natural to impose that ~3 = y. This is equivalent to
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which is satisfied for all pl satisfying (1.13) provided

One can easily find ~ satisfying this condition in addition to r~  ~ and
’1  2 - n/2. For definiteness, we choose 11 = Min (s, 1 - n/4). Then we
obtain

which by lemma 1.5 of [2] implies the estimate (5 . 7).
In the case n = 1, the L~-norm of 03A8 can be estimated in a much more

direct way :

This yields an estimate slightly different from (actually slightly better
than) that stated in the lemma.
From remark 5.1 and lemma 5.1, one derives immediately the following

corollary :

COROLLARY 5.1. - With the same assumptions and notation as in
lemma 5.1, for 0 ~ ~ ~ ~ ~ 00, t2) satisfies the following estimate :

We now come back to the equation (5 .1 ), which we rewrite as

where the operator So) is defined by

and F(to) is defined by (2.14). If to is finite, A(to, . ) is related to A(to, . ),
defined by (2 .15), as follows :

We first consider the limit of U( - s)u(s) as s tends to infinity.

PROPOSITION 5.1. 2014 Let f satisfy 2 b), let I and J be two intervals
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of IR (possibly unbounded), I c J. Let to E I, let u0 ~ H1 be such that

U(. )uo E Yo(J) and let u E Er 0(1) be a solution of the equation (5 . 24). Then :

(1) The function defined by (2.19) belongs to Yo(J)) and can
be extended by continuity to a function in Yo(J)) still denoted by ~(M).
For all s, s’ E I, ~(M) satisfies the relation

(2) For all satisfies the equation

Let now I = [T, oo) for some T E !?.

(3) There exists M+eH’ 1 such that U(.)M+(= and u

satisfies the equation

If in addition then u+ EX. If to = 00, then u+ - uo.
(4) [03C6(u)](s) - U( . )u + belongs to for all s ~ I and tends to zero

in when 5-~00. Moreover, for all s ~ 0, sel, u satisfies the esti-

mates

and

where y is defined by (5.8). , , 
-

(5) If in addition ~’ satisfies (H3), then for all t e I, u satisfies the relations

Sketch of proof 2014 The proof of parts (1) to (4) is almost identical wnn
that of proposition 2.1 of [2]. Part (5) follows from part (4), from proposi-

tion 3.1 and from the fact that tends to zero when s tends to

infinity. "

We next study the Cauchy problem at infinity.

PROPOSITION 5 . 2. 2014 Let f satisfy (H 1 a, 2 b). For any p &#x3E; 0, there exists

T 1 (p) &#x3E; 0, depending only on p and f, such that for any to E I and for

any u0 ~ H1 such that where I = [T1(03C1), oo) and Bo(l, p)
is the ball of radius p in ~’’o(I), the equation (5.24) has a unique solution u

in °.’o(I). This solution belongs to Bo(I, 2p). For fixed uo, the map to 
-~ u is

continuous from I to Bo(I, 2p).
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Proof. - It follows from corollary 5.1 that if we define T1(p) by

then we ensure that

for all to E I and all u 1 and v2 in Bo(I, 2/?). From there on, the proof is iden-
tical with those of propositions 2 . 2, 2 . 3 and 2.4 of [2].
Remark 5 . 2. 2014 There is some flexibility in the choice of the spaces where

to solve the Cauchy problem at infinity. One may for instance replace
v.’’o(I~ by the more general space :

for some ~, 0  b  1. The assumption (H2 b) has then to be replaced
by a suitable condition involving p 1, b and B. The weakest condition,
namely the smallest lower bound thereby obtained for pi, corresponds to

5 = (~/2~ + 1 2014 1)/2 = ~o and b 1  1 2014 e ~ bo for some suitable b I
depending on n. The range of values of r corresponding to the last condi-
tion is

Since however the lower bound on pl itself, as given in remark 1. 3, is not
improved by the more general choice (5.37), we have used the simpler
space where ð = 1 - E.

By strengthening the assumptions on f and uo, we can extend the pseudo-
conformal conservation law to infinite times.

PROPOSITION 5 . 3. 2014 Let f satisfy (Hi a, 2 h, 3) with p 1 &#x3E; 1 + 4/n. Let
T I = [T, oo), to el, uQ E E, and let u E ?£ 0(1) be solution of the equa-
tion (5.24). Then

(2) Let u + be defined as in part (3) of proposition 5 .1. Then u + eE.

(3) For all t ~ I, u(t) satisfies the relation

where the integral in the last term is absolutely convergent.
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(4) U( - s)u(s) tends to u + strongly in 03A3 when s ~ oo .

Proof 2014 The proof is almost identical with that of proposition 4.1 of [2]
and will be omitted.
We now collect the main information obtained in this and the previous

section. For this purpose, it is convenient to introduce the following nota-
tion. Let p &#x3E; 0 and let T1(p) be defined by (5.35). We define

and

THEOREM 5 .1. - Let f satisfy 2 a, 2 b, 3, 4), let p &#x3E; 0, let

U( . )uo E Yo(J) where J = [T, oo) and - ~  T  0, and let (to, ico) E K(p).
Then :

( 1 ) The equation (5 . 24) has a unique solution which can be

uniquely continued to a solution in ~’a(J).
(2) There exists u+ E X such that U( - s)u(s) tends to u+ when s -)0 00

in the sense of proposition 5.1 (4), and in particular in X. If to = 00, then
M+ = uo.

(3) For all t E J, u(t) satisfies the relations :

(4) u is uniformly bounded in ~o(~) and (defined by (2.19)) is

uniformly bounded in ~’b((~+, Yo(J)) if (to, E K(p) for some fixed p and
if U{ . )uo remains in a bounded set of Yo(J).

(5) If in addition u0 ~ 03A3 and pi 1 &#x3E; 1 + 4/n, then u + eE, E) and
U( - s)u(s) tends to u + strongly in 03A3 when s ~ oo . Furthermore, for all

t E J, u(t) satisfies the relation (5.38).

Sketch of proof. 2014 Parts ( 1 ), (2), (3) and (5) are repetitions of previous
results. Part (4) is trivial for n = 1. For n = 2 or 3, the uniform boundeness
of u follows from proposition 5.2 and from the estimates derived in the
proof of theorem 4.1. The uniform boundeness of c~(u) follows from that
of u through (5.28) and lemma 5 .1.

6. ASYMPTOTIC BEHAVIOUR OF SOLUTIONS

In this section, we study the asymptotic behaviour in time of the solutions
of the equation (5.24). As in the previous paper [2], an important role is
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played by the pseudoconformal conservation law derived in section 3.

The main result is that for repulsive interactions in the sense of assump-
tion (H5), all the solutions of the equation (5 . 24) in ~(~) are purely disper-
sive, namely they lie in (see proposition 6.1).
The first result connects the time decay of various norms of the solu-

tions of (5.24).

LEMMA 6 .1. - Let n = 2 or 3, and let f satisfy (H 1 a, 2 a) and the condi-
tion

with
and

Let to e ~ and let uo e X be such that U(. E and that

Let be solution of the equation (5 . 24), let

(NT is finite by the definition see section 1), and let u satisfy in
addition

for all q such that 2  q  2) and with 11 defined by (1.4).
Then there is a constant M depending only on f, Mo, M’ and the set

{M }, such that

Proof 2014 In the proof that follows, we make the convention (already
used in the statement of the lemma) that M without subscript or super-
script denotes a generic constant that may depend on f, Mo, M’, and the
set { Ml1 }, but not otherwise on uo or u, and not on ~o.
From the equation (5.24) and from (6.3) it follows that

for all t E [R. By the Sobolev inequality (1.5), the second term in the r. h. s.
of (6.7) can be estimated as

with n  q  2), or equivalently 0  r~  2 - n/2. On the other
hand, from assumption (H2 a) and from (6.1), it follows that for all z e C
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and

By Holder’s inequality, by (6 . 9), (6.10) and lemma 1.1, we obtain :

and

where = 1}). The condition pl &#x3E; 1 + 2/n implies that 2
and (p, - 1)t &#x3E; 2 for j = 1, 2.
For n = 2, both p~q and (p~ - 1)t lie in the range of values of q covered

by the condition (6.5), i. e. 2  q  oo. For n = 3, because of assump-
tion (H2 a), q can be chosen in such a way that p2q  2n/(n - 2) = 6 by
choosing 11 sufficiently small, namely  (5 - p2)/2. From now on, we
impose this restriction on 11. One can then estimate (6.11) for n = 2 or 3
by direct use of (6.5). One obtains

In order to estimate (6.12) however, one needs to consider two cases
separately.

First case. (p2 - 1)1  2n/(n - 2). This covers completely the case
n = 2 and can be achieved for n = 3 if p2  3 by choosing 17 sufficiently
small. One can then estimate also (6 .12) by direct use of (6 . 5) and (6.4)
and obtain

Using (6.8), (6.13), (6.14), the fact that p2 and the elementary estimate

which holds for 03B2 ~ 0, 03B2  1 - 11, one obtains
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(Here the condition 03B2  1 - ’1 follows from pl &#x3E; 1 + 2/n while the condi-
tion 03B2 ~ 0 can always be achieved by a slight change of ~ if necessary).
We now impose on ~ the additional restriction 11 ::s; 1 - ð. Then (6.6)

follows from (6 . 7), (6.16) and (6.2).

Second case. (p2 - 1)1 &#x3E; 2n/(n - 2). This case occurs only for n = 3
and cannot be avoided if p2 &#x3E; 3. One can always assume however that
(pl - 1)1  2) = 6 without introducing additional restrictions on ð,
by replacing pl by 1 + 4/n = 7/3 if necessary and by taking 11 sufficiently
small. The term with j = 1 in (6.12) can then be treated as in the first case.
In order to estimate the term with = 2, we use the inequality

which implies

Let now

Combining (6 . 7), (6 . 8), (6.13), (6.18) and (6.15), we obtain for any T ~ fo I

where

We now show that by taking ’1 sufficiently small, one can ensure at the
same time that al ~ 0, a2  0 and (X3  1. The last condition is equivalent
to p2  (n + 2)/(n - 2 + 2’1) = 5(1 + 2’1) and can be easily satisfied
because of assumption (H2 a). We impose in addition that ’1 ~ 1 - ~.
Then 0 follows from (6.2). In order to ensure that a2  0, it is suffi-
cient that in addition

Under the assumption (p2 - 1)t &#x3E; 2) = 6, the condition (6.24)
is easily seen to be satisfied for ~ sufficiently small. The estimate (6.20)
then becomes

with 0 ~ 0(3  1. This implies that ,u(T) is bounded uniformly in T and
completes the proof in the second case.
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Remark 6.1. 2014 The various conditions imposed on ’1 in the course of
the proof are clearly compatible, since all of them are upper bounds on ’1.

Remark 6 . 2. 2014 Assumption (HI a) in lemma 6 .1 is unnecessarily strong.
It would be sufficient to assume instead / to be L1 with /(0) = 0. This is
the reason why we have written explicitly the assumption p 1 &#x3E; 1 + 2/n,
although for n = 3 the assumption (HI already implies 2 &#x3E; 1 + 2/3.
We now concentrate on the case of repulsive interactions.

PROPOSITION 6 .1. 2014 Let f satisfy (H 1 a, 2 a, 3, 5). Let to E !?, let uo E E
be such that U( . )uo E and let u be the solution of the equation (5 . 24)
in ~(!R) (see theorem 4.1). Then : .

(1) u E E). For all q satisfying (1. 3) and for all sand t E tR, u satisfies
the estimate

II 112 + E{u{~))] 1 ~2 (6 . 26)

where ’1 is defined by ( 1. 4) and ãq is the constant that occurs in ( 1. 7).
(2) Let n= 1. Then for any s(l/2 ~ ~ 1), u E ~’0(~8), and ~(t) E ~b((~, Yo(!R))

with 
! t~o~ ~ ~~u(O) ~ ~ 2 ~(0))!’ + E{u{0))] 1’2 . (6 . 27)

(3) Let n = 2 or 3, let f satisfy (6.1) with pi ~ 1 + (4 - 2~)/n and let
Then and both and

are estimated in terms and uniformly
with respect to to.

(4) Let in addition f satisfy (H2 b) with pl &#x3E; 1 + 4/n, and let u+ be
defined as in proposition 5.1 (3). Then u+ eE and for all t E [R, u satisfies
(5 . 38).

Proof. 2014 The proof of part (1) is almost identical with that of part (1)
of proposition 4.3 of [2]. Part (2) is an immediate consequence of part (1).
Part (3) follows from part (1) and lemma 6.1. Part (4) is a partial repetition
of proposition 5.3.

R~emark 6.3. 2014 There is some overlap between the various assumptions
made on the behaviour of f near the origin. For instance the condition (6 .1)
with 1 + (4 - 2E)/n is contained in (H2 b). On the other hand, the
condition pl &#x3E; 1 + 4/n is closely related to assumption (H5) (see remark 1. 2
of [2]).

7. CONTINUITY WITH RESPECT
TO INITIAL DATA

In this section, we describe briefly the continuity properties of the solu-
tions of the equation (5. 24) with respect to the initial time and initial data.
These properties are very similar to those obtained in [1] and [2]. Indeed,
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the continuity in a neighbourhood of a given solution depends only on
the general structure of the theory, while uniformity of the continuity is
obtained whenever one can find a uniform bound on ~M). Here we state
typical results without proofs and send back the reader to sections 4 of [1]
and 5 of [2] for details.
We shall use systematically the following notation and convention.

For any interval J of R, we define the map (5 : v ~ v(o) from Y(J) to HI,
where is defined as v(o) = U( - s)v(s) for some (any) s E J. Clearly

X if 0 E J. The map S is one to one, and the inverse map is defined by

In all subsequent propositions, it will be assumed that So E or

that uo E some J. It will then be understood, except in remark 7.2,
that continuity properties with respect to So are always expressed in terms
of the (Banach space) topology image under C5 of that of Yb(J) or of that
of Yo(J), and that joint continuity with respect to uo) is expressed in
terms of the product of the natural topology for to and of the previous
topology for So.

Remark 7.1. - If n = 1, then for any J, c5 is an isometry from Y b(J)
onto Furthermore, by lemma 1.2, X is continuously embedded in

This implies obvious simplifications in the following propositions.

PROPOSITION 7.1. 2014 Let f satisfy (H1 a). Let I be a bounded interval
and J an interval containing I. Let (to, So) E I x be
solution of the equation (5.24) and let ~(~) be defined by (2.19). Then
there exists a neighbourhood of (to, uo) in I x such that for all

So) E ~, the equation = v has a (unique) solution u’ in .::[’b(I).
Furthermore, the map So) --+ is continuous from ~2~ to ~(1, 
If in addition f satisfies (H2 a, 3, 4) then the continuity is uniform for to
in a compact subset of I and So in a bounded set of 

PROPOSITION 7 . 2. - Let f satisfy (HI a, 2 b}. Let I be a closed interval
and J an interval containing I. Let So) E I x and let u E 
be solution of the equation (5.24). Then there exists a neighbourhood
of (to, uo) in I x co(Yo(J)) such that for all So) E ~, the equation = v

has a (unique) solution u’ in 2r 0(1). Furthermore, the map So) --+ 

is continuous from ~7~ to Yo(J)).

Remark 7.2. 2014 If in proposition 7.2 one adds the assumptions that f’
satisfies (H3) and that pi &#x3E; 1 + 4/n, then one can prove in addition that
for fixed f e I, the map --+ u‘{t) is continuous from

into E. Here the topology on Mo is the Banach space topology induced by
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the sup of the norms in c~(Yo(f)~)) and in E, and the topology on u’(t) is the
natural topology of E.

PROPOSITION 7 . 3. 2014 Let f satisfy (H1 a, 2 a, 2 h, 3, 4), let J = [T, (0)

be the solution of the equation (5.24) described in theorem 5.1._Then the
map (to, uo) ~ ~(M) is continuous from 

The continuity is uniform for (to, K(p’) for fixed p and for 

a bounded set of 5(Yo(J)). ~~~

PROPOSITION 7.4. 2014 Let f satisfy (H 1 0, 2 r~ 2 /1, 3, 5) with [’1 &#x3E; 1 + 4/n.
For any (to, x (E n u~(Yo((»))), let be the solution of the

equation (5 . 24) described in proposition 6.1. Then the map (to, ico) -+ 

is continuous from R x (E n into Y 0(1R)). The continuity
is uniform in (to, uo) for uo in a bounded set of 03A3 and in a bounded set of

8. WAVE OPERATORS
AND ASYMPTOTIC COMPLETENESS

In this section, we state the implications of the results of sections 5, 6
and 7 to the theory of scattering. We recall that the wave operator Q+
is defined as the map u + -~ u(0) where u(t) is the solution of the equation

The wave operator ~ _ is defined similarly.
The wave operators (and possibly their inverses) will be considered as

acting either in the Banach space or in ~. The latter

space will be equipped either with the topology induced by or

with the « natural » Banach space topology associated with the maximum
of the norms in and in ¿.

PROPOSITION 8.1.2014 Let f satisfy 2 a, 2 b, 3, 4). Then the wave

operators Q~ map continuously into itself. They are bounded

and uniformly continuous on the bounded sets of (’7)(Y o([R)). If in addition

pl &#x3E; 1 + 4/n, then the wave operators map 03A3 n 03C9(Y0(R)) (equipped 
with

its natural topology) continuously into itself.

For repulsive interactions, the results of section 6 imply in addition

asymptotic completeness.

PROPOSITION 8 . 2. 2014 Let f satisfy (H 1 a, 2 a, 2 b, 3, 5) 1 + 4/n.
Then the wave operators Q± are bijections of 03A3 n into itself.

Both 03A9± and 03A9-1± are bounded on the bounded sets of 03A3 n and

are continuous in the sense of the topology induced on E n 
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by uniformly on the bounded sets of 03A3 n 03C9(Y0(R)). Furthermore
Q+ and Q~ are continuous from E n (equipped with its natural
topology) into itself.
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APPENDIX

In this appendix, we sketch an alternative theory in dimension n = 1, which is similar
to that developed in [1] and [2] in the sense that the basic space X = L 2([R) n is larger
than Most of the methods and results used in [1] and [2] or in this paper carry over
without change to this case with the exception of the treatment of the local Cauchy problem,
both at finite and infinite initial times. This requires minor modifications, which we present
below without proof.

In the assumptions made on f, the condition (HI 1 a) is replaced by the condition (HI)
of [1], namely :

(HI) f is a continuously differentiable function from C to C and /(0) = 0.
The basic spaces are X = L 2 n L 00, q’(b)(I) = ~)(I, X) and

for some r, 2  r ~ oo, and with e defined by 1/r = 1/2 - (1 - E).
We first state the result concerning the Cauchy problem at finite initial time for the equa-

tion (2.1) or more precisely for the equation (2.18).

PROPOSITION A .1. - Let f satisfy (HI) and the estimate (6.1) with 2, let h satisfy (hi),
let g satisfy (gl a). Then the same conclusions as in proposition 2.1 hold.

The conservation laws for the L2-norm and for the energy, and the pseudoconformal
conservation law are derived in the same way as in section 3. The first two laws yield the
existence of global solutions in the same way as in [1], provided f satisfies (HI, 3, 4) and the
estimate (6.1) with 2.

The solution of the Cauchy problem at infinite initial time is described in the following
proposition.

PROPOSITION A. 2. - Let f satisfy (HI) and the estimate (6.1) with

with the same e as in the definition of g; 0(’)’ Then the same conclusions as in proposition 5 . 2
hold.

We remark that the weakest restriction on Pi imposed by the condition (A .1) is

pi &#x3E; (3 + yi7)/2, corresponding to G = (7 - yi7)/4. This restriction is weaker than that
given by ( 1.18) for n = 1.

For repulsive interactions (in the sense of assumption (H5)), all solutions of the equa-

tion (2.18) are purely dispersive and lie in ~o(~)- The proof is the same as in section 6.
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