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Non semisimple gauge models:
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and the properties of ghost states
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Ann. Inst. Henri Poincare

Vol. XXVIII, n° 3, 1978,

Section A :

Physique ’ Theorique. ’

ABSTRACT. 2014 In this paper we study a class of non-semisimple gauge
models from the point of view of their invariance properties under a set
of non linear field transformations (B. R. S. or Slavnov transformations).
We first discuss how the Slavnov invariance insures the stability, under
small perturbations, of the gauge group and of its representation on the
matter field space, thereby individuating a set of stable, Slavnov invariant
classical actions. Secondly we analyze the masses of the ghost particles ;
we see that, contrary to the semisimple case, the Slavnov invariance is no
longer sufficient to yield the complete mass degeneracy between the Fad-
deev-Popov and the longitudinal photons-Goldstone bosons sectors. This
mass degeneracy, which is an essential ingredient for gauge invariance,
is restored by imposing a special constraint on the parameters of the Lagran-
gian. The resulting definition of the classical models, i. e. Slavnov invariance
plus mass degeneracy, is extendible to the quantum level as shown in a
forthcoming paper (II).

1. INTRODUCTION

The gauge models are the result of an historical effort aimed at the cons-
truction of renormalizable theories involving vector fields. The contri-

(*) Partially supported by the Universite d’Aix-Marseille II, U. E. R. Scientifique de
Luminy, Marseille, France.
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226 G. BANDELLONI, C. BECCHI, A. BLASI AND R. COLLINA

butions of Yang-Mills [1], Feynman [2], Faddeev-Popov [3], ’t Hooft [4] [5]
and many others [6] [7] [8] have provided us with a canonical procedure
for the specification of the Lagrangian. Given a gauge group and a set of
matter fields which carry a fully reducible representation of it, the model
is built by adding to the most general, renormalizable, gauge invariant
Lagrangian the well known Faddeev-Popov (D.n.) gauge fixing terms.
The straightforwardness of such a procedure is only apparent since the

real problems appear when trying to build a sensible operator theory in
a Fock space, for which a necessary prerequisite is to have a quantum
extension (renormalization) of the model.
A possible strategy toward renormalization is to use the symmetry

properties of the theory as an alternative definition to the historical
approach. This point of view is of course meaningful if the symmetry is
enough well-behaved to characterize unambiguously the classical models
and if it can be maintained to all orders of perturbation theory.

Recently the Slavnov identity (S. I.) [9], expressing the invariance of
the Lagrangian under a system of non-linear field transformations (Slav-
nov transformations [10] ) has proved to be a good definition for theories
with semi-simple gauge groups also extendible to the quantum level.

Indeed, one can first show, in this case, that the infinitesimal gauge group
is stable under small perturbations of the field transformation laws and
that its representation on the matter field space is likewise identified up
to an equivalence transformation. Secondly, the most general Slavnov
invariant Lagrangian is defined up to a field renormalization in terms of
the coefficients appearing in the historical model, thus excluding the

presence of hidden parameters in the theory ( 1 ).
The fulfillment of all these requirements will be summarized by saying

that the set of Slavnov invariant Lagrangians is stable.
Classical stability [77] [12] [l3] [14] does not imply in general the possi-

bility of extending the theory to the quantum level ; as an example (and the
only one so far known) the Slavnov symmetry can be definitely broken
by the occurrence of the Adler-Bardeen anomaly (A. B. A.) [15].
The renormalization of the S. I. can be viewed from different angles ;

a first way is to look for a Slavnov invariant regularization procedure
which directly links the renormalizability of the S. I. to the classical stability
of the Lagrangian. Indeed, if such a regularization is available and the
renormalized Lagrangian including the counter-terms is Slavnov invariant,

(1) This is essential, otherwise these parameters could show up in the form of unexpected
divergencies during the process of renormalization. This happens, for example, in the
Yukawa model or in scalar Q. E. D. if the quadrilinear couplings for the scalar field are
omitted.
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227NON SEMISIMPLE GAUGE MODELS : I. CLASSICAL THEORY

the stability properties ensure that all infinities can be compensated by a
cut-off dependent renormalization of the fields and the parameters. Among
the best known examples of renormalization programs based on this

point of view, we mention the Pauli-Villars regularization in Q. E. D. and
the dimensional regularization as applied to the gauge theories [l6] with-
out fermion fields.
A second approach which, within the B. P. H. Z. [17] framework avoids

any specific regularization, is based on the compensation, by suitable
finite counter-terms in the Lagrangian, of the breakings which can affect
the S. I. according to the renormalized Quantum Action Principle (Q. A. P.)
of Lowenstein and Lam [7~].
The compensability of the breakings can be investigated by means of

two main tools : a power counting analysis and the consistency (integra-
bility) conditions following directly from the structure of the S. I., which
can be written as a first order differential equation in terms of the suitable
variables.

This point of view has been successfully applied by Becchi-Rouet-
Stora (B. R. S.) to renormalizable theories with symmetry breaking [19]
and to the renormalization of gauge theories in the case of abelian [20]
or semi-simple [IO] [77] gauge groups. For a semi-simple gauge field model
the consistency conditions for the symmetry breaking are discussed in
a purely algebraic fashion and point uniquely to the A. B. A.
Once the S. I. has proved to be renormalizable, there is still a need for

a physical interpretation of the theory. In fact the associated Fock-space
does not have a positive definite metric, due both to the covariant quantiza-
tion of the vector fields, as in Q. E. D., and to the presence of the anti-
commuting scalar Faddeev-Popov (0.11.) fields [3]. Furthermore the

Lagrangian of the model is in general not hermitian.
It is, thus, necessary to find, within this indefinite metric Fock space,

a subs pace with a positive definite norm (physical subspace) where the
S-matrix is unitary and independent from the parameters labelling the
gauge fixing terms in the Lagrangian. There exists now a systematic
approach to the unitarity problem, based on the S. I. and on the peculiar
properties (mass degeneracy) of the unphysical states of the models.
As far as gauge invariance is concerned, it can be proved by a direct

extension of the method used in massive Q. E. D.
The problem of classifying the local observables, i. e. the local gauge

invariant operators, still awaits a global solution, although recently [21],
the general guidelines toward such a solution are beginning to clarify.

This paper contains the first part of an analysis of non-semi-simple
gauge models where, with the intent of simplifying as much as possible
the study of the renormalization process, we shall exclude the presence
of massless particles hence considering only models in which all the photons
corresponding to the semi-simple factor of the gauge group acquire mass
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228 G. BANDELLONI, C. BECCHI, A. BLASI AND R. COLLINA

through a Higgs-Kibble [22] spontaneous symmetry breaking mechanism.
We shall, however, follow a procedure which, in the light of recent develop-
ments in the field [23], can be directly extended to the massless case.
We study here the definition and the stability properties of the models ;

the renormalization problem will be fully analyzed in a forthcoming
paper.
The stability of the non-semi-simple models suffers two kinds of patho-

logies as compared to the semi-simple case.
The first of these pathologies lies in the fact that the Slavnov invariance

does not identify uniquely the matter field representation of the abelian
factor of the gauge group. As a consequence there arises the possibility
that the renormalized representation may be inequivalent to the tree-

approximation one. It will, however, be shown in the next paper that the
abelian representatives are not affected by quantum corrections, so that
this first kind of instability has in practice no relevance.
The second pathology comes from the fact that the S. I. is compatible

with the introduction of arbitrary mass terms for the abelian photon
and C.n. fields.

This phenomenon has been already discussed in the Literature. In

particular in the case of the U(l) H. K. model, B. R. S. have shown [20]
that such a mass term breaks the gauge invariance of the theory. They
eliminate it by requiring that the unphysical particles (Goldstone bosons
and longitudinal photons) be mass degenerate with the C.IY. Notice
that in the case of unbroken U(l) gauge symmetry such a mass term is
allowed, thus leading to massive Q. E. D.
We shall show that in the general case an analogous mass degeneracy

prescription must be imposed, which now turns out to be compatible
with the presence of a suitably restricted mass term for the abelian photon

fields.

In Section 2 we describe the construction of the gauge field models,
exhibit their Slavnov symmetry and introduce the necessary ingredients
to translate the S. I. into a functional form.

Section 3 is entirely devoted to the study of the stability properties
following from the S. I.

In Section 4 we analyze in detail the mass degeneracy condition in the
unphysical one-particle sector of the theory and give a heuristic discussion
of the relevance of this condition for the gauge invariance of the model.

The concluding Section contains a summary of the results so far obtained
and some remarks which provide a bridge toward the renormalization
of the gauge field models, which will be the subject of a forthcoming paper.
The more technical aspects of our analysis are treated in Appendices A,

B, C.
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229NON SEMISIMPLE GAUGE MODELS : I. CLASSICAL THEORY

2. CLASSICAL MODELS
AND SLAVNOV INVARIANCE

Let G be a compact, real Lie algebra with G = S EÐ A where S and A
are the semi-simple and abelian factors respectively.
The field ~~x) with components i = 1, ..., n, carries an anti-hermitian,

fully reducible representation of G according to

while the gauge vector fields J~~(~) transform as

with real, differentiable functions of the space-time point x and
f03B103B203B3 the real structure constant of G.
The set of Greek indices 03B1, 03B2, y = 1, ..., N will be split, when convenient

into a « semi-simple » subset as, = 1~ ... , Ns and an « abelian » subset
~A, yA == 1, ... , NA, corresponding to the semi-simple and abelian

components of G ; in particular f"sSyA == = f~Ays = 0.
A classical Lagrangian invariant under the transformations of Eqs. (1)

and (2) is built with the cpi fields, the covariant antisymmetric tensor

and the covariant derivative

as

The indices a, ~3, y, ... are raised and lowered by means if a nondege-
nerate invariant form whose reduction to irreducible components of G
defines the coupling constants, the , v = 1, ..., 4 indices by the Min-
kowsky metric tensor and the matrix Iij is a positive definite form anti-
commuting with the matter field representation. Unless explicitely speci-
fied the sum over repeated indices is always understood.
The term + q) in Eq. (4) is an invariant polynomial in the argument

~p~ + q~ which satisfies

e) For the sake of simplicity we shall here consider only scalar matter fields ; the genera-
lization to include fermion fields is straightforward.

Vol. XXVIII, n° 3 - 1978.



230 G. BANDELLONI, C. BECCHI, A. BLASI AND R. COLLINA

and exhibits the spontaneous symmetry breaking mechanism in the direc-
tion of the vector q.
The mass matrix mi~ of the fields in fact satisfies the eigenvalue

equation, obtained from Eqs. (1) and (5)

where q03B1j = t03B1jkqk.
From Eq. (6) we observe that the number of massless Goldstone fields

is given by the dimensionality of the orbit of q.
The mass matrix Ma~ of the gauge vector fields is

In the following we shall assume that the orbit of q contains at least
the the trivial representation of G is excluded, and hence
by Eq. (7) all the gauge fields acquire mass by the Higgs-Kibble
(H. K.) mechanism. We shall see later on that under this condition and for
a generic choice of the parameters in the final Lagrangian all gauge fields
can be made massive.

It is well known that the Lagrangian in Eq. (4) is not directly quantizable
since it leads to singular field equations. A way out of this difficulty, allow-
ing a correct definition of the propagators, is to introduce the Faddeev-
Popov [3] Lagrangian (3)

where

The C.n. c«(x) fields obey Fermi statistics and have canonical
dimension 1 ; the components p~ of the vector p" are the gauge parameters
introduced by t’Hooft.
The Lagrangian in Eq. (8) is no longer invariant under the gauge trans-

(3) The C. n. gauge fixing term in Eq. (8), which is often used in the literature, leads to
particularly simple form for the propagators. However we shall see in the following that

in general the matrix 1 k03B403B103B2 should be replaced with an arbitrary symmetric positive defi-

nite matrix [10]. It is also worthwhile noticing that any choice of the gauge function
linear in the fields can be reduced to the form (9 a) by a redefinition of the ca fields.
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231NON SEMISIMPLE GAUGE MODELS : I. CLASSICAL THEORY

formations (Eqs. (1) and (2)), but under the following set of Slavnov [9]
transformations :

where 5~ is an infinitesimal, space-time independent parameter which
commutes with the ~(x) fields and anticommutes with the 
e«(x) fields.

It will turn out to be useful to assign to the fields a C.IY. charge Qøn
as follows :

so that the Lagrangian in.Eq. (8) is C.IY. neutral.
The above transformations can be summarized in a functional deriva-

tive notation. Let

and

Eqs. b, c, d, e, f ) take the form

A further gain is acquired by the introduction of a set of external fields

to which the following . II. charges and dimensions are assigned

Vol. XXVIII, n° 3 - 1978.
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The external fields are coupled according to the new Lagrangian

which is still O.IY. neutral and invariant under Eq. (12) due to the property

Of course the field vector y(x) is assumed to have components only in the
non-identity factors which arise from the complete reduction of the repre-
sentation t03B1ij into irreducible constituents.
With the aid of the ~ fields the invariance of the theory under the Slavnov

transformations Eq. (12) can be written in terms of the classical action
functional

in a more compact way :

It is also useful to linearize the expression of the Slavnov symmetry
of the theory by writing it for the generator of the connected Green func-
tions 11). Upon introducing the sources

for the fields ~, respectively, with

this generator is defined bv

where the subscript is a short-hand notation for

and

Annales de l’lnstitut Henri Poincare - Section A



233NON SEMISIMPLE GAUGE MODELS : I. CLASSICAL THEORY

In terms of the functional differential operator

the S. I. is now

Clearly these functional expressions can be given a meaning also beyond
the tree approximation, hence the renormalization program of the models
will be based upon the quantum extension of Eqs. (19) (24).

Before ending this section let us remark that Eq. (24) implies :

which translated by Eqs. (22) for the vertex functional 1]) becomes

As we shall see in the following the validity of Eq. (26) to all orders of
the perturbation expansion fixes the wave equation of the ca fields.

3. STABILITY OF THE CLASSICAL MODELS

Our task in this Section is to check whether any solution of the S. I.
in a neighborhood of any Lagrangian built according to the prescriptions
of Section 2, can be brought back to this historical form by a suitable
linear transformation of the fields, whose general expression is

To preserve the S. I., modulo a change of the gauge parameters p~‘,
we must impose on Eqs. (27) the restrictions

Vol. XXVIII, n" 3 - 1978.
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and require that they be implemented by the external fields transformations

with

The proof is carried out perturbatively to first order in a « small » quan-
tity E and is articulated in two steps. First we shall discuss the external
field dependent part of the action, thereby having informations on the struc-
ture constants of G and its representation on the matter fields space. We
shall see that the perturbed structure constants coincide, after a transfor-
mation as in Eq. (27 b), with the unperturbed ones, while the matter fields
representation gives rise to a possible instability which is analyzed in the
text. Secondly, we shall be concerned with the external field independent
part of the action and its parameters as compared to those of the historical
model. This investigation leads to the individuation of a canonical form
of the classical action, different from the historical one, which turns out
to be stable under perturbations. This last point is also amply commented
upon in the text.

According to the above illustrated procedure we write the perturbed
action as

where

Eqs. (32 a), (32 b) and (32 c) are first order perturbations of Eqs. (10 a),
( 10 b) and ( 10 c) i. e. explicitely

Annales de r lnstitut Henri Poincare - Section A



235NON SEMISIMPLE GAUGE MODELS : I. CLASSICAL THEORY

The validity of the S. I. for the functional in Eq. (31) can be written as

where the operator J ) is the analog of the one given in Eq. (12) with the
substitution Pi -~ 

Factoring out the coefficients of the external fields in Eq. (34) gives a
set of consistency conditions which are the first order G expansions of

by which we can analyze the behaviour of the perturbed structure cons-
tants F~ and of the representatives T ~.

Indeed Eq. (35 a) explicitely reads

whose general solution is

or equivalently

From this equation it is clear that the substitution (27 b) with

performed on the classical action restores, to first order in 8, the original
structure constants thus ensuring the stability of the semi-simple factor
of G. Once this is done, Eq. (35 b) yields the system

with general solutions

which allow us to write Eqs. (33 c), (33 d) in the form

with

Vol. XXVIII, n° 3 - 1978.



236 G. BANDELLONI, C. BECCHI, A. BLASI AND R. COLLINA

Here again we see that these perturbations can be reabsorbed by the photon
fields renormalization in Eq. (27 a) with the choice

The stability of the adjoint representation carried by these fields is thus

proved ; notice that, up to now, the abelian factor of G and its representa-
tions have played no role.
The last equations derived from Eq. (35 c) are

which are solved respectively by

where L~ is an arbitrary matrix commuting with the 
In terms of the expressions (46), Eqs. (33 a), (33 b) can be written, to first

order in G, as

and

These last equations are the necessary complement to exhibit the possible
pathologies.

Let us first remark that if

then the substitutions (27 a), (27 c) with

and

performed on the classical action compensate exactly the remaining per-
turbations in Eqs. (33). This would imply the stability of the complete
algebra G and its representation on the field space. If Eq. (49) is not satisfied
we remain with a single possible source of instability in the term T~,
related to the abelian factor of G. The analysis of this impediment now
proceeds by considering the external field independent part of the action,
which likewise must be invariant. Recalling that the instability comes
from the 03C6i fields representation, we shall only consider the global trans-
formations
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which must leave invariant an 8-perturbation of W(~p), the classical gauge
invariant action corresponding to (~, (Eq. (4)) at the point ~ = 0.
Indeed, as shown in Appendix B, the perturbed Slavnov transformations
induce automatically the appropriate . II. gauge fixing term, which is
a perturbation of the original one ; the remaining part, invariant under
these transformations, contributes (except for the abelian photons mass
term which we shall see later) only to the gauge invariant action where the
dependence on the matter fields is completely identified by their global
transformation properties.

In this way, the mentioned invariance condition puts further constraints
on the admissible Trj matrices and leads to the net result, proved in Appen-
dix A, that the general Trj is not equivalent to t03B1ij if and only if we can find
at least one linearly independent from the and commuting with
them, such that w(~p) is invariant under the transformation

Remark that this result requires quite severe specifications the matter
fields must meet for to be necessarily zero ; in particular it excludes
the presence of baryonic or leptonic components of the matter field vec-
tor c~. In fact, in such a case, the generator of the baryon or lepton charge
immediately furnishes a ia matrix which violates stability.

Before taking too seriously this source of instability let us recall that the
possible existence in the theory of « hidden » parameters, may spoil its

renormalizability if these parameters are explicitely needed to compensate
some renormalization parts. Since we shall show in the next paper that the

are not renormalized thanks to a mechanism similar to the one lead-
ing to the well known Ward identity of Q. E. D., we can from now on forget
about the 1’~ problem.

Concerning the stability of the external fields independent part of the
action in Eq. (31), it follows from Appendix B, that the most general Slavnov
invariant 03A6.03A0. neutral functional of maximum degree four is given by

where and are real, symmetric matrices and is positive definite,
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and

Observe that if

the last term on the r. h. s. of Eq. (53) can be included in It
follows that all field renormalizations being by now fixed, turns

out to be stable under perturbations leaving the Slavnov transformations
invariant only if it has the canonical form given in Eq. (53).
Comparing with Eq. (8) we notice that the matrix A"~ now replaces the

I

parameter k which thus appears to be a very particular choice of the
gauge function ; moreover the mass term in Eq. (53) is completely
absent in the historical model. Some Authors (Ref. [12]) avoid these new
parameters by prescribing the wave equation for the ~.n. fields as it is
deduced from the classical model, thus ruling out massive Q. E. D. and in
general all the models containing it. For the abelian H. K. model the intro-
duction of such mass terms, although compatible with the Slavnov identity,
spoils the gauge invariance of the model (Ref. [20] ). It thus follows that a
definition of the gauge models comprehensive of massive Q. E. D. must
allow such mass terms with some special constraint. We shall see in the
following Section that these constraints may be put in the form of mass
normalization conditions which essentially amount to giving arbitrary
masses to those O.FI. fields which are free.
A few remarks on the matrix appearing in Eq. (53) are now appro-

priate ; can always be written as with k a positive num-

ber and h invertible. After the substitutions

the integral on the r. h. s. of Eq. (53) becomes

Now the matrix does not appear explicitely in Eq. (58), but its arbitra-
riness has been transferred into the representations of G and the gauge
parameters as it is clear from Eq. (57).
The alternatives Eq. (53) or Eq. (58) for the classical action are perfectly

equivalent for what concerns the definition of the model and its stability,
but while in Eq. (53) the wave operator of the transverse photons and matter
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fields maintains its naive form which allows an easy particle interpretation
for the physical sector, the choice in Eq. (58) is more convenient when

performing explicit calculations in the unphysical sector, thus allowing
a simpler analysis of the unitarity of the scattering matrix.

4. MASS DEGENERACY IN THE GHOST SECTOR

This Section is devoted to the analysis of the unphysical one-particle
states of the model with the aim of characterizing these states through
the S. I. and the suitable mass normalization conditions.
The main reasons for this investigation are twofold : first to complete

the stability check of the previous Section and second to state the rules
which, together with the S. I., define the renormalized model.
The unphysical one-particle states are those associated with 

fields (0. Ft. sector) and a subset of the scalar sector spanned by the coupled
longitudinal photon-scalar matter fields. In the original model outlined
in Section 2 the fields in the scalar sector comprehend the physical fields,
whose masses are the positive eigenvalues of the matrix mi~ (Eq. 6) and the
unphysical ones : the longitudinal photons and the Goldstone bosons. If N
is the dimension of the algebra, 11s the number of the independent scalar
matter fields, n~ the number of the Goldstone bosons ; then the number
of physical and unphysical fields in the scalar sector is respectively 
and N + ~.

It is suggested by the B. R. S. analysis of the abelian H. K. model [l8]
that the above distinction of the scalar sector into physical and unphysical
fields and the gauge invariance of the theory is not always extendible to
a generic Slavnov invariant Lagrangian. To maintain gauge invariance
the S. I. must be endowed with the normalization condition (mass degene-
racy condition) that N + n~ states of the scalar sector be degenerate in
mass with the N states of the . FI. sector. It is precisely these N 
fields which we shall call unphysical.

Having in mind that our task is that of discussing the full renormalized
model, we shall push the analysis of the masses of the particles in the scalar
and C. n. sectors beyond the tree approximation level, thus getting results
valid to all orders.

Let us define the tools by which we shall work out our analysis to all
orders.
We have seen in Section 3 that the general solution of Eq. (26) in the tree

approximation leads, up to a field redefinition, to the following wave
equation for the c fields :

Vol. XXVIII, n° 3 - 1978.
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It is clear that Eq. (59) solves Eq. (26) also beyond the tree approximation
and we shall prove in the next paper that it can be kept to all orders of the
perturbation expansion.

Deiinins

we can write the Fourier transformed wave matrix of the C. n. fields in

the form

In the scalar sector, we introduce the matrices

and define

The Fourier transformed wave equations for the C.FI. and the scalar
sectors are respectively :

and

The masses of the particles in these sectors are given by the solutions
of the equations :

Annales de I’Institut Henri Poincare - Section A



241NON SEMI SIMPLE GAUGE MODELS : I. CLASSICAL THEORY

with the parameters of the theory so chosen as to ensure their positivity.
The S. I. yields the following relations among the wave matrices, Eqs. (61),

Having now set the stage, we begin at the classical level where the mass
degeneracy condition necessary to preserve the gauge invariance of the
model can be immediately individuated and translated into a relation
among the parameters of the Lagrangian.

In the tree approximation, where = ~a~ and /? === q«, Eq. (61 ) becomes

and Eqs. (66 a), (66 b) are solved by

with

Here Eq. (69) shows that for a generic choice of the matrix, the spon-
taneous symmetry breaking condition (Eq. (6)), upon which the original
model was built, is violated, and that it can be restored by imposing

From this equation it immediately follows that the fields are free
since by Eqs. (59), (22), (70) we obtain

The relevance of Eq. (71) for the gauge invariance of the theory can be
understood by the following heuristic argument.

Let 03C8phys be the set of the physical fields ; the Slavnov variations 
from Eqs. (10 a), (10 b), (10 c) do not have linear contributions in the c fields.
This insures the annihilation of the mass-shall Green functions with a

vertex.

The gauge invariance of the model, i. e. the independence of the mass-
shall Green functions involving only physical fields from the k parameter
in Eq. (8), requires that the insertion of the gauge fixing part of the Lagran-

g ian ( g°‘~ - 2 c~(~c)~) into such a Green function, disconnects. Now the
Vol. XXVIII, n° 3 - 1978. 16
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Slavnov invariance says that for any given product of fields operators
n

the following identity holds :

and hence

Furthermore, using the . II. equation of motion Eq. (59), we have

where the first term on the r. h. s. of Eq. (74) is also disconnected, since

by Eq. (71) is a free field. Comparing Eq. (74) with Eq. (73) and recall-

ing that the Slavnov variations of the have no pole on the mass-shell,
we get the desired result.

Note that from the Slavnov invariance alone we arrive at Eq. (73) which
is not the statement of gauge invariance due to the 1/2 missing factor in
the term This fact has forced us to prove that the two terms and

separately do not contribute to the mass-shell connected Greens
functions and for this proof the validity of Eq. (70) and Eq. (71) is essential.
The condition given in Eq. (70) requires a short comment. In order to

avoid massless particles in the model, the matrices

and

must be positive definite. This is not compatible with Eq. (70) for an arbi-

trary choice of the p" parameters (4). For the sake of brevity we shall only
remark that ’t Hooft’s choice

(4) In particular, defining through the pf’s a set of vectors in the scalar matter field space,
the mass positivity condition together with Eq. (70) requires that the number of linearly
independent vectors in this set be equal to nG, i. e. that of the q03B1 vectors. However this is not
a sufficient condition.
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is consistent with Eq. (70) and the absence of massless particles in the
scalar sector.
We shall now investigate, to all orders of perturbation theory, the men-

tioned mass degeneracy condition between the particles of the scalar and
the C.n. sectors, showing that it is equivalent to Eq. (70). We shall here
show that this equation implies the degeneracy of N masses of the
scalar sector with the C. n. masses, leaving to Appendix C the proof of
its necessity.
Assume that for a given p(p2 &#x3E; 0) the system Eqs. (64 b, c) has solution

~ va, M~}; multiplying to the left Eqs. (66 a. b) by va, ui respectively we get

and making use of Eqs. (64 b, c) we arrive at

which, after summation, yield

Thus, provided

we have a solution of Eq. (64 a), hence to every solution of Eqs. (~4 b, c)
which satisfies Eq. (80) there corresponds an unphysical state in the scalar
sector whose mass is degenerate with a state in sector.

On the other hand, when

it is easily seen, by Eqs. ~77 a, b) that Eqs. (64 b, c) are no longer indepen-
dent. Setting ;..

and substituting into Eq. (64 c) we get by Eq. :

Similarly substituting Eq. (82) and the explicit form of (Eq. (61)) into
Eq. (66 b) yields :

since is invertible in the tree approximation. The insertion of Eq. (83 b)
into Eq. (83 a) finally gives
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which, as we shall see in the following, contains all the necessary informa-
tions.

In fact, if Eq. (70) holds true, from Eq. (84) we have the alternatives :
either

or

and solves

Let us discuss the first alternative. Multiplying to the left Eq. (85) by p J
and recalling Eq. (70), yields a solution of Eq. (64 a), individuating another
state of the scalar sector mass degenerate with a O.n. state. On the other
hand, if Eqs. (86), (87) are verified we have a single particle physical state :
indeed Eq. (87) in the tree approximation reads

so that our state is an eigenvector at p2 &#x3E; 0 of the m~~ matrix which, compar-

ing with the naive model (Section 2), can be identified with a physical
state. Conversely, from every solution Qj of Eq. (87) we can get a vector uj
satisfying Eq. (86) which together with v" obtained from Eq. (81) solve the

system Eqs. (64 b), (64 c), provided that the matrices mz~ and do not

have accidental non zero equal eigenvalues.
Since the matrix for a generic choice of the parameters compatible

with Eq. (70) has ns - n positive eigenvalues, we can deduce that, if

= 0, the situation in the scalar sector coincides with the one holding
in the original model, namely that there are N + ~ states which are mass

degenerate with the ~ . n . sector, i. e. unphysical, and ns - n physical
states.

That all the D. n. masses are degenerate with someone in the scalar
sector follows directly from the S. I. (e. i. Eqs. (66 a), (66 b)). In fact a non
zero solution w~ of Eq. (64 a), substituted into Eqs. (66 a, b) gives

which compared with Eqs. (64 b, c) yield a solution of the scalar wave

equations

It remains to be proved that the condition = 0 follows from the

mass degeneracy requirement. As mentioned before the proof of this
assertion is carried out in Appendix C..
The complexity of the analysis developed in this section justifies a sum-
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mary of the results on the masses of the particles in the unphysical sector.
This analysis may also be clarifying in connection with the saturation of
unitarity relation of the model.

If the semi-simple gauge symmetry is completely broken, among
the N 1&#x3E;. n. particles, are free and mass degenerate with an equal number
of particles in the scalar sector. The remaining nG 03A6. n. particles are mass
degenerate with n~ pairs in the scalar sector. This exhausts the ghost
sector, since the scalar unphysical particles are N + n~.

It is not difficult, by extending our method, to show that the situation
remains essentially unchanged also in the case where some of the unphysical
particles are massless, the only difference being that the massless 03A6.03A0.
states belong to the first considered ones and are not necessarily
free.

5. CONCLUSIONS

Our task in writing this paper was to find a definition encompassing
the largest possible class of gauge models and to specify their parameters.
A by-product of this study has been an accurate analysis of the unphysical
one-particle states of the model whose results are summarized at the end
of the previous Section.

According to our point of view the gauge models are defined by the Slav-
nov identity implemented with the condition that the masses of any one-
particle ghost state corresponding to the longitudinal photon and Gold-
stone boson degrees of freedom, be degenerate with at least IY. mass.
We have also characterized the most general renormalizable classical

Lagrangian possessing this property. Such a Lagrangian is built from a
canonical form through the linear field transformations shown in Eqs. (27).
Given the gauge group and a representation of it in the matter field space,
the canonical form consists of the most general gauge invariant Lagran-
gian plus the 1&#x3E;. n. gauge fixing terms which correspond to the gauge
parameters and the mass term in Eq. (58) with = 0 (see
Eqs. (4), (53), (54)).
We further discussed the stability problem for such theories, i. e. whether

two Lagrangians differing for small variations of the parameters corres-
pond to the same gauge group and to equivalent representations in the
matter field space. If this is true, then we can go from one Lagrangian to
the other by varying the above mentioned parameters. The analysis shows
that the only source of instability is in the representation of the abelian
invariant subgroups of the gauge group. We also stated that this kind of
instability is not dangerous for the quantum extension of the theory.

Let us finally remark that if one finds an appropriate regularization
method this paper implicitely contains the proof of the renormalizability
of the theory, for, in such a case, the stability properties guarantee that all
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the counterterms originate from variations of the parameters in the classi-
cal action.

In a more general approach (B. P. H. Z.) [17] to renormalization, stability
asserts that all the quantum extensions of the classical theory can be reached
from any given one through a finite change of the parameters. This property
ensures the complete generality of those extensions which are obtained by
the aid of supplementary renormalization conditions.
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APPENDIX A

In this appendix we analyze the stability to first order e perturbations of the transforma-
tions of the fields alone.
The classical invariant action at the point ~u - 0 has the following structure (see Eq. (4)).

where the first term on the r. h. s. is the kinetic term. The functional W(cp) is invariant under
the global version of the cp~ fields transformations (Eq. 1).
Along the lines of Section 3, our analysis is carried out in the hypothesis that a pertur-

bation of the functional must exist

and be invariant under the perturbed global transformation of the ~p field (Eq. 51). These
can be written after a suitable redefinition of the fields in the form

where the matrices commute with the matrices f’s and are not linear combinations
of them’s.
To study the transformation properties of the functional let us introduce the func-

tional differential operators

which obey the commutation rule

The linear space of the functionals V~(~p) of natural dimensions less than or equal to four
carries a completely reducible representation of the algebra G defined by the action of
the £Ø0152 operators.
The invariance, up to first order, of the functional in Eq. (A. 2) under the trans-

formation Eq. A. 3 leads to

Let us now define through a non degenerate invariant symmetric form the quadratic
Casimin operator

whose null space (the functionals which satisfy = 0) exhausts the space of the inva-
riant functional i. e. those obeying Eq. (A. 6 6:). Multiplying Eq. (A . 6 b) to the left with

and making use of Eqs. (A. 5), (A.6 a) yields

hence

from which two main results can be deduced.
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First the invariance, under the transformations generated by of the non-degenerate
kinetic part of W(p) insures that the matrices are anti-hermitian, thus each of them
defines on the cp space a completely reducible, non trivial representation of a one-para-
meter group commuting with the gauge group.

Seconds, Eq. (A. 8 b) tells us that the functional W(p) is also invariant under the single
action of such one parameter groups, thus completing the analysis of the kind of instability
related to the presence of the zaA matrices in Eq. (46 a).
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APPENDIX B

In this Appendix we shall show that the most general Slavnov invariant C.n. neutral
external field independent functional of degree less than or equal to four, is given by Eq. (53).

Let be such a functional ; the C. n. neutrality and dimensionality constraints allow
us to write

where r(~, does not depend upon n. fields, is antisymmetric in the indices
03B103B2 and y(3, and (Kc)x is explicitely given by

The Slavnov invariance of Eq. (B .1) means

with given by Eq. ( 12), and hence a fortiori

By direct computation, recalling Eq. (9 b), Eq. (B. 4) reads

The substitution of Eqs. (B. 1), (B. 2) into Eq. (B. 5) yields, for the coefficients of the inde-
pendent field monomials, the relations

Conditions (B. 6 e) and Eq. (B. 6 f ) show that the term is invariant under semi-
simple transformations. The further decomposition into abelian variant and invariant
parts

substituted into Eq. (B . 6 f ) yields the co-homological solution

while is left undetermined. Hence, by the necessary conditions = 0,
Eq. (B. 1) assumes the form
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Define now

where is given by Eq. (9 a) and 0393inv (03C6, A ) is the most general gauge invariant func-
tional of degree less than or equal to four. Substituting Eqs. (B . 9), (B .10) into Eq. (B . 3)
we obtain

which by Eqs. (B. 6 e) and (9 a) is equivalent to the system

The solution of Eq. {B 12 a) and the homogeneous solution of Eq. (B. 12 b) give a gauge
invariant functional which is included in the term 0393inv (4), hence we have only to find
a particular solution of Eq. (B. 12 b). This is easily seen to be

where xt satisfies Eq. (B. 8), ~iq03B1i = 0, and the term in Eq. (B. 7) is zero.
The functional in Eq. (B. 1) can thus be written as
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APPENDIX C

In this Appendix we prove that the condition Eq. (70)

follows from the mass degeneracy requirement discussed in Section 4.

For all purposes we have to show that Eq. (C .1) is stable under small perturbations
preserving the Slavnov invariance of the Lagrangian if the masses of any one particle
ghost state of the scalar sector are degenerate with at least one C. n. mass.
We shall analyze the problem in the tree approximation, without any loss of generality.

Indeed the tree approximation result implies the necessity of Eq. (C .1) to all orders since,
under this condition, the fields turn out to be free.

To make the calculations more transparent we shall choose the gauge parameters 
considered as vectors in the scalar matter field space, to span the same subspace !/ g of the
vectors as e. g. in the ’t Hooft gauge (Eq. (76)). According to this choice we shall write.

As shown in Section 4 the masses of the scalar sector are automatically degenerate with
some 1&#x3E;. n. mass, except, possibly, the non vanishing eigenvalues (p2) of Eq. (84) which
in the tree approximation writes :

with

and the symmetric matrix m~~ is constrained by (Eq. (69))

Clearly, by this equation, the matrix leaves the subspace !/g invariant and we can decom-
pose it as :

where annihilates [/ g’
Following this decomposition we can separate from Eq. (C. 3) two subsystems involving

the components of the vector u along ~ and its orthogonal complement (M~), i. e.

Recalling the analysis of Section 4 we notice that the eigenvalues of the matrix rnl,
which are positive by hypothesis, correspond to physical states in the scalar sector. There-
fore our degeneracy condition involves only the eigenvalues (p2) of Eq. (C.7 a), which
multiplied to the left by p~, after the substitutions

and making use of Eq. (C.5), becomes
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Summarizing this rather involved introduction, the mass degeneracy condition requires
that the eigenvalues (p2) of this equation be degenerate with some of the equation
of motion (Eq. (67)) which, in the same notation, writes :

The comparison of Eq. (C . 9) and Eq. (C.10) is performed in the limit of 
In this limit the r. h. s. of Eq. (C. 9) appears, by Eqs. (C. 5), (C. 6), as a perturbation ; to evi-
dentiate an analogous perturbation term in Eq. (C. 10) we need some more work.

Let P"a be the orthogonal projector acting on the algebra and such that (1 - pro-
jects onto the null space of the matrix in Eq. (C . 8 a). (In the following, whenever the
meaning is clear, we shall omit the a, ~, ..., indices and consider the corresponding ope-
rators.) Setting

and projecting Eq. (C.10) with P and (1 - P), yields the systems

in which the terms proportional to or w1 should be considered as small.

Now, when the perturbation vanishes, the eigenvectors of the systems (C 12 a), (C. 12 b)
can be separated into two classes, where the first comprehends those which are degenerate
with a solution of Eq. (C . 9) and satisfy Wi = v, w2 = 0. The remaining solutions, for which

are in general non degenerate with those of Eq. (C . 9). Consequently we shall consider
only the eigenvectors of the system (C .12) whose unperturbed limit belongs to the first
class.
For a choice of the parameters avoiding the accidental coincidence of two C. FI. masses,

the operator p2 - ,ul, with p2 eigenvalue in the first class, is invertible ; thus Eq. (C .12 b)
can be solved as

The substitution of Eq. (C.14) into Eq. (C.12 a), keeping only the first order terms in
the perturbation gives

where, in much the same way as in Eq. (C. 9), the r. h. s. is proportional to P,u, i. e. vanishes

Our task is now to show that Eq. (C .1) follows from the requirement that, to first order
in the perturbation PJl, the solutions of Eqs. (C . 9), (C.I 5) corresponding to the same
unperturbed eigenvalues p2 &#x3E; 0, remain degenerate.
To impose this constraint, we shall assume, without lack of generality, that the Ry’’P

operator in Eqs. (C . 9), (C .15) is diagonalizable and has non degenerate eigenvalues. Then
let { be the basis which diagonalizes RyTP in the subalgebra projected by P, i. e.
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where ~,~"’ are the eigenvalues and Zn is the dual basis satisfying ZJ = From

Eqs. (C . 5), (C . 2), (C.6), (C . 8 a) we get

which, multiplied to the right with P yields,

In terms of Eq. (C.16), the above equation writes

Multiplying Eq. (C.19) to the right with zm and to the left with zn, gives

from which we see that the M operator assumes the form

with = (z,, Mzn).
Now, imposing that the perturbations in Eqs. (C.9), (C .15) produce the same shift on

the degenerate unperturbated eigenvalues, we have

gain, for an arbitrary choice of the parameters, the matrix elements of the operator inside
the square bracket on the r. h. s. of Eq. (C. 22) are nonzero, hence we obtain the condition

which, from Eqs. (C . 5), (C . 6) implies

i. e. the validity of Eq. (C .1).
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