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Horizons in five-dimensional theory
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Laboratoire de Physique Théorique, tour 46-56,
Université Paris VI, 75230 Paris Cedex 05, France

Ann. Inst. Henri Poincaré,

Vol. XXVII, n° 4, 1977,

Section A :

Physique théorique.

RÉsUMÉ. - Nous étudions les conditions d’existence des horizons, donc
des trous noirs, dans la théorie proposée. Celle-ci, proposée par M. A. Ton-
nelat, est fonction d’un paramètre et peut etre considérée comme une exten-
sion de la Relativité Générale. Le résultat important de ce modèle est : la
solution de Schwarzschild est la seule solution qui ait un horizon.

SUMMARY. - We will study the conditions of existence of the horizons,
therefore the existence of black holes, according to the proposed model.
This one, proposed by M. A. Tonnelat, is a function of one parameter
and can be considered as an extension of the General Relativity. The import-
ant result, in this model, is the following : Schwarzschild’s solution is the
only solution which has a horizon.

I. PRINCIPLE OF THE THEORY

The theory is five-dimensional because we use a five-dimensional Rieman-
nian space naturally the physical interpretation is made in the space-
time V4.

In the space Vs, the coordinates are the metric form is :

and the components of the fundamental tensor 03B3MN are independent of x5.
We interpret, as the four-dimensional space-time, the Riemannian space

V4 with coordinates xJl, with the metric form :
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376 J.-P. DURUISSEAU

and the components of the electromagnetic potential where :

03B355 is a scalar field in V4 and a is a constant.
The field equations come from a variational principle, expressed in V 5’

proposed by M. A. Tonnelat [1] :

the variations c5yMN are arbitrary.
We assume that :

~ is an invariant density which characterizes matter. RMN are the covariant
components of the Ricci tensor in vs. f is an arbitrary real function of a
real variable which permits to select the theory.

a) Using = 1, we obtain Y. Thiry’s theory [2], [3], [4]. We know
that this theory does not give the correct value for the advance of the peri-
helion of planets [5], [6].

b) Using I(Y55) = (- Yss) 1~2~ we obtain H. Leutwyller’s variational
principle [7].

c) In the case where :

~8 et p are real constants, we shall study some consequences of this theory
with respect to the parameter p. From the variational principle (5), we get
the field equations [1] :

where:

x is a scalar in V4. Thus it can be a function of 03B355 as f.

are the covariant components of the energy tensor in V 5. In the case of an
incoherent fluid, we have in particular :

with:
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377HORIZONS IN FIVE-DIMENSIONAL THEORY

M. A. Tonnelat has proved [1] that :

then, in an incoherent fluid, the stream lines are geodesics of V5.
In particular, the trajectory of a mass point is a geodesic of V 5. It verifies :

If we consider equation (13) for N = 5, us is a constant k on the trajectory.

II. FIELD EQUATIONS AND JORDAN’S THEORY

In order to study the horizons as a function of p, we shall give the exact
external solution of the field equations, in the static case with spherical
symmetry in V4, without electromagnetic field [8]. In this article, we will
not study the electromagnetic part of the theory, thus there is no electro-
magnetic field : ’}’JlS = 0 (f1 = 1, 2, 3, 4). We will now only consider non-
charged mass-points (us = 0) thus their trajectories are also geodesics
of V 4’

In this case, we are going to compare the field equations (7) with these of
P. Jordan’s theory [9].
We put :

and we assume that :

Then we can write if p # - 1:

We denote with - an expression which is related to the metric form of V4.
If we decided to put :

where r is a constant, we should get the first terms of the equations of
P. Jordan’s theory [9] which, in the case without electromagnetic field,
gives the equations :

Vol. XXVII, no 4 - 1977.



378 J.-P. DURUISSEAU

It is important to note that :

a) x is also in equations (7), thus, in general, we cannot put relation (18).
The value of x, in function of ç, depends in particular on the electromagnetic
study of the theory [2], [3], [4]. Thus the two theories are in general irre-
ducible.

b ) Relation (19 ) limits the values of ~ to the interval - contra-

rily to P. Jordan’s theory.

c) In the important case p = - 1, relations (16) and (17) are not
valid, thus we cannot study this case in P. Jordan’s theory where we have
( = - oo.

d) If TMN = 0, we have the external case and the field equations (7) are
independent of x. Thus we get the solution of the external case when we
put :

in the corresponding solution of P. Jordan’s theory, and we limit the values

of ~ to the interval - oo~ . This excludes some forms of the solution.
The values of the components of the fundamental tensor in V4: are

the same.

III. THE EXACT EXTERNAL SOLUTIONS
OF THE STATIC CASE,

WITH SPHERICAL SYMMETRY IN V4,
WITHOUT ELECTROMAGNETIC FIELD

Thus, we may consider the field equations in the case :

I, n and 03BE are functions of r only.
In P. Jordan’s theory, the corresponding solutions are O. Heckmann’s

solutions [10]. All these solutions are not a solution of the problem because’

is limited to the interval - 
On the other hand, in the important case p = - 1, there is no O. Heck-

mann’s solution.
We are going to express our solutions under a suitable form to study

them with respect to p.
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379HORIZONS IN FIVE-DIMENSIONAL THEORY

Then we get the following solution, which depends on three constants :
m, a and jo as a function of n, n varying from - oo to 0.

with ro = Gm/c2, y 1 and y2 are the roots of:

this equation has always two real and distinct roots.
Naturally, we can write O. Heckmann’s solution in the same form, but

the roots yi and y2 are not always real and distinct.

IV. STUDY OF THE SOLUTIONS

We may class the results with respect to a and p (fig. 1).

We get the type @, (2), 0, (4) of variations of rand e21 with respect
to n (fig. 1, 2, 3). O. Heckmann’s solutions, where Yt and 3~2 are real and
distinct, may be also classed according to these four types.
The horizon does not exist in cases (i) and (2). In case we have not

e2" - 0 when e2 is infinite as in Schwarzschild’s case. Case Q is difficult
to interpret physically, since we cannot extend the solution for r  ~,
even if we changed the signature of dU2. On the other hand, case (s) gives
Vol. XXVII, no 4 - 1977.
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a similar solution to Schwarzschild’s and coincides with it for a = 4 (yl = 2,
~2=0).

Here we found a result proved by S. W. Hawking [17] in Brans-Dicke
Theory : the horizons are Schwarzschild’s horizons.

V. DEFLECTION OF LIGHT RAYS
AND THE ADVANCE OF THE PERIHELION

OF PLANETS

We are going to calculate these values in function of m, a and p, and
compare them with their experimental value. Thus, we can limit the permit
solutions in the plane (p, a).
We know that the trajectory of a neutral mass-point is a geodesic of V4.

A geodesic of V 4 where ds = 0 is the trajectory of a light ray. The expansion
of e2n and e - 21 in inverse powers of r gives :

Then the deflection of light rays is, after a classical calculation :

RQ is the radius of the sun
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and the advance of the perihelion of planets is :

P is the latus rectum of the orbit.
We get the experimental values if a (1 + p) is small.
This condition excludes case 0.

VI. RADIAL GEODESICS IN V4

Here we can see the very peculiar aspect of Schwarzschild’s solution
which is the only one to have an horizon.

0 and qJ are constant on the trajectory of the mass-point. We have :

where C is a constant.
Then

For example, in the case of a radial fall, we have ni  no  0 (no : initial
value of n). For finite values of ni , the integral (22) has always a finite value.
When nl - - oo, (22) has a finite value if yl - 3y2 - 2 &#x3E; 0. We can write
this condition :

Using (21), we get :

then we have:

Thus, 0, all the values of r with n  no are reached in a finite time-
coordinate (consequently in a finite proper time). This is true even in cases
(s) and 0 which have a minimum value for r.
For a light ray, we have the same result. Thus, for a ~ 0 there never is

an horizon.

But if a = 0, we have Schwarzschild’s solution (yi = 2, y2 - 0) and we
know that there is an horizon when n ~ - oo [1 1], [12].
Vol. XXXVII, nO 4 - 1977.
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VII. MOTION OF A NEUTRAL MASS POINT

WHEN I n I BECOMES LARGE
ON THE TRAJECTORY [13]

The peculiar aspect of Schwarzschild’s solution is even more evident in
this study.
We will not study case 0, Y2 &#x3E; 0. Indeed r(n) attains a minimum and

becomes infinite when I n becomes infinite ; then the physical interpretation
seems difficult.
We have :

We suppose that D # 0 (we have studied D = 0 in § VI).
1 ° If y2  0, r - 0 oo, we get an approximate differential

equation of the trajectory :

A and B are constants # 0 which depend on ro, yi and y2. We can discuss
the different kinds of trajectories :

In the plane (p, a), we can prove that, if - 1  y2  0, then

(yi + 3y2 + 2)ly2  2; the trajectory reaches the central mass (fig. 4).
b) y2 - - 1 the approximations are only valid if A2C2/D2 &#x3E; B2, then

we have the same result as in a).
c) y~  ~1 when r - 0 we have :

then r has a minimum value # 0 on the trajectory (fig. 5).

2° If 0 (then 2) r - royi when n - - 00.

The approximate differential equation of the trajectory is :
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a) yi &#x3E; 2: the trajectory is tangent to the circle r = r0y1 (fig. 6).
b) yl - 2 this is Schwarzschild’s solution (fig. 7).
For all the values of Y1 and y2  0, we still have yi - 3y2 - 2 &#x3E; 0

as in § VI and the time-coordinate on the trajectory is finite, except when
y2 - 0 and yI - 2 (Schwarzschild’s solution). Thus we note that Schwarz-
schild’s solution is very peculiar in this theory. The trajectories of neutral
mass points in the field of Schwarzschild’s solution do not appear as the
limit of trajectories when the scalar field becomes nearly constant.
The studies of the § VI and VII are not valid in Jordan’s theory because

Y1 and y2 do not satisfy the same relations. In particular, we no longer
Vol. XXVII, n° 4 - 1977. 25
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have yi - 3y2 - 2 &#x3E; 0 and we can no longer assert that the time-coordinate
is finite on the trajectory when the solution is not Schwarzschild’s.

VIII. NEWTONIAN APPROXIMATION
OF THE FIELD EQUATIONS

With the internal solution, we could calculate x and a with respect to p.
But we have not solved this problem (yet we have an approximate solution
which is also valid when p is equal to - 1 [14]). Here, we use the Newtonian
approximation of the field equations and we are going to prove that, in
general, the value of x must be different from 8nG jc4 (contrarily to P. Jor-
dan’s hypothesis [9]), the relation between a and p will be represented by
a curve (L) (fig. 1). The solution is of the type @ and we have no horizon.

In equation (18), we can choose r; thus this equation is always valid in
Newtonian approximation as x takes a constant value xo. Then the field
equations are the same as in Jordan’s theory. As in General Relativity we
get the value of xo using the Newtonian approximation of the field equations.
We use harmonic coordinates in = 0) with x4 - ct. Here :

We use the following approximations :

If we put

by straightforward calculation, we find :

where:
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It follows that :

After a short calculation, we get a44, as s , all and we obtain 
Thus, in the case of a mass point, whose coordinate are Xi = 0 and the

mass : m, we get :

We can now compare our rigorous solution with this approximate solution.
To do this, we must write our rigorous solution in the same rectangular
and harmonic coordinates.
Then we get for the exact solution :

In comparing these results, we have :

a) the same results if and only if:

Thus xo must be a function its value is not 8nG/c4.
This contradicts P. Jordan’s [9] and F. Hennequin [6] hypothesis and we
get a different relation between a and p. Thus when p is different from - 1,
we do not get the same advance of the perihelion of planets and the same
deflection of light rays, in particular in Y. Thiry’s theory [5] (p = 0).

But we have the same conclusion as K. Just [5] : we do not obtain the
experimental values if~=~2014 1 (, "# oo).
The relation (24) between a and p is the equation of a curve (L) (fig. 1 )

wich is always in the region Q of the plane (p, a).
Now, we know that in the case (2), the physical interpretation is easy :

we get a solution as a function of r, r varying from 0 to oo.

b) If p = - 1.

Vol. XXVII, n° 4 - 1977.
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xo = 8nG/c4, there is no definite relation between a and p. A second
order calculation gives [14] :
a = - 

There R is the radius of the central corper.
We are in the case (2) without horizons.
These calculations prove that Schwarzschild’s solution is not in general

the solution of the problem. Yet, we cannot conclude by an approximate
calculation in favour of the non-existence of particular Schwarzschild’s
horizons in this theory.

But we can prove by the study of the internal solution that we have no
horizon if p belongs to the interval [ - 1, - 1 /3] [16].

Thus, in the important case p = - 1, we never have horizons. We can
erase Schwarzschild’s horizon with the introduction of the scalar field

Using very different considerations A. Janis, E. Newman and J. Wini-
cour have found similar results.
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