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Section A :

Physique théorique.

ABSTRACT. - The simultaneous extraction of two-particle singularities
in triplets of channels is performed for the four-point and five-point func-
tions of a scalar field and the six-point function of a pseudo-scalar field.
Global structural equations involving the « two-particle irreducible »
functions thus obtained are derived. An analytic interpretation of these
equations is also given.

1. INTRODUCTION

In the previous paper [3] of this series [1-3], which is devoted to the non-
linear program of general quantum field theory, we have shown the exis-
tence of the two-particle irreducible parts of the n-point functions of a
scalar field (with respect to a single arbitrary channel and for any n).
These functions enjoy the algebraic and analytic primitive structure of
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280 J. BROS, M. LASSALLE

general n-point functions, i. e. analyticity in the n-point primitive domain
and Steinmann relations. As for their two-particle irreducibility, it turns
out to be equivalent (1) with the completeness of asymptotic states in the
two-particle spectral region. In this analytic approach we recall that by
« two particle irreducibility of a n-point function with respect to a certain
channel », we mean vanishing of its (analytic) discontinuity in this channel
for momentum configurations lying under the three-particle threshold.
A further natural step of the program should be the introduction of

n-point functions simultaneously two-particle irreducible (p. i.) in several
channels. Actually the construction of a four-point function two-p. i. in
all channels had been already performed by one of us in the simplest case
of a pseudo-scalar field [4].
Here we return to this problem for the four-point and five-point functions

of a scalar field and the six-point function of a pseudo-scalar field. In the
four-point case we solve the problem of two-particle irreducibility in all
channels. In the five-point and six-point case we only perform simultaneous
two-particle irreducibilisation in triplets of channels, of the form

As we shall see this is however sufficient to provide us with « two-par-
ticle structural equations » which seem to be of special interest in the theo-
retical analysis of the 2 -~ 3 and 3 ~ 3 scattering amplitudes in the
lowest energy strip of the physical region.
By « two-particle structural equation » we mean any algebraic expres-

sion of a given n-point function in terms of one-p. i. and two-p. i. terms

together with various single-loop convolution products (in the sense

of [1]).
Actually the simplest case of such a two-particle structural equation

is the well-known general Bethe-Salpeter equation [3] [4] :

In order to see how more general single-loop convolution products can
be generated, it is enough to replace each vertex function in the right-
hand side convolution by its complete « one-particle structural » expan-
sion [2], namely :

where 2 1 1, p 3 4 stands for the four-point function which is one-

(1) Up to the technical problem of C. D. D. singularities.
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281MANY-PARTICLE STRUCTURE IN GENERAL QUANTUM FIELD THEORY

p. i. in all channels and p-p. i. (p = 1, 2) in (12 ; 34). Then among other
terms the following triangle and square convolution products can be
obtained :

As a consequence of the study performed in [1], each term of such a decom-
position makes sense as an analytic function in the four-point primitive
domain.
As a matter of fact the interest of structural equations arises from the

complementarity of their algebraic aspects together with the analyticity
properties of their various terms. The situation is then similar to the one
encountered with dispersion relations : there the right-hand cut and left-
hand cut integrals produce a decomposition of the analytic amplitude in
two terms, each of which is less singular. 

‘

Here the fact that each of the various G-convolution terms occurring
in structural equations is analytic in a larger domain than the original
n-point functions (n = 4, 5, 6) will be a direct consequence of the special
threshold properties of its discontinuity functions. The latter can be derived
on the basis of the irreducibility of the vertex functions together with the
topological structure of the graph G itself.
For instance it is a heuristic argument borrowed from perturbation

theory that any Feynman amplitude occurring in the expansion of

(p = 1, 2) must have its threshold at 16 m2 in the channel (13 ; 24). This
indeed corresponds to the number of internal lines to be cut (four) in order
to disconnect the corresponding Feynman diagram into two disjoint
parts in this channel.
We shall see that such a threshold property can be rigorously proved

with some generality in the axiomatic approach (at least here in the case
of single-loop G-convolution). This is performed in Section 2 where two
discontinuity formulas are given (with an appendix for technical details).

In Section 3 we recall various results previously obtained in the program.
A « bubble » graphical notation is also definitely adopted, since we hope
that its rigorous analytic interpretation has now become familiar to the
reader.
Then Sections 4, 5 and 6 are respectively devoted to the derivation of

structural equations for the four, five and six-point functions, involving
Vol. XXVII, n° 3 - 1977.



282 J. BROS, M. LASSALLE

functions simultaneously two-p. i. with respect to various triplets of chan-
nels.
The algebraic aspect of the six-point structural equation there obtained

will be very similar to the Faddeev three-body equations in potential

scattering theory, with the four-point Bethe-Salpeter kernel 11~2~1
playing here the role of a relativistic two-body potential.

Finally the analytic aspects of these structural equations are described
in Section 7 and the improved analytic structure of their various terms
specified. This sets the ground for further investigations on the analytic
continuation properties of the 2 - 3 and 3 -~ 3 scattering amplitudes.

2. MATHEMATICAL STUDY :
DISCONTINUITIES OF CONVOLUTION PRODUCTS

In this section we shall deal with a mathematical problem similar to
the one already solved in the first section of [3]. There we considered the
convolution products HG associated with all graphs G having two internal
lines and two vertices, namely :

An analytic representation was then given for their « absorptive parts »
in the convolution channel (I, NBI). This discontinuity formula (Theorem 1
of [3]) brought out the contribution of each vertex function together with
the one due to the integration prescription.
Here we shall consider a similar problem for the absorptive parts of (1)

in channels which are either subchannels of (I, NBI) or transverse channels
to (I, NBI).

DEFINITION. - We say that a channel (J, NBJ) is transverse to (I, NBI)
if J 1 = J n I, JZ = J n (NBI), L~ 1 = (NBJ) n I and L2 = (NBJ) n (NBI) are
non empty. (J, NBJ) is called a subchannel of (I, NBI) if either J c I, or

NBJ c NBI.
First let us recall that the convolution product (1) can be written under

the form :

H (kI, 

Here we stick to the notations of our previous papers [1] [3] and refer the
reader to [3], Section II.1 where they are fully specified. In particular the
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283MANY-PARTICLE STRUCTURE IN GENERAL QUANTUM FIELD THEORY

notion of « barycentric variables associated with a subset J » will be useful
in the following. These are defined as :

where J ) stands for the number of elements of the set J and kj = k; .
t6J

We shall also need to recall the notion (2) of « discontinuity function »
of a n-point function with respect to a partition (I, N~I) of its

arguments (kl, ..., kn) : it is the discontinuity of across the « hyper-
plane » qI = - = 0. The latter is a distribution in pj = - having
its support contained in :

and depending analytically on the barycentric variables (k(I)’ k(NBI) inside
a certain primitive « flat domain » EØI defined on the manifold q~ = = 0.
We refer the reader to [2], Section III.2 or [3], Section 11.1 for a detailed
account of EØI.

21 Discontinuities in transverse channels

Let (J, NBJ) denote a transverse channel with respect to (I, NBI); we write :

and :

By (resp. we denote the discontinuity function of
F1 (resp. F2) in the channel

039403B2J1F1 (resp. is similarly defined. We also note paJl (resp. 
for Pa + PJt (resp. pa + pjj and kp = - kp for (ka + kI).
Then we can state our first result on discontinuities :

THEOREM 1. - In its primitive domain of definition, the discontinuity
function is given by :

(~) We reserve the terminology « absorptive part » for the boundary value of the « dis-
continuity function » on the real (i. e. not only pi real, but also k(l) and real).

Vol. XXVII, n° 3 - 1977.



284 J. BROS, M. LASSALLE

Here, due to the support properties of each vertex discontinuity, the inte-
gration is taken over the following compact cycles :

REMARKS. - a) This result can be graphically illustrated as follows :

b) Applying pJ + pj~ = pj, we get as a straightforward consequence of
(3) the following basic relation on supports :

which we shall use extensively in the following.

Proof Here we only give an outline of the proof since details can be
found in the appendix.

Let us consider a couple of points k + and k- separated by the face
a, = a,,, , = 0, namelv :

with s &#x3E; 0 and (pj, k(J)’ k(NBJ» fixed in the primitive domain of definition
of AW.

In order to study the discontinuity :

we rewrite the expression (2) of HG under the form :

Here HT is the (n + 2)-point function associated with the tree

= R3 is a cycle with real dimension four in the space ([4

Annales de /’ lnstitut Henri Poincaré - Section A



285MANY-PARTICLE STRUCTURE IN GENERAL QUANTUM FIELD THEORY

of t = u + iv, with 2:t some contour of the to = UO + iv° plane threading
its way from - ioo to + ioo through the singularities of the integrand.
The latter are « cuts » which correspond to the « vertex partitions » ([7],
p. 199) of the tree T. In general they are not confused and the line 2 1:
is not pinched.
When ~ -~ 0 it is easy to see that only two couples of cuts get confused,

namely :

Then the situation is as shown on Fig. 1. It is also convenient to describe
the two limiting contours 2:t by giving (see [1], p. 224) their projection
onto the plane (VO, q°) as in Fig. 2 (p. 315).
Now the integrand is analytic on the manifold q° = 0 since the partition

[J ; (NBJ) u { n + 1, n + 2}] ] is not a vertex partition for T ([1], p. 201).
Then using Stokes theorem it is not difficult to get :

Here the vanishing contribution comes from the infinite parts of the
cycles 2 + and 2 - ; y and y’ are as shown on Fig. 2.

It is then straightforward to check that in the limit qY = 0, the contri-
bution of the cycle y (resp. y’) tends to the first (resp. second) term in the
right-hand side of (3). The operation on distributions which appears in
the limit is a usual convolution product of distributions integrated on a
compact cycle, and therefore meaningful. This ends the proof of Theorem 1.

Vol. XXVII, n° 3 - 1977. 19



286 J. BROS, M. LASSALLE

2.2. Discontinuities in subchannels

Let (J, NBJ) denote a subchannel with respect to (I, NBI) with (for ins-

tance) J c I ; we write I = J u L, L = I n (NBJ).
Here we make the following restrictive assumption (which shall be satis-

fied in later applications) : the vertex function is

one-particle irreducible (3) in the channels

and for any K c L (K ~ 0, K # L), in at least one of the channels

Under this restriction, we can easily prove :

THEOREM 2. - At any point of the « flat » domain :

the discontinuity is given by :

where ~ is an appropriate cycle defined below.

Proof - When ~ -~ 0, we easily check that in the to = u° + iv°

plane the following couples of « cuts » get confused :
i) v° - - qK and v° = - q8 - q), with K ~ L, K non-empty.

ii) v° = 0 qY .
But due to the above restrictions on the spectrum of F 1, when pi  9m2,

the lines £f ± are not pinched. Then we define ~ as any common distorsion
of ~3 x and the theorem just states that in such a situation « the

discontinuity of the integral is the integral of the discontinuity ».
Indeed in the channel [J ; (NBJ) u { n + 1, n + 2 } ] the discontinuity

of the integrand HT is obviously :

since the latter channel is a vertex partition for T.

REMARK. - As easily checked, if the threshold masses are those of a

pseudo-scalar theory, the theorem is still true for pi  16m2, when ) J is
even.

(3) Here it is understood that one-particle irreducibility in some channel (I, J) entails

necessarily one-particle irreducibility in the converse channel (J, I).

Annales de l’Institut Henri Poincaré - Section A



287MANY-PARTICLE STRUCTURE IN GENERAL QUANTUM FIELD THEORY

3. RECALLINGS AND NOTATIONS

The following sections will be devoted to the central part of this paper :
the derivation of « two-particle structural equations » for the four, five
and six-point functions.

Since most of the work will have there to be done on the algebraic stage,
we shall from now on stick to the following useful graphical « bubble »
notation.

H~nl + ~ ~( ~ ki~ kx) LH~Z’(ka)l 1 H~n2 + ~~( - ka~ ~ k~~ j E N~I ~ )
with n 1 = , n2 == I and the complete two-point function.

b) I f~)m=(~~~ stands for the offlsfiell one-loop convo-

lution product (see (1)) :

with HS2) the bare (4) two-point function :

(Z is the « wave function renormalization constant of the field », see [2],
p. 282).

c) I n][)~~](~E~ ~ N1I stands for the on-shell convolution pro-

duct (see [3], Section II . 4 . 3) :

.. 
2in 
.. -Broc’rp’ri/"roc"r/j’

That is we associate 2i03C0 Z 03B4-(p03B1) with the wavy line .
We emphasize that, in the following, graphical equations appear only

as a convenient substitute for rather involved rigorous expressions. In

particular each product of convolution involves a convergent four-dimen-

(4) For the present study, it is not necessary to use the complete two-point function H(2)
at this place, and using avoids questioning about singularities produced by possible
zeros of H’2r.

Vol. XXVII, n° 3 - 1977.
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sional integral (as in regularized Feynman amplitudes) : this is readily
obtained ([3], Sections III and IV .1) by the use of an analytic cut-off
function of the Pauli-Villars type.

Let us now review the various objects introduced in our previous papers
and needed in the following (5) :

a) j ’~1)’ ! is the one-particle irreducible part of the four-point

function =:()= ~ with respect to the channel [ { k, } ],
defined ([2], p. 295) by :

It has been proved ([2], p. 293) that its discontinuity in [ { ~ }; { k, l ~ ]
vanishes for (p; + p)2  4 m2. For 4m~  (p; + pj)2  9 m2 ~ it is given
by (6): i

with the notations above ([2], p. 300).

b) ~ ’"(s)) denotes the two-particle irreducible part of the four-

point function in [ { ~’}; { ~} ]. It is defined ([3], equation 15) as the
solution of the general Bethe-Salpeter equation :

It was proved in [3] (Theorem 2) that its discontinuity in [ { ~’}; { k, } ]
vanishes (6) for (pi + pj)2  9 m2.

c) We recall the two-particle « completeness relations » for the n-point
functions ([2], p. 288). They express the discontinuity of #
in each channel (I,NBI) when 4~~p~9~~:

d) We give the basic discontinuity formula derived in (3] (Theorem 1 ),

(5) We restrict to the case of one scalar field, with a single mass In in the spectrum.
(6) Except possibly at C. D. D. singularities [2].

Annales de f’lnstitut Henri Poincaré - Section A
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which expresses the discontinuity of any one-loop convolution product
in its convolution channel (I, NBI) when 4 m2  pI  9 m2 :

e) Finally we recall that by « one-particle (resp. two-particle) irreduci-
bility » of a n-point function H in some channel (I, NBI) (and then also
in (NBI, I)) we mean : vanishing of its (analytic) discontinuity DIH in this
channel for pi  4 m2 (resp. pf  9 m2).
Then we are in a position to define n-point functions (4 _ n  6) simul-

taneously irreducible in triplets of two-particle channels.

4. A STRUCTURAL EQUATION
FOR THE FOUR-POINT FUNCTION

4.1. Extracting the one-particle structure

Starting from the four-point function we first extract one-particle sin-
gularities in the three two-particle channels by setting :

where the sum extends to the three circular permutations {i, j, k} of

{ 1, 2, 3 }. As proved in [2], p. 303, is one-particle irreducible
(p. i.) in (12 ; 34), (13 ; 24) and (23 ; 14).
We have obviously :

4.2. Two-particle irreducibility in one channel

Let us define :

Vol. XXVII, n° 3 - 1977.
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We can prove :

PROPOSITION 1. - The four-point function ’(2)~)~ is one-par-

ticle irreducible in the two channels (ik ; j4), (kj ; i4) and two p. i. in (ij ; k4).

Proof - The one-particle irreducibility is obvious. From the basic

discontinuity relations ( 11) and (8) we further get (for 4 m2::; (p; +  9 m2 ) :

From (8) and (12) we also get:

from which follows :

Now using (11) and inserting this result in (13 b), we have :

Then using the Bethe-Salpeter equation (9) achieves the proof of the

two-particle irreducibility of 2 1 4 k in k4 . )

4.3. Two-particle irreducibility in all channels

We define:
n

with k = 1, 2, 3 and also :

Annales de l’lnstitut Henri Poincaré - Section A
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PROPOSITION 2. - The four-point function :

is two-p. i. in the three channels (12 ; 34), (13: 24) and (23 ; 14).

Proof 2014 Since the definition of is symmetrical with respect
to the circular permutations of { 1. 2. 3 !. it is enough to concentrate on
a given channel (ij ; k4).
Then the discontinuity of will obviously vanish for

(pi + p~)2  9m2 if in this region we have :

Proof of. a). - As a straightforward consequence of ( 11 ) we first get :

since both discontinuities of , and 
4 

in

the channel (ij ; k4) are vanishing when (p~ + p)2  9m2.
Now we write :

The last two terms in the right-hand side have no discontinuity in the
channel (ij ; k4) for (pi + p)2  9m2 : this is a consequence of (4) together
with the one-particle irreducibility of . So we get :

Applying (11), we have :

From (12) and (8), we get :

Vol. XXVII, n° 3 - 1977.
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Inserting this result in (16) yields :

Apply the Bethe-Salpeter equation (9) :

Then ( 12) gives :

which is the desired result (to be compared with ( 15)).

Proof of b). - From (11) we get (for 4m2 _ (pi + p)2  9m2) :

J 4
since and have no discontinuity on (ij ; k4).

i k
From (3) (Theorem 1), we know that :

But from (7) and (9) we get, applying (4) :

And finally :

which must be compared with ( 17).

Proof of c). It is a trivial consequence of (4) together with the special

Annales de l’lnstitut Henri Poincaré - Section A
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analyticity properties of 
i 

/ and 
4 

: 

vanishes identically everywhere.
This ends the proof of Proposition 2.

4.4. A structural equation (scalar field)

Let us rewrite the definition ( 14) of # under the form :

Then notice that in view of (13 b) and (9) we have (k = 1, 2, 3) :

Inserting this result in (18), we obtain :

Then the Bethe-Salpeter relation (9) yields :

In the triangle graphs, we can introduce "~iT"" (the four-point
function one-p. i. in all channels) by using (12). We get :

Vol. XXVII, n° 3 - 1977.
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Moreover we can symmetrize this result (where « 4 » still plays a special
role). We obtain :

We shall call this relation a « two-particle structural equation » for the
four-point function. As a matter of fact its various terms can be considered
as rigorous substitutes to partial summations of the Feynman perturbative
series, which only exhibit the « details » of the two-particle structure.

Equation (20) solves completely the problem of two-particle reducti-
bility for the four-point function. In Section 7 we shall give a global ana-
lytic study of its various terms, showing that they exhibit analytic contri-
butions which are less singular than the original four-point function.

4.5. A structural equation (pseudo-scalar field)

For the sake of completeness we give here the structural equation
obtained in the case of an even theory (pseudo-scalar field) [4]. Then all
odd n-point functions occurring in (19) identically vanish and we get :

where the discontinuity of H2)H in each of the channels (12 ; 34),
(13 ; 24) and (23 ; 14) (and their converse) vanishes when the corresponding
squared momentum lies below 16 m2.

5. A STRUCTURAL EQUATION
FOR THE FIVE-POINT FUNCTION

5.1. One-particle structure

We first concentrate on the definition of a function which should be

one-particle irreducible in a given channel (123 ; 45) and in all subchannels,
namely (12 ; 345), (13 ; 245) and (23 ; 145). This is easily done as follows.
Define :

Annales de l’Institut Henri Poincaré - Section A
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where the sum extends to all circular permutations of {1, 2, 3 }. As a
consequence of the analysis made in [2], p. 303, it is easily checked that

~(1)~ is actually one-p. i. in the above mentioned four channels.

5.2. Irreducibility in one subenergy

The method is similar to the one used in Section 4.2. We first define
(k = 1, 2, 3) : 

~ .-

and

PROPOSITION 3. - The five-point function is one-

particle irreducible in the channels (123 ; 45), (ik ; j45) and (kj ; i45), and
two-p. i. in the channel (ij ; k45).

Proof - The one-particle irreducibility follows from the definition. As
for the two-particle irreducibility in (ij ; k45) it is sufficient to prove :

since the proof can be achieved by using the Bethe-Salpeter equation as
in the proof of Proposition 1.
From (11) and (18) we get :

Then we introduce :

As a straightforward calculation shows :

Vol. XXVII, n° 3 - 1977.
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Moreover it has been shown in [2], p. 300, that :

Then (8) and (10) yield :

Inserting this result in (23), we obtain :

which achieves the proof of Proposition 3.

5.3. Two-particle irreducibility in the initial triplet

Let us define (k = 1, 2, 3) :

and

PROPOSITION 4. - The five-point function  is two-p. i. in

the initial triplet (i. e. in the three channels (ij ; k45), k = 1, 2, 3) and one-p. i.
in the channel (123 ; 45).

Proof - We concentrate on the two-particle irreducibility since the

Annales de l’Institut Henri Poincaré - Section A
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one-particle irreducibility is obvious. The method is similar to the one
used in Proposition 2 : it is enough to prove the result in one channel
(ij ; k45). The same arguments than in Proposition 2 then show :

when (p; + p)2  9 m2. The proof of :

requires a separate study. Indeed we have :

and (as a consequence of (4)):

Now using (24) and (11), we obtain :

Then the Bethe-Salpeter equation (9) allows to write :

and in view of (23) we get :

which achieves the proof of Proposition 4 (see (26)).

5.4. A structural equation

We can rewrite the definition (25) as follows :

Vol. XXVII, n° 3 - 1977.
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But we notice that (22 b) yields for k = 1, 2, 3 :

Inserting this result in (27) and applying the Bethe-Salpeter equation (9),
we obtain :

Inserting (12) in the triangle graphs, we obtain :

In Section 7 we shall give an analytic interpretation of this global struc-
tural equation.

6. A STRUCTURAL EQUATION
FOR THE SIX-POINT FUNCTION
OF A PSEUDO-SCALAR FIELD

For simplicity we shall only consider in this section the case of an even
theory (pseudo-scalar field). We consider the channel [ {1, 2, 3 }; { 4, 5, 6 } ]
and label by {f, ~ ~ } (resp. { 1, m, n ~ ) any circular permutation of { 1, 2, 3 }
(resp. {4, 5, 6 }).

6.1 Extraction of the one-particle structure

We first construct a six-point function which is one-p. i. in all channels.
This is performed by using the procedure given in [2], p. 303, namely :

Annales de l’lnstitut Henri Poincaré - Section A



299MANY-PARTICLE STRUCTURE IN GENERAL QUANTUM FIELD THEORY

where the sum extends to circular permutations of { 1, 2, 3 } and -[ 4, 5, 6 }.
However the following functions will be also useful :

In particular we can state :

PROPOSITION 5. - In the corresponding two-particle regions, we have :

Proof - It is a straightforward consequence of the definitions and of
the completeness relations (10).

6.2. Two-particle irreducibility
in the final (or initial) triplet

We define the following six-point functions :

PROPOSITION 6. - 2 1 (resp. ~(1 (2}~ ) is one-p. i. in all

channels and two-p. i. with respect to the initial (resp. final) triplet of chan-
nels, i. e. with respect to (ij ; k456), (ik ; j456) and (kj ; i456) (resp. (123t ; mn),
( 123 m ; In) and ( 123 n ; 1m)).
Vol. XXVII, n° 3 - 1977.
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Proof - For the proof of two-particle irreducibility, it is sufficient to
restrict to a given triplet (say : final) and a given channel (say : (123 n, lm)).
Then it is a consequence of (4), that if (pl +  16 m2 :

From (11) and the definition (32 b), we get :

Then we apply the Bethe-Salpeter equation (9) which in the case of a pseudo-
scalar field reads :

and this achieves the proof of the two-particle irreducibility. The fact

that and are one-p. i. in all channels is straight-

forward from (33) and their definitions.
Finally the two following combinatorial identities will be useful in the

sequel :

PROPOSITION 7. - The definitions (32) are equivalent with the fol’owing
ones : 

1-

Proof - Insert (29) in (32). 
"

6.3. Two-particle irreducibility
in one initial (final) channel

We then come to the definition of a function simultaneously two-p. i.

in the final (resp. initial) triplet and in one channel of the initial (resp. final)
triplet. The next lemma will be necessary :

PROPOSITION 8. - Let ~ be a general six-point function. Then :

Annales de l’Institut Henri Poincaré - Section A



301MANY-PARTICLE STRUCTURE IN GENERAL QUANTUM FIELD THEORY

is two-p. i. in the channel {ij ; k456) if and only if, in the corresponding
two-particle region : 

A similar result holds for any given final channel (123 n ; lm).

Proof Apply the discontinuity formula (11) and the Bethe-Salpeter
equation (33).
Then we are in a position to prove :

PROPOSITION 9. - Define l

Then one-p. i. in all channels,

two-p. i. in the initial (resp. final) triplet and two-p. i. in the channel ( 123 n ; lm)
(resp. (ij ; k456)).

Proof - The one-particle irreducibility in all channels is obvious.

For the two-particle irreducibility in the final triplet of ’"~ (~r~
it is enough to notice that the second term in the right-hand side of (35 b)
has no discontinuity in the two-particle region of any final two-particle
channel : actually this is a consequence of Theorem 2. Then :

when (pl +  16 m2.

The two-particle irreducibility of in the channel (ij ; k456)

requires a little more attention. In view of Proposition 8 it is sufficient to
prove that, if (~ +  16 m~ :

For that purpose we start from (34 b).
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Applying Theorem 2, we first get :

Then from Proposition 5 we can deduce that :

For the last sum in the right-hand side we apply (11) and (4). We obtain :

We can factorize the four-point function :

Now the following relation is easily checked, starting from (32 b) and (30 b) :

Inserting this result in the last bracket of (37) then achieves the proof
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of (36) and therefore of the two-particle irreducibility of  in
(ij ; k456). The argument would go similarly for the corresponding state-

ments on IIB~’~~ n . This ends the proof of Proposition 9.

6.4. Two-particle irreducibility
in one initial and one final channels

We then turn to the definition of a six-point function simultaneously
two-p. i. in one initial channel (ij ; k456) and one final channel ( 123 n ; ~).
For that purpose, we first set :

with k and n fixed.
Then we introduce the new functions :

PROPOSITION 10. one-p. i. in the channels (ijl ; kmn),

(ijm ; kln), (ijn ; klm), (jkn ; ilm), (ikn ; jlm) and two-p. i. in both channels
(ij ; k456) and (123 n ; 1m).

Proof - The one-particle irreducibility property is trivial. For the proof
of two-particle irreducibilities, Proposition 8 insures it is sufficient to check
that, when (pj + pm)2  16 m2 :

and that, when (p~ + p)2  16 m2 :
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By symmetry it is sufficient to prove (40). From (38) we first get :

Applying Theorem 2 and Proposition 5 to the first term on the right-hand
side, we have :

The discontinuity of the last bracket is easily computed through (4) and (11)
and we get : 

r- I

Now the following relation is easy to check from definitions (30) and (38) :

And inserting this result in (41) yields (40) and achieves the proof of Propo-
sition 10.

6.5. The structural equation

We then come to the central part of this section : the definition of a six-

point function being simultaneously two-particle irreducible in any of
the six channels (ij ; k456) and (123 n ; 1m), k and n arbitrary. The latter
is defined by means of the following equation :
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where the various six-point functions involved in the right-hand side have
been defined in the previous subsections.

It will be useful to write (42 a) under the form of a structural equation
for the six-point function : k n

An analytic interpretation of this equation will be given in Section 7. At

present we can prove :

THEOREM 3. 2 2 is one-particle irreducible in all channels

and two-p. i. in both initial and final triplets, i. e. in any of the channels

(ij ; k456) (k = 1, 2, 3) and (123 n ; ~) (n = 4, 5, 6).
Proof - The one-particle irreducibility is obvious. As for the proof

of two-particle irreducibilities it is sufficient to concentrate on one given

initial or final channel : indeed the definition of 2 l 2 is symme-

trical with respect to the circular permutations of each set { 1, 2, 3} and
{4, 5, 6}. We choose for instance (ij ; k456).
From (42 a) we then get (in the region (pi + p)2  16 m2) :

Here we have used (4), the irreducibility properties of the functions defined
in previous subsections, and Theorem 2. From Proposition 5 and the dis-
continuity formula (11), we then obtain :
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By using (29) and (30) this can be rewritten as follows :

Now using the definitions (35 b) and (39), and taking into account the Bethe-
Salpeter equation (33), this can be rewritten :

We then apply (34 b). This yields :

And inserting (38) in this result proves the vanishing of A~~2) 2 in
the region (p; +  16 m2, q. e. d. 1

7. ANALYTIC INTERPRETATION
OF STRUCTURAL EQUATIONS

7.I . Threshold properties

Before going further let us first summarize the various two-particle
structural equations derived above :

i) n = 4, scalar field :
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ii) n = 4, pseudo-scalar field :

iii) n = 5, scalar field :

iv) n = 6, pseudo-scalar field :

The threshold properties of the various functions involved in the right-
hand side of these equations are readily obtained by applying Theorems 1
and 2 and taking into account the irreducibility properties of each vertex
function. i ~ 4
As a typical example, let us consider : ~ 2 2 . 5 . In the

6

channels (ij; k456) and (123 ; 456) its thresholds are obviously the same
as those of the original six-point function, namely 4 m2 and 9 m2. The thres-
holds in (jk ; i456) and (ki; j456) are given by (4) since the latter channels

are transverse to (ij ; k456) : we get 16 m2 since ~7~ (2~ is

one-p. i. in all channels. As for (123 t; mn) (t = 4, 5~ 6), these are sub-
channels of (~j ; k456) and Theorem 2 can be applied, leading to 16 m2.
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Similar results can be obtained for each individual term of (20), (28)
and (42) and have been summarized on the following table

Thresholds for the structural parts of 
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7.2. Discussion and outlook

7.2.1. GLOBAL ANALYTICITY PROPERTIES

It is important to recall that the determination of the analyticity domain
of a given n-point function is crucially depending on the knowledge of
its threshold masses in the various channels. Actually the primitive n-point
domain is the union of a fixed set of large off-shell domains (the tubes)
with a set of complex neighbourhoods of « coincidence regions » which
are « bridges » between the previous domains but depend crucially on the
thresholds, namely :

Thus if two n-point functions H(n) and H’~ have the respective set of
thresholds { MI }, { M~ }, MI  M~, the corresponding primitive domains Dn
and D~ will be (star-shaped) domains in c4(n-1) with Dn c D~ and the
holomorphy envelope of D~ will be (strictly) larger than the one of Dn.
By looking back at the threshold tables given above, we can then conclude

that each structural equation (20), (28) and (42) performs a global decom-
position of the physical n-point function H(n) in several « structural parts »,
each of which has better analyticity properties than 
Vol. XXVII, n° 3 - 1977.
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Let us for instance consider the four-point pseudo-scalar case on the
mass-shell {k2I = m2, 1  i  4 }. We see that in the Mandelstam varia-
bles S12 = (k1 + k ~)2, 523 = (k2 + ~3)~ S31 = (k3 + k1)2, the four-point
function ~ ~~ appears in (20) as the sum of four analytic functions.

One of them only presents the « inelastic » cuts

(~12~ S 23’ s~i &#x3E; 16 as real boundary of its analyticity domain, while
each of the others ’ 2014~j2014~j2014 ~ presents a single two-particle
cut (sij &#x3E; 4 m2) and two inelastic cuts (Sjk’ 16 m2).

It is hoped that the classical global techniques of analytic completion
(in particular the Jost-Lehmann-Dyson result [5]) should substantially
improve the analyticity domain of H(n) (n = 4, 5, 6) when applied to each
of its structural parts.

In particular it is a well-known fact that the obstruction to the proof
of the crossing property for 2 - n - 2 amplitudes (n &#x3E; 4) comes from the
too low values of the thresholds there involved. Then it may be hoped
that (at least for n  6) crossing domains could be obtained for each
individual term of an appropriate structural equation.

Another interesting global feature appears with square convolution

products Such a four-point function is analytic in a domain

which can in principle be obtained from the knowledge of the three-point
domain D(3) and from analysing the Landau singularities of the associated
Feynman diagram. More generally it appears that three classes of contri-
butions can be distinguished in the above derived structural equations :

i) a « leading term » which has the best irreducibility properties and

involves no convolution. This is in (20), 2 1 5 4 in (28)

and 2 2 in (42). It is in the study of analyticity domains of such

terms that global completion techniques should be the most powerful.
ii) « quasi-perturbative » terms : the latter are G-convolution products

whose vertex functions are nv-point functions, with nv"  n. These are

convolution-products corresponding to trees, squares (n = 4, 5, 6) and
triangles (n = 5, 6). For such terms, rather large analyticity domains and
the emergence of Landau singularities may still be expected.

iii) « mixed » terms, i. e. having some irreducibility properties and

involving convolutions. The various 21 of (20),

k 1 5 
of (-’~~. 

of (42) belong to the latter class. On the one hand, their situation with res-
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pect to analytic completion are moderately better than those of the original
n-point functions. On other hand they should also be investigated for
their convolution structure, which actually suggests iterative expansion
properties. Typically : 1 2 gives rise to the infinite series

=@~’"=@=
Finally let us note that as a consequence of their convolution structure,

both terms of the second and third type should be also studied from the
point of view of meromorphic extensions in second sheets across the two-
particle cut of their respective convolution channels.
A first step in this direction had been taken in [4] on the mass shell for

the four-point function of a pseudo-scalar field. The generalization of this
result is at present under study.

7.2.2. LOCAL ANALYTICITY PROPERTIES

Let us now concentrate on the local interpretation of the above structural
equations in the neighbourhood of the lowest energy strip of the physical
region of the 2 -~ 3 and (pseudo-scalar) 3 -~ 3 scattering amplitudes,
namely :

A simple model of both geometrical situations is also provided by the
four-point function in the (unphysical) region :

It is actually in view of further applications to the mass-shell regions 
and that we have been led to write structural equations in which a
triplet { 1, 2, 3 } plays a special role.

First recall that the local analytic study of a n-point function H(n) in a
neighbourhood of some given point p necessitates to apply the local edge-
of-the-wedge theorem to any cluster of tubes exclusively separated by
hyperplanes qi = 0, whose corresponding partial sum pI lie below the asso-
ciated threshold MI.

H(n) is then analytically extended in the intersection of a complex neigh-
bourhood of p with the convex hull of the given cluster of tubes (’).

(~) Actually the intersection of the tubes with a complex neighbourhood of p should
be performed before taking the convex hull ; however here it can be proved that both orders
are equivalent [7].
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When p lies on the mass-shell, one of these clusters is distinguished as
the one in which the boundary values of coincide with the chronological
prescription. For n = 4 two clusters of sixteen tubes can then be found,
which leads to two opposite local tubes : 

Then by using the complex Lorentz invariance of the analyticity domain
of H(4) (or by another argument given in [6]), it has been proved that H(4)
is analytic in a cut neighbourhood of the physical region.

In the present context, it is clear that an equivalent property is satisfied,
mutatis mutandis, for the respective leading terms of (20), (28) and (42).
Indeed it is easy to check that above any p E (n = 4, 5, 6) the convex
hulls of the involved clusters of tubes are : qi 1 + q 2 + 
Then the same argument of complex Lorentz invariance shows that

~2)2014 4 ~ resp. 2 1 4 . 2 2 1 is locally analytic in

a cut neighbourhood of ~(4) (resp. ~(5), ~(6») with only one cut

(~i + P2 + P3)~ = 9 m’ + p, p &#x3E; 0.

Analogous considerations show that, for k = 1, 2, 3. ] -(i)2014(~lY" ~’

and also B 
are locally analytic in four clusters of tubes

having as corresponding convex hulls: {~1+~2+~3~ ~~ q~ + 
Moreover since each general n-point function is analytic in the complex
Lorentz completion of the n-point primitive domain [8], the above func-
tions can be continued to the corresponding local extended tubes in two
vectors [9].

At this point it is interesting to compare these results with those obtained
in [7] in the framework of the linear program. There it was found that in
a complex neighbourhood of the 2 -~ 3 physical region, the five-point
function H(5) can be decomposed (up to an ambiguity which is analytic
in the local tubes qi + q2 + q3 E as a sum of three auxiliary functions
F k(k = 1, 2, 3), each of which respectively enjoys the local analyticity

properties described above for 1 2 5 and 
(k = 1, 2, 3).
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As a matter of fact, the structural equation (28) can be rewritten :

Then it is clear that (up to 2 1 5 4 which belongs to the ambi-

guity) (43) provides us with a global decomposition of the five-point func-
tion of the left-hand side in terms of three analytic functions whose local
analyticity properties on the mass-shall region ~{ 5~ are exactly those of a
« relativistic decomposition » in the sense of [7].
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APPENDIX

COMPLEMENTS
ON THE PROOF OF THEOREM 1

1. Use of Stokes Formula

We give a full account of the central formula :

In the argument k = (kJ, and p~ will be kept fixed and for simplicity we shall write :

Then, due to the definition of the left-hand side of (A-I) we are led to prove that :

for some integrable function p and some quantity o’(s) tending to zero with s. Let us call
~ = {(kf, ~) u° + iv° E ~± }. We have to shift the contour (1+ - 1_)
to (y u y’) in the complex space p? = Re k# will be kept fixed throughout this
shifting and the situation will thus take place in !R~o ,;o ~ and be illustrated by Fig. 1 and 2.

It is convenient to consider 1+ (resp. L) as the oriented « broken » line ( - too, d+ c+ a+ b+, + 
(resp. ( - too, c _ d _ b _ a _, + ioo)). Note that on Fig. 1, only the upper halves of L+ and L-
are represented.
The compact cycle y = (a+ b +a- b-) is made up of the following oriented four pieces :

the two lines (a+b+) E 1+, (a_b_) E ~ and the two segments [b+a_], [b_a+]. y’ is similarly
defined and the orientations of y, y’ are indicated on Fig. 2.

We shall also use a segment [/L+/.-], whose end-points ..1+, ~_ respectively belong to
1+,1- (with the same value of Im t°) and will tend simultaneously to + too.
To prove (A-2), let us introduce a closed differential form w+ = fdt0 + g +dk? in the

region A+ which is the intersection of the analyticity domain of f with the set

g+ is defined by the following formula :

Here denotes an arbitrary fixed point in the t°-upper plane such that the set

belongs to A+, and F(t( , t°) is a path of the t0-plane with end-points t°, t° lying inside A +
(in every section k° - cte, s). These conditions ensure that g+ is analytic in A+
and that úJ+ is closed. Now the contour (~a~+~+) (made up with the above segments)
encloses a two-dimensional piece of surface lying in a+, so that Stokes formula can be
applied to the integral of cv+ on this contour and yields :

Annales de l’Institut Henri Poincaré - Section A



315MANY-PARTICLE STRUCTURE IN GENERAL QUANTUM FIELD THEORY

a) Projection onto the plane VO)
b) Projection onto the plane u°) (cycle y only).

Then in the limit À + -+ foo we get:

with p+ integrable and bounded.
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The inequality in (A-3) is a consequence of the uniform boundedness and t-integrability

of g + entailed by the (f, to) integrability of f and and from the relation
B okJ

dk° - Cte x ~dt0 on [b+a-] ] and [03BB-03BB+].
Making a similar argument for the intermediate (resp. lower) contour (d-c+a+b-)

(resp. ( - too, d+ c+, - i20)) with an appropriate differential form co(resp. o)_), we obtain
inequalities similar to (A-3). Putting them together obviously yields (A-2), and then (A-i)
through f-integration.

2. Evaluation in the limit £ --~ 0

Let us come back to the notation ka = t. On the four pieces of y, four different branches
of the analytic function HT are integrated ; we denote them by H~ :t’ with the left (resp. right)
sign ± referring to the sign of q003B1 + q°1 (resp. In the limit £ - 0, the cycle y shrinks
to a fourfold-covering of a linear segment [a, b] (parallel to the p°-axis) (see Fig. 2 b), and
the right-hand side of (A-I) tends to :

Note that one can choose a = - = and that on [ab], q° ( _ - q°, = is fixed.

But in view of the tree structure of HT, which implies : Hl I = F) ~Ho ~(k~)~ -1F +, the
latter integral can be rewritten :

Here we have introduced the discontinuity functions :

We note that the support of is in the set

(with pJ1 + pJ2 = pJ ~ V£ ) : this entails that the integration over the set [R3 x [ab] in (A-4)
is restricted to a compact set. The proof of Theorem 1 is now complete in the case of conti-
nuous boundary values.

In the case when lim F~ and lim F~ are distributions, one can use the
lq9-qj21-0 -

following standard argument. A regularized form = F103C6[H(2)0]-1 F203C62 of HT is used,
where ([J2 E ~~pa _ p~2~(~ being the space of Schwartz test functions), and

F~ = Fj * ([Jj ( j = 1, 2). For every choice of ~p2, formula (3) can be derived. Then in
the limit ~p~ - 5, both sides of (3) have a limit as distributions in pj (the right-hand side

being a well-defined convolution of distributions, in view of the support properties of
Ai~2).

A similar argument holds for the distribution case in theorem 2.

3. The « cell version » of equation (3)

As in the case of the discontinuity formula ( 11) (derived in [3], Section II . 3) it is possible
to give a detailed « cell version » of equation (3). Indeed if k e F,,, k E 2 .. with EX’ E S(J),
/7" E S(NBJ) (S(X) is, the set of cells of X), the associated points J1, kJ2, kLl, L2 belong
respectively to the tubes li Y’2’ ~~Z . Here i7[ (resp. i7l’) is the canonical image
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of the cell [/’ (resp. !7") in S(Jk) (resp. S(Lk», (k = 1, 2). One easily checks that for
J x e GJ, x ø !/", and (for instance) q0J2 = - q0J1 &#x3E; 0, qLZ = - &#x3E; 0, (3) takes the
following form :

In particular, this gives the precise « boundary value version » of (3) in the limit when all
variables ki become real (from the directions of ~,~. x ø 9’,,).
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