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31.

The generalized three circle-
and other convexity theorems with application

to the construction of envelopes of holomorphy

H. J. BORCHERS

Institut für Theoretische Physik, Universitat Gottingen

Ann. Inst. Henri Poincaré,

Vol. XXVII, n° 1, 1977,

Section A :

Physique théorique.

SUMMARY. - If G1 c Cn and H1 c c"" are natural domains and if

Go  G1 and Ho  Hi are domains then we will construct the envelope
of holomorphy of Go x H1 U G1 x Ho. On the way we will prove convexity
theorems for the logarithms of the moduli of holomorphic functions.
The connection between the convexity theorems and the construction of
envelopes of holomorphy will be established by technics of Hilbert-spaces
of holomorphic functions.

RESUME. - Si G1 c Cn et H1 c C"’ sont des domaines naturels d’holo-
morphie et si Go et Ho sont des domaines respectivement contenus dans
G1 et Hi, on construit Fenveloppe d’holomorphie de Go x Hi u G1 x Ho.
On démontre simultanément des théorèmes de convexité pour les logarithmes
des modules de fonctions holomorphes. La relation entre les théorèmes
de convexité et la construction des enveloppes d’holomorphie est établie
au moyen de techniques d’espaces de Hilbert de fonctions holomorphes.

I. INTRODUCTION

In some examples of constructive field theory the euclidean version of
this theory has been used, and in particular the measure theoretic version
of it. These examples have revived the interest in this field, in particular
in the question whether every Wightman field theory in the euclidean region
can be represented by a measure or whether this is a particularity of special
Annales de l’Institut Henri Poincaré - Section A - Vol. XXVII, nO 1 - 1977. 3



32 H. J. BORCHERS

models. Lately J. Yngvason and the author [1] gave necessary and sufficient
condition that a Wightman field theory has such a representation. These
conditions are given in terms of growth estimates of the Wightman functions
at Schwinger points, these are points where the time co-ordinates are purely
imaginary and the space components are real. One gets the Wightman
functions at these points by analytic continuation starting from the real
(Minkowski) region.
The real region is also the physical space where the axioms of field theory

are valid. Therefore the proof of estimates in the complex has to start from
the reals where one can get estimates from the assumptions of the theory.
Afterwards methods of analytic completion have to be used in order to
carry these estimates into the complex.
The basic estimates follow usually from positivity conditions of the theory

which are consequences of the probability interpretation of quantum mecha-
nics. These positivity conditions do allow the use Cauchy-Schwarz inequality
and in many cases one obtains estimates on domains of the form

where G0 ~ G1 c en and Ho  Since the same estimate holds

in the envelope of holomorphy one would like to know the answer for this
problem.

In all examples which have been solved so far the answer has the form
1

x where G~, resp. Hl are interpolating domains of the pair
~==0

Go, G1 resp. Ho, It is the aim of this paper to prove that the answer

to the above problem is always of this form provided the pairs Go, G1
and Ho, Hi have some properties which will be defined in the next section.

In the next section we give a characterization of these pairs and define
an interpolating family of domains for such pairs. Furthermore we show
that these definitions have some universal properties. From these properties
we derive in section 3 a generalization of the Hadamard three circle theorem
and other convexity results for holomorphic functions. In section 4 we will
treat Hilbert-spaces of analytic functions, which we need in section 5 as a
tool for converting the convexity theorems into theorems of envelopes of

holomorphy.

II. INTERPOLATING FAMILIES

OF DOMAINS OF HOLOMORPHY

We start our investigations with some notations and remarks.

11.1. NOTATIONS. - Let G be a domain in en then we denote by

a) A(G) the set of functions which are holomorphic in G. A(G) is furnished

Annales de l’ Institut Henri Poincaré - Section A



33THE GENERALIZED THREE CIRCLE- AND OTHER CONVEXITY THEOREMS

with the topology of uniform convergence on compact subsets of G. With
this topology A(G) is a nuclear locally convex topological vector space.

b) P(G) the set of functions which are pluri-subharmonic on G.

c) Let F  P(G) be a family of pluri-subharmonic functions, such that
the elements of F are uniformly bounded on every compact set of G, then
there exists a pluri-subharmonic majorant p(z, F) E P(G).
The function p(z) = f E F ~ will not be upper semi-continuous

is general, therefore we put

(see e. g. [3]).
d) Let M  C" be any set then we denote by M the closure of M and

by M° the interior points of M.
With these notations we introduce the following concepts.

11.2. DEFINITIONS. 2014 1) Assume G1 c en such that G1 is a domain
of holomorphy. We call Go, G1 an Hadamard pair and write Go 8 G1
if the following conditions are fulfilled :

a) 
b) For every connected component r of G1 we have Go n 
c) To every point G1 BGo and every neighbourhood U of zo exists a

plurisubharmonic function p E P(G1) with the properties
i) p(z)  1 on G1,
ii) P(z) ~ 0 for z e Go,
iii) there exists a point zi E U (the neighbourhood of Zo) with p(zl) &#x3E; 0.

2) Let G1 be a domain of holomorphy and G1, denote by F  P(G1)
the set of pluri-subharmonic functions fulfilling the condition c) i) and
c) ii) of definition 1) then this family contains a pluri-subharmonic majorant
which we denote by pm(z, Go, G 1).

3) Let C" be a domain of holomorphy and let Go 8 G1. Frurthe-
more Iet pm(z) be the pluri-subharmonic majorant Go, Gi) then follows
(since f (z) = 0 is pluri-subharmonic) from a) and c) that

We define for 0  £  1

All the G~ are domains of holomorphy [2] and they form an interpolating
family of domains because of the maximum principle.

It is our aim to study this interpolating family in some detail. We want to
show that this definition has some universal properties, and that for this

Vol. XXVII, nO 1 - 1977.



34 H. J. BORCHERS

family and ananalogon of the Hadamard three circle theorem is fulfilled.
We start with some preparations.

11.3. LEMMA. - Let Gi+11 c G1, i = 1, 2, ..., be domains of holo-

morphy. In addition let Go+ 1 c Go be such that = 1,2,...
and Go 8 G 1. IfG~ are the interpolating domains of Go and G then follows

If furthermore Go = Go and ~Gi1 = G1 holds, then follows for every

Proof - Let be the pluri-subharmonic majorant belonging to the

pair Go, G~ (Def. 11.2.2) then we know that is defined on G1. From
G i+ 1 ~ Gi and the maximality of follows

This implies by definition of G~, the relation

For the second statement we remark that is a decreasing sequence.
Thus

is a pluri-subharmonic function in the region where it is deiined. From

~Gi1 = G1 follows that /(z) is defined on G1 and that f(z)  I holds
i

because it is true for all 7~(~)’ = Go follows furthermore the
t

equation /(z) = 0 for z E Go. Hence we get by maximality of pm(z) the
inequality

which implies together with the above inequality the relation (z) = pm(z).
In terms of domains this means

In order to derive further consequences of the definition of the family
of interpolating domains we need some preparations. The last lemma sug-
gest that it is sufficient to look at bounded domains. So the first step would
be to show that we can approximate Go and G1 by bounded domains. But

Annales de l’Institut Henri Poincae - Section A



35THE GENERALIZED THREE CIRCLE- AND OTHER CONVEXITY THEOREMS

before doing this we want to show that Go is a Runge domain in G1 (We say
Go is a Runge domain in G1 if A(G1) is dense in A(Go)).

11.4. LEMMA. - Let Go ~ G1 then follows that Go is a Runge domain in Gi.
But the converse is not true in general.

Proof - Let us first show the second statement. Assume C1
and Go is the unit-circle then it is clear that Go is a Runge domain in C1.

Let now DR be the circle of radius R &#x3E; 1 then D1  DR, since the conditions
of definition 11.2 are obviously fulfilled by the function (log R) -1 log 
Using the Hadamard three circle theorem, which also holds for subharmonic
functions one concludes

From this follows that

which implies by lemma 11.3 that Di, e1 is not an Hadamard pair.
In order to prove the first part, we have to show that the A(G1)-hull of

every compact set in Go lies in Go. Let d(z) be a distance in en depending
only on zj I and K c Go be a compact set of Go then follows :

Let now E be such that

c) = I where d~, denotes the Lebesgue measure on ~n, and

Denote furthermore as usual

Now, the function Go, is pluri-subharmonic
on G03B4/21. From construction follows p(z) = 0 for z ~ G03B4/20 and p(z) &#x3E; 0

forz E Since K is a compact set in it follows that the 

hull of K stays in Go. But the and the hull coincide (see
e. g. [6], theorem 4. 3.4) which implies that the hull of K is compact
in Go. On the other hand it is well known that Gl2 is a Runge domain in
Gi, which implies that A(G1) is dense in and hence the A(G1) hull
of K is compact in Go, which proves the lemma.

Vol. XXVII, nO 1 - 1977.



36 H. J. BORCHERS

After this preparation we show :

11.5. LEMMA. - Let Go 8 G1, then we can find increasing sequences of
domains Go, = 1, 2, ... with the properties:

a) G~ and Go is relatively compact in Gi,
b) c Go such that = Go and Go is relatively compact

i

in Go, 
;

c) G~+ 1 c G1 such that = G1 and G~ is relatively compact
i

in G1, 
:

d) Go and G~ are the interior points of their closure and these closures
are all A(G1) convex.

According to well known theorems we can find an increasing
sequence of domains G 1 fulfilling the condition c) and d) of the lemma
(take for instance analytic poly-hedrons, see e. g. [5], th. II.6.6). Without
loss of generality we might assume G~ n Go = (~. Let now K be a
compact set in and K its A(Gi) hull, then follows K c Go since Go is a
Runge domain in G1 (Lemma 11.4) and also K c Gi since G~ is a Runge
domain in G1 by construction. Hence K c ri. Now (hi)E is relatively
compact in ri and also A(G1) convex. Hence we can find a domain Go
such that

such that its closure is A( G 1)-convex and it is the interior of its closure.

Since ~0393i = Go n G1 = Go follows that all conditions of the lemma are
fulfilled.

11.6. REMARK. - Since the closure of Go is A(G1) convex it follows

immediately that G~. This lemma together with lemma 11.3 does
allow to reduce all further investigations to bounded domains which are
relatively compact in G1 and also A(G1) convex, this means to such
domains G for which the bounded analytic functions are dense in A(G).
Our next aim will be the investigation and characterization of the inter-

polating family of such domains.

11.7. LEMMA. - Let G0  G1 ~ en, H0 H H1 ~ em and let Gl resp. Hl
be their interpolating families. Assume

is such that

Annales de l’Institut Henri Poincaré - Section A



37THE GENERALIZED THREE CIRCLE- AND OTHER CONVEXITY THEOREMS

then follows

Proof - Let Ho, Hi) be the maximal pluri-subharmonic function
belonging to Ho and Hi then follows that Ho, Hi) is pluri-subhar-
monic on G1 and bounded by 1. Since F(Go) c Ho it follows that 
Ho, Hi) vanishes on Go. This implies

and hence we get for z E G~,, the inequality

which implies F(z) E H~.
First we will investigate absolutely convex domains. The reason for this

is that we need the following result in the next section. Recall a set G is
called absolutely convex if it is convex in the usual sense and if it contains
with z also ~,z with ~, ~ I ~ 1 .

11.8. LEMMA. - Let G0 ~ G1 ~ en be bounded absolutely convex

domains then we have Go ~ G1.
H

For a E en denote by (a, z) = and by
i= 1

then we have

In addition the function pm(z, Go, Gi) is continuous on G1.
If we define for z E aGo (the boundary of Go) the function

we have also

Proof - Since Go is absolutely convex it follows that every point in the
complement of Go is separated from Go by a linear functional. Since G1
is bounded it follows that this functional is bounded on G1 which implies

Go C G,.
Let now f() be a bounded non-negative pluri-subharmonic function on

G1 and 0 with G1 then g(w) = f (w . z) is sub-harmonic in w E C1.

Vol. XXVII, n° 1 - 1977.



38 H. J. BORCHERS

Define = sup { ! w ~ ; wzo E = 0, 1 and = sup {g(w);
I w I  then we get by the Hadamard three circle theorem :

If we take in particular = Go, G1) then follows mo(zo, f ) = 0,
f ) = 1 and hence

From this we get by maximality of Go, G1)wz0 E Gi exactly if

Using the fact that Go and G1 are absolutely convex then we get from this
the first characterization of G~,.

If we choose zo E oGo then we have no(zo) = 1 and nl(zo) = r(zo) and we
get the second characterization.

Let now z ~ II be a norm on ~n. It follows from the convexity that z ~ II
is a continuous function on ~G1 and oGo. Hence r(z) which is the quotient
of these function is continuous. From the second definition of G~, and from

’ 

pm(z, Go, Gi) = follows the continuity of pm.
As a next step let us drop the assumption that Go and G1 are bounded,

but, assume further on that they are absolutely convex.

11.9. LEMMA. - Let G0 ~ G1 c en be absolutely convex domains.

Let L1 be the maximal linear subspace contained in G1, then Go ~ G1 if
and only if Go.

Since L1 is also absolutely convex it is isomorphic to some em. Hence
we can write m + m’ = n, and 

with Go, G1 bounded and absolutely convex. If G~ are their interpolating
domains then we obtain G~ = em x G~.

Proof - Since G1 is absolutely convex follows from the bi-polar-theorem
that G1 is a cylinder this means Gi + G 1. Since en is finite dimensional
we can write Gi = em x Gi with em isomorphic to L1. Therefore if L1 c Go
then follows G~ and the structure of G~, from the previous lemma.
If we assume on the other hand G0 ~ G1 then follows from the argument
given in the proof of Lemma 11.4 that 

In the next step we are turning to more general domains.

11.10. LEMMA. - Let G c en be a domain of holomorphy and let

Go  G1 C G be such that

a) Go is relatively compact in G1 and G1 is relatively compact in G.

b) Both domains coincide with the interior of their closures.

Annales de l’Institut Henri Poincaré - Section A



39THE GENERALIZED THREE CIRCLE- AND OTHER CONVEXITY THEOREMS

c) Go and G1 are A(G) convex.
d) Each component of G1 contains a component of Go.
Then we have G0 ~ G1.
If we define for every f E A(G)

then we obtain

Proof - Since Go and G1 are compact sets in G its follows that M( f )
and m( f ) are finite numbers. Since Go is A(G) convex there exists for every
zo eGBGo a function f E A(G) with I &#x3E; m( f).
Hence we have G0 ~ G1.
Every E A(G) maps Go into the circle w ~ I  m( f ) and G1 into the

circle w ~ I  M( f ). Hence we get from Lemma IL7 the inequality

If we define for every f with M( f ) # m( f ) the pluri-subharmonic func-
tion

and by q(z) the pluri-subharmonic majorant of then we get from
the above argument

In order to show that the two functions are equal we make use

of an argument due to H. Bremermann [4] showing that the functions
Å log &#x3E; 0 are total in P(G) if G is a domain of holomorphy.
If we denote by Dr the circle of radius r in C1 then the envelope of holo-
morphy of Go x D1 U G1 x D1/e is given by

If F(z, w) E A(H) then it can be written as F(z, w) = The radius
of convergence r(z) is given by

If log 2014 denotes the upper semi-continuous majorant then we have

and ~(~ ~o. ~) is the pluri-subharmonic majorant of all the log 20142014~)
Vol. XXVII, n~ 1 -1977.



40 H. J. BORCHERS

Since G1 is A(G) convex we obtain a dense set of function

by choosing E A(G).
Since Go x D1 ~ H and G1 x H follows

and consequently we get from previous inequality

which means

Since this holds for all F we get

Since the majorant of the log 1 03C1(z) coincides with p .
This shows the lemma.
The last lemma gives us for the special situation some more information.

We obtain

11.11. COROLLARY. - Under the assumptions of Lemma 11.10 we get for
a~~,~ 1 :

a) G~ = (G;)o and G~ is A(G) convex,
b) G~, is relatively compact in G1, and
c) Go is relatively compact in G~
d) if we extend pm(z, Go, G1) to Gi by putting it equal to one on oG1,

then Go, G 1) is continuous on G1.

Proof - Let us first show statement b).
Since Go is relatively compact in G1 follows that for every f E A(G) we

have m( f ) ~ M( f) except for the constant function. Therefore for f not
constant the function

is well defined, pluri-subharmonic and continuous. pm(z, Go, Gi) is the

pluri-subharmonic majorant of the p(z, f ) on G1. Since G1 is A(G)-convex
there exists for every - zo E aG1 a function f with p(zo, /)&#x3E;!2014-. Since
f is continuous there exists a neighbourhood of zo such that

p(z, f ) &#x3E; 1 - 13 for z E Since aG is compact there exists a finite cover-

Annales de l’Institut Henri Poincaré - Section A



41THE GENERALIZED THREE CIRCLE- AND OTHER CONVEXITY THEOREMS

ing i = 1, ..., n of aG1 such that &#x3E; 1 - 8 in 

~ ~ 

i

Choosing 13  1 - A we see that G~, is relatively compact in G1. We also
see that Go, G 1) is continuous at the boundary of G1.

Since is continuous follows that the set { z; j9(~/) ~ /L} is closed.
Hence follows that

is a closed compact A(G) convex set. Let À &#x3E; 0 be fixed and 8 &#x3E; 0 then we
can find to every point Zo E again a function f (z) with p(zo, f ) &#x3E; À - 8.

Therefore we find by compactness of Fi and the same arguments as above

Since G~ = r~ follows from this G~,. is relatively compact in G~, for £’  ~,
but from this follows that pm(z, Go, G1) is a continuous function on Gi
and by the above argument also in This proves d). The other statements
of Corollary are easy consequences of this.

11.12. COROLLARY. - Under the assumption of Lemma 11.10 we get
for 0 6 £1  ~,2  1

b) If we denote Ho = and G~~ then we have

Proof. Statement a) is obtained by applying Lemma II.10 to the results
of Corollary 11.11. The proof of b) will be obtained in three steps.

First step. Let ~,1 = 0, ~,2 # 1, then we find :

Proof. - We have 1 03BB pm(z, Go, Go, Hi) in Hi
Since the right hand-side is the pluri-subharmonic majorant.
Define the function on Gi by

Since the functions on the right hand-side are taking both the value ~2 on
the boundary of H2 follows that f (z) is continuous. Furthermore we know
that f(z) is pluri-subharmonic with the possible exception of the points in

But we want to show that it is also pluri-subharmonic in these points.
Let zo E oR1 and w E en such that zo + 7:~ c G1 for I ~ 1 (Such w exist

Vol. XXVII, no 1 - 1977.



42 H. J. BORCHERS

since G).2 is relatively compact in G1). By the first inequality and the
definition of f (z) we pm(z, Go, Gi). Hence we get

This shows Ie¿) is pluri-subharmonic in G1 and consequently

which implies £~p~(z, Go, H1) ~ Go, Gi) on Hi and hence

Second step. - Let ~,1 ~ 1 and ~,2 = 1 and define

then we obtain

Proof. - By maximality of we obtain

Define again a function f () by :

We obtain again by the continuity of the two functions p~ that also f(z)
is a continuous function and takes the values ~,1 on In order to show
that f(¿) is pluri-subharmonic we only have to consider points of aHo.
We remark again that .f (z_) &#x3E; pm(z, Go, Gi) and therefore we obtain as
before /(z) is pluri-subharmonic. Therefore we find f(z) = Go, G1)
which is equivalent to the statement we are looking for.
Last step. - By the second step we have for 03BB1 # 1

From this follows that is a member of the interpolating family of the
pair Gi. So we can use step one for the tripel G1 and obtain

Annales de l’Institut Henri Poincaré - Section A



43THE GENERALIZED THREE CIRCLE- AND OTHER CONVEXITY THEOREMS

Using the definition of Hu and of qm(z, ~,1) we obtain the desired result.
Next we want to generalize the result of the last corollary to arbitrary

Hadamard pairs of domains. As a preparation we prove first the following.

II.13. LEMMA. - Let en be a domain of holomorphy and G1.
Let 0  À1  1 then we obtain G~i and Gi~ 8 G1.
Proof - The first statement is trivial since Go 8 G1. Since we know the

existence of the function Go, Gi) follows that the conditions b) and c)
of Definition II. 2 are fulfilled. It remains to show condition a) i. e. we have to
show that G~i == { G~ n G1 ~° holds. Assume the contrary, then exists
a point G1}0 which does not belong to Since Zo is an
interior point of an open set exists a neighbourhood U of this point which
belongs to the same open set. The points of U which do not belong to GÀ1
form a relatively closed set without interior points. Therefore we can find
~ E C" such that ~o + and such that the set

has Lebesgue measure zero. Since Go, G1)  ~,1 for z E follows

This proves the lemma. 
81

Now we are prepared for the main result of this section

11.14. THEOREM. Let en be a domain of holomorphy and assume

Go 8 G1. If we choose

then we have If we denote Ho = 1 
and H 1 = then we

find the relation

The first statement follows directly from Lemma 11.13. The
second statement follows from Corollary 11.12 and the approximation
results Lemma 11.3 and 11.5.

III. THE GENERALIZED THREE CIRCLE-
AND OTHER CONVEXITY THEOREMS

In this section we want to show that the definition of the interpolating
domains lead to a series of estimates for holomorphic functions. They are
of the type of the Hadamard three circle theorem and its generalization
Vol. XXVII, no 1 - 1977.



44 H. J. BORCHERS

to Reinhardt domains. All these results are consequences of the maximality
of the function Go, G1) which has as geometric version the Theo-
rem 11.14.
We start with the correspondence of the three circle theorem.

111.1. THEOREM. Let en be a domain of holomorphy and let

G1 and let G~, be their interpolating family of domains.
For p(z) E P(Gi) denote by m(~ p) = sup { p(z) ; z e 

then follows that ~(~, p) is a convex function of A.
The usual estimate for holomorphic functions are obtained by taking
= log 

Proof. - If = oo then this is true also for all £’ &#x3E; ~. Hence there
exists Ào with m(~,) = oo for /!. &#x3E; Ào and m(a~) for À  Ào. Let now
~,1  ~,2  Ào and assume  ~(~2)’ Under these conditions is

a pluri-subharmonic function with f(z) 6 1 for z E Gl2 and ,f(z) 6 0
for z E Gl1 and we get

For 03BB1  03BB  03BB2 we obtain by Theorem 11.14

and hence by definition of f(

which proves that is a convex function of A. Since ~(/L) increases
with À follows that is convex in h in all situations.

This theorem allows some converse.

111.2. LEMMA. - Let G1 c en be a domain of holomorphy and assume

Go ~ G1 with Go ~ G1. Let p(z) E P(G1) be such that p(z) 6 1 for z e G1
and p(z)  0 for z E Go. Define for 0  A  1

and for f e P(Gi)

Assume for every f E P(G1) the expression is a convex function of A,
then follows H~ = G~.
Proof. - Since Go, G1) ~ 1 for ze G1 and = 0 for z E Go follows

by assumption

Annales de l’Institut Henri Poincaré - Section A



45THE GENERALIZED THREE CIRCLE- AND OTHER CONVEXITY THEOREMS

and consequently G~,. But using Theorem 111.1 we get

and hence H~, which proves the lemma.
Our next aim is to discuss convexity theorems on direct products of domains.

We start with some preparation concerning absolutely convex domains.

III.3. LEMMA. - Let G0 ~ G 1 C en and H0 ~ H1 c em be bounded
absolutely convex domains. Assume Ln and Lm are injective complex linear
mappings of en resp. em into ~N and denote for x, y E ~N the sum

then we have with the abbreviation

the function log p) is convex on [0, 1 ]2.

Proof - Assume (h, /l) and (/LB p’) are two points in [0, 1 ]2 then it is
sufficient to prove the inequality

If we put ~,o = min (A, ~’), ~,1 = max (A, ~’) and similar expressions for p
then we can restrict ourselves to the rectangle and 0    1.

Using Theorem 11.14 we may identify (Ào, with (0, 0) and Ill) with
(1, 1). This reduces the proof of the lemma to the two cases

Since the domains in question are absolutely convex we have a characteriza-
tion of and H1/2 given in Lemma 11.8. With the notation of that lemma
we have for z E aGo and w E aHo

From this we get:

Writing now

we obtain, by taking the supremum of each factor, the two inequalities

Vol. XXVII, n° 1 - 1977.



46 H. J. BORCHERS

or

If we combine this lemma with the result of Lemma 11.7, then we obtain
the basis for the general convexity theorem.

111.4. COROLLARY. - Assume G0 ~ Gi c en and Ho 8 H1 c em
where G1 and Hi are domains of holomorphy. Let

F = ... ,fN) E and G = ..., gN) E 
be such that the functions fi and gJ are bounded. If we define
~ ju) = sup { ; (F(z), G(w))! ; z E G~, and we Hu ~

then we have : log ~(~ ju) is a convex function on [0, 1 ]2.
Proof - Using the same argument as in the proof of the last lemma,

which was based on Theorem 11.14, we need only to prove the two inequa-
lities

and

In order to prove these inequalities we remark first: Let M1, MZ be
bounded sets in ~N and r(Mi) their absolutely convex hulls then one gets

I (~ y) I ; ~ E r(M1), ~ E r(M2) }.
The second remark we have to make is the following : if r(F(Go)) lies

in some complex linear subspace L of then r(F(Gi)) lies in the same
linear subspace, because for any element a E ’p1- the equation (a, F(z)) = 0
on Go has an analytic extension to Gi.

If we put Go = r(F(Go)) and 01 = r(F(G1)) and denote by G~, the inter-
polating family of Go and Gi then we find by Lemma II.7 F_(G1~2) ~ Gi/2’
Since the same arguments hold for the domains H we can use Lemma III.3
and obtain :

From this we get by the first remark
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We are now prepared for proving the main results of this section. The
first one is a characterization of interpolating domains of direct products
and the second result is a general convexity theorem for the logarithms of
the moduli of holomorphic functions.

IIL5. THEOREM. Let G c = 1, 2, ..., N be such that G;
are domains of holomorphy, then we get

and the interpolating family is given by

Proof - It is suflicient to prove this statement for N = 2. The general
result follows by iteration of the special one.

For simplifying the notation we will work with the domains Go ~ G1
and Ho ~ Hi. Let Go, G 1) and Ho, HI) be the pluri-subharmonic
majorants belonging to the two pairs. Each one defines also a pluri-sub-
harmonic function on G1 x Hi which does not depend on the other variable.
Therefore

is a pluri-subharmonic function on G1 x Hi. From construction of this
function follows p(z, ~) ~ 1 on G1 x Hi and = 0 on Go x Ho.
If (zo, wo) E G1 x HiBGo x Ho we have p(zo, wo) &#x3E; 0. These properties
imply Go x H0 ~ G1 x Hi. 

-

For proving the second statement assume first that G0 ~ G1 C G are
relatively compact in G and Go and G1 are both A(G) convex and the same
for H0 ~ H1 C H. Then follows that Go x Ho  Gi x G x H

are relatively compact with A(G x H) convex closures. For this case we
can use Lemma 11.10 for the determination of the interpolating domains
(G x H)~. Since the space A(G x H) is a complete nuclear vector space
follows A(G x H) = A(G) @1t A(H) (the complete 03C0-tensor-product of the
two spaces A(G), A(H). This means every function f (z, w) can be approxi-

mated by sums converging uniformly on every compact set

in particular on G1 x Hi. Denoting

we obtain from Corollary 111.4

Since the sums are dense in A(G x H) we obtain
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This implies by Lemma 11.10 the relation

Using on the other hand the special functions f ’~z_) . g(_w) we get by the
characterization of G~, and H~ the relation G~, x (G x So we
have

first for this special situation, but using the approximations of domains
given in Lemma II. 3 and 11.5 we see that the result is true also for the general
case.

Now we can prove the general convexity property for holomorphic
functions.

III.6. THEOREM. Let Gi1 ~ Cni, i = 1, ..., N be domains of
holomorphy and let G~ be the corresponding interpolating families.
Denote for

then follows log ~(~, F) is a convex function on [0, 1]N.
Proof. 2014 If 03BB1 and 03BB2 are two points in [0, 1 ]N it is sufficient to show the

inequality

If the i-th component of~ 1 and 32 coincide then the domain G~,~ is a common
factor in all considerations, so that we have to deal in reality only with a
problem in N-I variables. Therefore we may assume without loss of gene-
rality that all components are different.

If we put ~o = (min (~ ~,2~) (max (~, ~,2~~ then by Theorem II.14
the situation can be reduced to ~o = (0, 0, ..., 0) ; = (1, 1, ..., I).
Renaming the indices we get

and

where we have in ~ K zeros and N-K ones and zeros and ones interchanged
for ~.

Introducing now
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then by Theorem III.6 we get

so that we only have to prove the inequality

for two pairs of domains.
Now we approximate these domains from inside by an increasing family.

If we denote by ~’(~, f ) the maximum of I on Gi x H~ we get by
Corollary 111.4 and the same density argument, as in the proof of the pre-
vious theorem, the relation

for all f ~ A(G1 x Hi). Taking the limit i - co we obtain the desired result.

IV. INTERPOLATING DOMAINS
AND HILBERT SPACES OF HOLOMORPHIC FUNCTIONS

It is our aim to convert the general convexity theorem of the last section
into statements of finding envelopes of holomorphy. In order to clarify
the situation let us assume Go ~ G1 and Ho ~ Hi and we have to compute
the envelope of holomorphy of Go x H1 U G1 x Ho. We know that both
domains Go x HiandGi x Ho are Runge domains in G1 x Hi. Therefore
we can approximate every function given on the union of the two small
domains by function in A(G1 x Hi) as well on Go x Hi as on G1 x Ho.
If we succeed to find an approximation on the union of both small domains
simultaneously then the convexity theorem gives us an extension of the given
function into a bigger domain. That such approximations exist, at least
for sufficiently many domains, we will show by means of Hilbert spaces
of analytic functions (For an introduction to the theory of Hilbert spaces
of analytic functions see e. g. [7]).

IV. 1. NOTATIONS. - In the following we denote by G always a domain of
holomorphy.

a) Let J1 be a measure on G, then we say J1 is a regular measure if the set

is a closed subspace of 22(G, We denote this subspace by ~).
b) If ju is a regular measure on G and if Jl) contains not only the
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function 0, then the kernelfunction is defined by means of an orthonormal
basis f through the formula

This function is independent of the basis, defined on G x G, and ana-
lytic in z and anti-analytic in w.

c) If ,u is a regular measure in G then we call  completely regular if
,u) is a dense subspace of A(G).

IV.2. LEMMA. - Let J1 be a regular measure on G.

a) Let t E A’(G), then f ~ (t, f ) defines a continuous linear functional i(t)
on ~u). The vector i(t) is defined by the formula

b) The map i defines a continuous antilinear mapping from A’(G) into
3Q(G, ,u) such that the image of a compact convex set in A’(G) is a compact
set in /~).

c) The image of i is always dense in 9f(G, ,u) and i is injective if and only
if Jl is completely regular.

d) For every continuous Hilbert semi-norm p on A(G) exist a compact
operator 0 acting on Jl) such that for every f E Jl) we get
the identitv

e) Denote by Yf the closure of /1) in A(G), and let p( . ) be a Hilbert
seminorm on A(G). The corresponding operator pp has an (unbounded)
inverse if p restricted to 9f is a norm on 9V.

Proof - a) Let f E ,u) be such that II = 1, then it is member of
some orthonormal basis. Consequently we get for any compact subset of G

I; = C(K)  00,

So we get in general

If t is a continuous linear functional on A(G) then exists a compact set K
in G with

and hence we get for IE 

I (t, f) I ~ mC(K) II f Therefore exists by the Riesz representation
theorem a vector i(t) E ~c) with (t, = (i(t), f )~. is a basis

of 3f(G, p) then we find 
l t 2 = "£1 I ‘t~ fi) 12
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which implies

b) The antilinearity of i is clear. Let j be the natural injection of /1)
into A(G), then j is continuous since we have

Since i is the transposed of j follows the continuity of i.
Since i is continuous follows that it maps compact sets onto compact

sets.

c) The density of i(A(G)) is trivial. The map is injective if = 0 holds

only for t = 0. But = 0 if and only if (i(t), = 0 = (t, f)A for all

fe jM). Therefore = 0 if and only if (t, g) = 0 for all g E ~

(the closure of J~ in A(G)). Therefore i is injective if and only if 9f = A(G).
d) Let h( . ) be a continuous Hilbert semi-norm then exist m &#x3E; 0 and a

compactum K c G with

where the last inequality holds only for elements in ~f(G, Since h is
a Hilbert semi-norm exists a linear operator ph on Jl) with

The set {f E A(G); h(f)  1} is open and has therefore a compact

polar denoted by K. Here we have used that A(G) is a Montel space. By the
bipolar theorem we get for f E jM):

Since i(K) is compact in /1) follows ( 1 - Eg) ju) is finite dimen-
sional and this implies p;/2 is a compact operator.

e) If p( . ) is a norm on ~ then we have for f E ~(G, ,u)

and hence pp is invertible.
Now we want to apply the results of the last lemma to pairs of domains.

We want to make for the rest of this section the following.

IV.3. ASSUMPTIONS AND NOTATIONS. - We choose G c C"
such that :

a) G is a domain of holomorphy,
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b) Go is relatively compact in G1, and G1 is relatively compact in G,
c) and G1 1 °&#x3E;
d) Go and G1 are A(G) convex,
e) dv denotes the Lebesgue measure on ~n,
f ) we write for short #1 = dv) and dv).

IV.4. LEMMA. - Assume IV.3, then we can find numbers a; &#x3E; 1 and an
orthonormal basis {fi} of such that { is an orthonormal basis
of /o.

Proof. - Since Go is compact in G1 follows that every f E A(G1) is bounded

on Go. Hence = ( is a Hilbert semi-norm on A(G1).

Hence by Lemma IV.2 d) exist a compact operator 03C1p on H1 with

Since ( f, f )o = p2( f ) = 0 holds only for f = 0 follows that p p is invertible,
this means all eigenvalues of pp are positive. This implies we can find an
orthonormal basis {fi} of with

Now we get :

This shows {03C3ifi} is an orthonormal system in Since Go is A(G)
convex follows that the set of functions which are bounded on Go are dense
in but these functions can be approximated by and there-

fore they form a basis in ~fo. From the definition ofp(g) follows immediately
II Pp " 1 which implies 03C3i  1.
As we will see in the next section, this lemma leads together with the

convexity theorem of the last section to the following result : Let Go ~ G1
and Ho ~ Hi then the envelope of holomorphy of Go x Hi u G1 x Ho is
exactly ~G03BB x We will need this result in the next lemma. But

we need it only in a special form which is covered by the known semi-tube
theorem.

IV.5. LEMMA. - Let 7, be the numbers the orthonormal basis

described in the last lemma. Define

then the sum converges on G~, x G~, and defines a kernel function on Gi.
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Proof. - The function K~(~ z) = is for Re p  0 defined

_ 

i 
_

on G1 x G1, since 6i &#x3E; 1. For Re w ~ 1 it is defined on Go x Go. The
interpolating family of Go x Go and G1 x G1 is G;. x G~ by Theorem 111.5
(G~ denotes here the complex conjugate domain of GJ. Since this function
is analytic in (p, w, z) follows that it is also analytic in the envelope of holo-
morphy of these two domains. This can be computed by the theorem to be
proven in the next section or the semi-tube theorem. Using the semi-tube
result, we have to compute the maximal pluri-subharmonic function which
is zero on Go x Go and bounded by 1 on G1 x Gi. But this is exactly
the function which characterizes the interpolating domains. Hence K~(w, z)
is also holomorphic in Re ~p ~ 1 - A and (~ z) E G~, x G~.

This shows z) is defined on G~, x G~.
In order to show that K~, is a kernel function we must proof the positivity

condition 0 (see [7] Satz V.I).
0~

We get

This proves the lemma.
Since we have a kernel function on G~ we also have a Hilbert space of

holomorphic functions. But, we can not expect this to coincide with

c1f(G;., dv). The reason for this is the fact that the pluri-subharmonic func-
tion K1(z, z) does not define the domains G~, this means, in the general
situation there will be no functional relation between Ki(z, z) and

pm(z, Go, Gi). But nevertheless we can use these kernel functions to prove
the following.

IV.6. LEMMA. - Let { as in Lemma IV.3 then for every
~c &#x3E; 0 we have

b) for every z E G~, with Â  1 we find for B &#x3E; 0 {~’~’~(z)} E h
and there exists a constant M(~ B) with E6~ -w 2E I ~ E)  00

for all ze G~.

Proof - a) Since all 1 follows that the sum is decreasing with
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increasing p. Hence we can restrict ourselves to the case 0  2. Putting
p = 2A we have 0  ~  1 and we write

Since according to Corollary II.11. Go is relatively compact in G03BB follows
that z) is bounded on Go and thus the integral is finite.

b) From the existence of the kernel function follows

By a) we have { ~i E ~ E 11 C t2, hence we get

But for 1 &#x3E; ~,’ &#x3E; ~ the set of vectors {7~ is a bounded set
in l2. Since z) is bounded in G~. is a bounded
set in 11 for z E G~.
With this lemma we can prove the main convergence theorem of this

section.

IV.7. THEOREM. Assume IV.3 and Jet { be the set of numbers and
~ , fi(z) ~ be the orthonormal basis described in Lemma IV.4.

a) Let S(z) = be a sequence such that

and let ,u’ = max (0, ju), then S(z) converges in G1-Jt’ and it converges
uniformly in every Gl, with ~,’  1 - j~’.

b) Assume on the other hand À &#x3E; 0 and F(z) E A(GJ then F(z) has
a representation

with

By a) follows that this sequence converges uniformly on every with
~,’  A.

REMARK. - Since we do not know enough about the functions fi(z),
we cannot claim (p &#x3E; 0) that the series in a) diverges for ~~ G1 _ ~. But b) tells
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us that there exists at least some sequences fulfilling a) which diverge outside
of G~ _ u (because there exists functions in A(G1-tt) which have as

their exact domain of definition).

Proof. - a) For every 8 &#x3E; 0 we have by assumption

This implies

except for a finite number of terms.
Hence we get :

By the previous lemma this series converges in and uniformly
in Since 13 was arbitrary follows the result.

b) Let F(z) E G~ then by compactness of Gl, in G~, for A’  ~ follows F(z)
is bounded in G~’. Hence it is an element of the Hilbert space defined bv
the kernel function Kl,. So F(z) has a development

which converges on G~,. in the sense of that Hilbert space. Hence we have
I ~2’ This implies

or

Since this holds for all 2’  2 we obtain

V. CONSTRUCTION
OF ENVELOPES OF HOLOMORPHY

Combining now the technics of the last section with the convexity theo-
rems of section III we obtain a series of results, which contain the tube
theorem, the theorem on Reinhardt domains and the semi-tube theorem as
special cases. The two first results are based on Lemma IV.4 only and they
contain the information needed for the proof of Lemma IV. 5

V.I. THEOREM. Let G1 c Cn and H1 c c"" be domains of holomorphy
Vol. XXVII, no 1 - 1977.
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and assume Go I G1 and H0 ~ Hi, then the envelope of holomorphy of
Go x Hi u G1 x Ho has the following representation

Proof - First let us show that the right hand side represents a domain of
holomorphy. The function

is defined on G1 x H1 and is pluri-subharmonic. Hence the set

defines a domain of holomorphy. But, by definition of the interpolating
families this domain coincides with ~G03BB x HI -i.

À

For the other part we have to show that every function F(z, w) defined
and holomorphic on Go x Hi U G~ x Ho can be extended analytically
into x To this end we make use of Lemma II.5 which states

that we can approximate the G’s and the H’s from inside by relatively
compact domains which fulfill the conditions of Lemma IV.4. Let G~, Gi ~
H~, Hi, a = 1, 2, ... be these domains then F(z, w) is bounded on G~ x H~
and G~ x Ho. Let be the basis and r? be the sequence described in
Lemma IV.4 then we can find for F(z, w) the developments

where the are holomorphic in HI, From the identity on Go x Ho
follows This implies the second sum converges in

By choice of the domains follows that the sum converges absolutely in
x x and hence by the convexity Theorem III.6

x H 1= ~,. Since = Gl by Lemma 11.3 follows that F(z, w)
a, «

has an extension into ~G03BB x 
A

A simple generalization of this result is the

V.2. THEOREM. - On generalized Reinhard domains.
Let = 1, ..., N be domains of holomorphy and assume

G~. Denote for À E [0, 1]N the domain
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Let S c [0, be a closed set and CoS its convex hull then we get

Proof. ’. - From the last theorem we find together with Theorem III.S
the result

~=U

This shows that the envelope of holomorphy we are looking for contains
the union of the right hand side. So it remains to show that the right hand
side is a domain of holomorphy.
To this end remark that [0, becomes a semi-ordered space by intro-

ducing the relation

From definition of the G~, follows with this semi-ordering G~2

~,2. For S c [0, l]N define3 as follows

then we always get

If S is convex then this is obviously also true for S. If S is convex then

it can be written as intersection of sets in [0, l]N which are bounded by
boundery points of [0, and a hyperplane. But there appear only such
hyperplanes which have a normal vector n lying in [0, 

Since the intersection of domains of holomorphy defines again a domain
of holomorphy, we have reduced the problem to the situation where S
is given by 

n

and c ~ If we put for short writing = Gh, G~) and define

then this represents a pluri-subharmonic function on G~ x ... x G~.
Therefore

defines a domain of holomorphy. But looking at the definition of Gi we
find that this domain coincides with 

AeS
This proves the theorem.
Next we want to give two generalizations of this theorem. The first one

is a generalized semi-tube theorem.
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V.3. THEOREM. Let H c en and em be domains of holomorphy
and assume Go ~ G1. Let r c be defined as follows:

Then r is a domain of holomorphy exactly if is a pluri-superharmonic
function on H.

Proof - Assume first that is pluri-superharmonic function on H.
Then follows that

is a pluri-subharmonic function on H x Gi. But from the definition of G~
follows

Since p(z, ~) is pluri-subharmonic follows that r is a domain of holomorphy.
For proving the converse statement we remark first, that the function À)

in the definition of r has to be lower semi-continuous in order that r

becomes a domain. If Go, G~ is an increasing approximation of Go, G1 such
that l )Gi = G~,, and we have shown that the theorem holds for

then it is true also for r, since ~0393i = r.
i

If Go’, Gh is an increasing approximation as described in Lemma 11.5
then we put Go = and G~ = G~ in order that we can use the conver-
gence Theorem IV.7. r is supposed to be a domain of holomorphy then
(with the notation of Theorem IV.7). F(z, w) eA(r) possessed a develop-
ment

with ai(z) E A(H) and

Denoting by p(z, F) the pluri-subharmonic limit of the left hand side and by
p(z) the pluri-subharmonic majorant of all the p(z, F) then we have

1 - ~,(z). But since ri is a domain of holomorphy follows that there
exists functions with r’ as their natural domains. Hence we get

p(z) = 1 - ~(z). This proves the theorem.
We want to end this paper with a generalization of the first theorem of

this section. There we have constructed the envelope of holomorphy of

Go x H1 U G1 x Ho where G0 ~ Gi, H0 ~ Hi are all domains of holo-
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morphy. In many applications we find a more general situation namely
one has to construct the domain of holomorphy of Go x H1 U G 1 x Ho
where all four domains are natural domains but where the G’s and the H’s

do not form Hadamard pairs. For the treatment of this problem the last
theorem plays an essential role. Before we can state the result, we need
some notations.

Let G1 be a domain of holomorphy and G0 ~ G1 a domain, then the set
F c P(Gi)

is well defined. This contains a pluri-subharmonic majorant pm(z).
If we define G0 = {z E Gi; 0 )° then we have G1 and

pm(z) = Go, G1). With G03BB we denote the interpolating family of the
pair G1.

V.4. THEOREM. - Let en and Hi c em be domains of holomorphy
and assume G0 ~ G1 and Ho c H1 are domains (not necessarily domains of
holomorphy) then we obtain with the above notation

Proof. - Let us denote the envelope of holomorphy we are surching for
by r. Then we define

From Theorem V.4 follows that G~, is characterized by a pluri-subharmonic
function which implies that the G~, are itselves domains of holomorphy.
Furthermore we have by assumption Go ~ Go ~ ~, so that we are not
talking about empty sets.

Let us denote by Dr c Cn the poly-circle of radius r and let zo E 6).
then exists ’1 such that Zo + Dr1 ~ G1 and ro with Zo + Dr0 ~ G03BB.’ Since

6;. c G1 follows rl ~ ’0’ Therefore we have

and therefore also

Since Dri follows by Theorem V.3 that this hull is given by the
maximal pluri-subharmonic function which is bounded by 1 on 
and zero on Ho with Dr = ~(~)). This implies together with
Theorem 11.14 and the definition of H~
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Taking the union over all we see that

But by symmetry we get G1 x Ho u Go x H1 c r and the result follows
from Theorem V.I.
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