Annales de l'I. H. P., section A

W. M. Tulczyjew
 The Legendre transformation

Annales de l'I. H. P., section A, tome 27, no 1 (1977), p. 101-114
http://www.numdam.org/item?id=AIHPA_1977__27_1_101_0
© Gauthier-Villars, 1977, tous droits réservés.
L'accès aux archives de la revue «Annales de l'I. H. P., section A » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

The Legendre transformation

by

W. M. TULCZYJEW
Max-Planck-Institut für Physik und Astrophysik, 8 München 40, Föhringer Ring 6

Résumé. - On donne une définition géométrique générale de la transformation de Legendre, suivie par des exemples dans le domaine de mécanique des particules et de thermostatique. Cette définition est basée sur les notions de la géométrie symplectique exposée brièvement dans les premières sections servant d'introduction.

DEFINITIONS OF SYMBOLS

TM	tangent bundle of a manifold M ,
$\tau_{\mathrm{M}}: \mathrm{TM} \rightarrow \mathrm{M}$	tangent bundle projection,
$\mathrm{T}_{a} \mathrm{M}$	tangent space at $a \in \mathrm{M}$,
T*M	cotangent bundle of M ,
$\pi_{\mathrm{M}}: \mathrm{T}^{*} \mathrm{M} \rightarrow \mathrm{M}$	cotangent bundle projection,
ϑ_{M}	canonical 1-form on $\mathrm{T}^{*} \mathrm{M}$,
$\omega_{\mathrm{M}}=d \vartheta_{\mathrm{M}}$	canonical 2-form on $\mathrm{T}^{*} \mathrm{M}$,
$\langle v, p\rangle$	evaluation of a covector p on a vector v,
$\langle v, \mu\rangle$	evaluation of a form μ on a vector v,
	exterior differential of forms,
\wedge	exterior product of vectors, covectors or forms,
$\Phi_{\text {M }}$	exterior algebra of forms on M,
$\alpha^{*} \mu$	pullback of a form μ by a mapping α.

A general geometric definition of the Legendre transformation is given and illustrated by examples from particle dynamics and thermostatics. The definition is based on concepts of symplectic geometry reviewed in the early sections which serve as an introduction.

1. LAGRANGIAN SUBMANIFOLDS AND SYMPLECTIC DIFFEOMORPHISMS

Let P be a differential manifold. The tangent bundle of P is denoted by TP and $\tau_{\mathrm{P}}: \mathrm{TP} \rightarrow \mathrm{P}$ is the tangent bundle projection. Let ω be a 2 -form on P . The form ω is called a symplectic form if $d \omega=0$ and if $\langle u \wedge w, \omega\rangle=0$ for each $u \in$ TP such that $\tau_{\mathbf{P}}(u)=\tau_{\mathbf{P}}(w)$ implies $w=0$. If ω is a symplectic form then (P, ω) is called a symplectic manifold.

Definition 1.1. - Let (P, ω) be a symplectic manifold. A submanifold N of P such that $\omega \mid \mathrm{N}=0$ and $\operatorname{dim} \mathrm{P}=2 \operatorname{dim} \mathrm{~N}$ is called a Lagrangian submanifold of (P, ω) [11].

Definition 1.2. - Let $\left(\mathrm{P}_{1}, \omega_{1}\right)$ and $\left(\mathrm{P}_{2}, \omega_{2}\right)$ be symplectic manifolds. A diffeomorphism $\varphi: \mathrm{P}_{\mathbf{1}} \rightarrow \mathrm{P}_{\mathbf{2}}$ is called a symplectic diffeomorphism of $\left(\mathrm{P}_{1}, \omega_{1}\right)$ onto $\left(\mathrm{P}_{2}, \omega_{2}\right)$ if $\varphi^{*} \omega_{2}=\omega_{1}$.

Let $\left(\mathrm{P}_{1}, \omega_{1}\right)$ and $\left(\mathrm{P}_{2}, \omega_{2}\right)$ be symplectic manifolds and let $p r_{1}$ and $p r_{2}$ denote the canonical projections of $\mathrm{P}_{2} \times \mathrm{P}_{1}$ onto P_{1} and P_{2} respectively. The 2 -form $\omega_{2} \ominus \omega_{1}=p r_{2}{ }^{*} \omega_{2}-p r_{1}{ }^{*} \omega_{1}$ is clearly a symplectic form on $\mathrm{P}_{2} \times \mathrm{P}_{1}$.

Proposition 1.1. - The graph of a symplectic diffeomorphism φ of $\left(\mathrm{P}_{1}, \omega_{1}\right)$ onto $\left(\mathrm{P}_{2}, \omega_{2}\right)$ is a Lagrangian submanifold of $\left(\mathrm{P}_{2} \times \mathrm{P}_{1}, \omega_{2} \ominus \omega_{1}\right)$.

Proof. - The graph of $\varphi: \mathrm{P}_{1} \rightarrow \mathrm{P}_{2}$ is the image of $(\varphi, \mathrm{I} d): \mathrm{P}_{1} \rightarrow \mathrm{P}_{2} \times \mathrm{P}_{1}$ and $(\varphi, \mathrm{I} d) *\left(\omega_{2} \ominus \omega_{1}\right)=\varphi^{*} \omega_{2}-\omega_{1}=0$. Hence $\left(\omega_{2} \ominus \omega_{1}\right) \mid \operatorname{graph} \varphi=0$. Also $\operatorname{dim}\left(P_{2} \times P_{1}\right)=2 \operatorname{dim}(\operatorname{graph} \varphi)$. Hence graph φ is a Lagrangian submanifold of $\left(\mathrm{P}_{2} \times \mathrm{P}_{1}, \omega_{2} \ominus \omega_{1}\right)$.

The converse is also true. If the graph of a diffeomorphism $\varphi: \mathrm{P}_{\mathbf{1}} \rightarrow \mathrm{P}_{\mathbf{2}}$ is a Lagrangian submanifold of $\left(\mathrm{P}_{2} \times \mathrm{P}_{1}, \omega_{2} \ominus \omega_{1}\right)$ then φ is a symplectic diffeomorphism of $\left(\mathrm{P}_{1}, \omega_{1}\right)$ onto ($\mathrm{P}_{2}, \omega_{2}$).

2. LOCAL EXPRESSIONS

Let (\mathbf{P}, ω) be a symplectic manifold and let $\left(x^{i}, y_{j}\right), 1 \leq i, j \leq n$ be local coordinates of P such that $\omega=\Sigma_{i} d y_{i} \wedge d x^{i}$. Coordinates $\left(x^{i}, y_{j}\right)$ are called canonical coordinates of (P, ω) [1]. Existence of canonical coordinates is guaranteed by Darboux theorem. A submanifold N of P of dimension n represented locally by $x^{i}=\xi^{i}\left(u^{k}\right), y_{j}=\eta_{j}\left(u^{k}\right), 1 \leq i, j, k \leq n$ is a Lagrangian submanifold of (P, ω) if and only if

$$
\omega \left\lvert\, \mathrm{N}=\Sigma_{i, j, k} \frac{\partial \eta_{i}}{\partial u^{j}} \frac{\partial \xi^{i}}{\partial u^{k}} d u^{j} \wedge d u^{k}=0 .\right.
$$

This condition is equivalent to $\left[u^{i}, u^{j}\right]=0,1 \leq i, j \leq n$, where

$$
\left[u^{i}, u^{j}\right]=\Sigma_{k}\left[\frac{\partial \xi^{k}}{\partial u^{i}} \frac{\partial \eta_{k}}{\partial u^{j}}-\frac{\partial \xi^{k}}{\partial u^{j}} \frac{\partial \eta_{k}}{\partial u^{i}}\right]
$$

are the Lagrange brackets [2].
Let $\left(x^{i}, y_{j}\right), 1 \leq i, j \leq n$ and $\left(x^{\prime i}, y_{i}^{\prime}\right), 1 \leq i, j \leq n$ be canonical coordinates of symplectic manifolds $\left(\mathrm{P}_{1}, \omega_{1}\right)$ and $\left(\mathrm{P}_{2}, \omega_{2}\right)$ respectively. The two sets of coordinates are combined into a set ($x^{\prime i}, y_{j}^{\prime}, x^{k}, y_{l}$), $1 \leq i, j, k, l \leq n$ of local coordinates of $\mathrm{P}_{2} \times \mathrm{P}_{1}$. Then $\omega_{2} \ominus \omega_{1}=\Sigma_{i}\left(d y_{i}^{\prime} \wedge d x^{\prime i}-d y_{i} \wedge d x^{i}\right)$. A diffeomorphism $\varphi: \mathrm{P}_{1} \rightarrow \mathrm{P}_{2}$ represented locally by $x^{i}=\psi^{i}\left(x^{k}, y_{l}\right)$, $y_{j}^{\prime}=\chi_{j}\left(x^{k}, y_{l}\right)$ is a symplectic diffeomorphism of $\left(\mathrm{P}_{1}, \omega_{1}\right)$ onto $\left(\mathrm{P}_{2}, \omega_{2}\right)$ if and only if

$$
\begin{aligned}
\omega_{2} \ominus \omega_{1} \mid \operatorname{graph} \varphi & =\Sigma_{i, j, k}\left[\frac{\partial \chi_{i}}{\partial x^{j}} \frac{\partial \psi^{i}}{\partial x^{k}} d x^{j} \wedge d x^{k}+\frac{\partial \chi_{i}}{\partial x^{j}} \frac{\partial \psi^{i}}{\partial y_{k}} d x^{j} \wedge d y_{k}\right. \\
+ & \left.\frac{\partial \chi_{i}}{\partial y_{j}} \frac{\partial \psi^{i}}{\partial x^{k}} d y_{j} \wedge d x^{k}+\frac{\partial \chi_{i}}{\partial y_{j}} \frac{\partial \psi^{i}}{\partial y_{k}} d y_{j} \wedge d y_{k}\right]-\Sigma_{i} d y_{i} \wedge d x^{i}=0 .
\end{aligned}
$$

This condition is equivalent to $\left[x^{i}, x^{j}\right]=0,\left[x^{i}, y_{j}\right]=\delta_{j}^{i},\left[y_{i}, y_{j}\right]=0,1 \leq i$, $j \leq n$.

3. SPECIAL SYMPLECTIC MANIFOLDS AND GENERATING FUNCTIONS [4]

Let Q be a manifold, let $T Q$ denote the tangent bundle of Q and $\tau_{\mathrm{Q}}: \mathrm{TQ} \rightarrow \mathrm{Q}$ the tangent bundle projection. The cotangent bundle of Q is denoted by $\mathrm{T}^{*} \mathrm{Q}$ and $\pi_{\mathrm{Q}}: \mathrm{T}^{*} \mathrm{Q} \rightarrow \mathrm{Q}$ is the cotangent bundle projection. The canonical 1-form ϑ_{Q} on $\mathrm{T}^{*} \mathrm{Q}$ is defined by

$$
\left\langle u, \vartheta_{\mathrm{Q}}\right\rangle=\left\langle\mathrm{T} \pi_{\mathrm{Q}}(u), \tau_{\mathrm{T}^{*} \mathrm{Q}}(u)\right\rangle \quad \text { for each } \quad u \in \mathrm{TT}^{*} \mathrm{Q} .
$$

The canonical 2-form $\omega_{\mathrm{Q}}=d \vartheta_{\mathrm{Q}}$ is known to be a symplectic form. Hence ($\mathrm{T}^{*} \mathrm{Q}, \omega_{\mathrm{Q}}$) is a symplectic manifold.

Let F be a differentiable function on the manifold Q . The 1-form $d \mathrm{~F}$ is a section $d \mathrm{~F}: \mathrm{Q} \rightarrow \mathrm{T} * \mathrm{Q}$ of the cotangent bundle. The image N of $d \mathrm{~F}$ is a submanifold of $\mathrm{T}^{*} \mathrm{Q}$, the mapping $\rho=\pi_{\mathrm{Q}} \mid \mathrm{N}: \mathrm{N} \rightarrow \mathrm{Q}$ is a diffeomorphism and $\vartheta_{\mathrm{Q}} \mid \mathrm{N}=\rho^{*} d \mathrm{~F}$. Hence $\omega_{\mathrm{Q}} \mid \mathrm{N}=0$ and N is a Lagrangian submanifold of ($\mathrm{T}^{*} \mathrm{Q}, \omega_{\mathrm{Q}}$).

The above construction of Lagrangian submanifolds is generalized in the following proposition.

Proposition 3.1. - Let K be a submanifold of Q and F a function on K . The set
$\mathrm{N}=\left\{p \in \mathrm{~T}^{*} \mathrm{Q} ; \pi_{\mathrm{Q}}(p) \in \mathrm{K}\right.$ and $\langle u, p\rangle=\langle u, d \mathrm{~F}\rangle$
for each $u \in \mathrm{TK} \subset \mathrm{TQ}$ such that $\left.\tau_{\mathrm{Q}}(u)=\pi_{\mathrm{Q}}(p)\right\}$ is a Lagrangian submanifold of $\left(\mathrm{T}^{*} \mathrm{Q}, \omega_{\mathrm{Q}}\right)$.

Proof. - Using local coordinates it is easily shown that N is a submanifold of $T^{*} \mathrm{Q}$ of dimension equal to $\operatorname{dim} \mathrm{Q}$. The submanifold K is the image of N by π_{Q}. Let $\rho: \mathrm{N} \rightarrow \mathrm{K}$ be the mapping defined by the commutative diagram

Then $\left\langle u, \rho^{*} d \mathrm{~F}\right\rangle=\langle\mathrm{T} \rho(u), d \mathrm{~F}\rangle=\left\langle\mathrm{T} \rho(u), \tau_{\mathrm{T}^{*} \mathrm{Q}}(u)\right\rangle=\left\langle u, \vartheta_{\mathrm{Q}}\right\rangle$ for each vector $u \in \mathrm{TN} \subset \mathrm{TT} * \mathrm{Q}$. Hence $\vartheta_{\mathrm{Q}}\left|\mathrm{N}=\rho^{*} d \mathrm{~F}, \omega_{\mathrm{Q}}\right| \mathrm{N}=0$ and N is a Lagrangian submanifold of $\left(\mathrm{T}^{*} \mathrm{Q}, \omega_{\mathrm{Q}}\right)$.

Definition 3.1. - The function F in Proposition 3.1 is called a generating function of the Lagrangian submanifold N . The Lagrangian submanifold N is said to be generated by F .

There is a canonical submersion κ of $\pi_{\mathrm{Q}}^{-1}(\mathrm{~K})$ onto $\mathrm{T}^{*} \mathrm{~K}$ and the Lagrangian submanifold N is given by $\mathrm{N}=\kappa^{-1}(d \mathrm{~F}(\mathrm{~K}))$. The Lagrangian submanifold N can also be characterized as the maximal submanifold N of $\mathrm{T}^{*} \mathrm{Q}$ such that $\pi_{\mathrm{Q}}(\mathrm{N})=\mathrm{K}$ and $\vartheta_{\mathrm{Q}} \mid \mathrm{N}=\rho^{*} d \mathrm{~F}$, where $\rho: \mathrm{N} \rightarrow \mathrm{K}$ is the mapping defined in the proof of Proposition 3.1.

In many applications of symplectic geometry it is convenient to consider symplectic manifolds which are not directly cotangent bundles but are isomorphic to cotangent bundles.

Definition 3.2. - Let ($\mathrm{P}, \mathrm{Q}, \pi$) be a differential fibration and ϑ a 1 -form on P . The quadruple $(\mathrm{P}, \mathrm{Q}, \pi, \vartheta)$ is called a special symplectic manifold if there is a diffeomorphism $\alpha: \mathrm{P} \rightarrow \mathrm{T}^{*} \mathrm{Q}$ such that $\pi=\pi_{\mathrm{Q}} \circ \alpha$ and $\vartheta=\alpha^{*} \vartheta_{\mathrm{Q}}$.

If the diffeomorphism α exists it is unique. If $(\mathrm{P}, \mathrm{Q}, \pi, \vartheta)$ is a special symplectic manifold then $(\mathrm{P}, \omega)=(\mathrm{P}, d \vartheta)$ is a symplectic manifold called the underlying symplectic manifold of $(\mathrm{P}, \mathrm{Q}, \pi, \vartheta)$.
If $(\mathrm{P}, \mathrm{Q}, \pi, \vartheta)$ is a special symplectic manifold, K a submanifold of Q and F a function on K then the set $\mathrm{N}=\{p \in \mathrm{P} ; \pi(p) \in \mathrm{K}$ and $\langle u, \vartheta\rangle=\langle\mathrm{T} \pi(u), d \mathrm{~F}\rangle$ for each $u \in \mathrm{TP}$ such that $\tau_{\mathrm{P}}(u)=p$ and $\mathrm{T} \pi(u) \in \mathrm{TK} \subset \mathrm{TD}\}$ is a Lagrangian submanifold of $(\mathrm{P}, d \vartheta)$ said to be generated with respect to $(\mathrm{P}, \mathrm{Q}, \pi, \vartheta)$ by the function F . The function F is called a generating function of N with respect to $(\mathrm{P}, \mathrm{Q}, \pi, \vartheta)$. The diffeomorphism $\alpha: \mathrm{P} \rightarrow \mathrm{T}^{*} \mathrm{Q}$ maps the Lagrangian submanifold N onto the Lagrangian submanifold of $\left(\mathrm{T}^{*} \mathrm{Q}, \omega_{\mathrm{Q}}\right)$ generated by F .

Let $\left(\mathrm{P}_{1}, \mathrm{Q}_{1}, \pi_{1}, \vartheta_{1}\right)$ and ($\mathrm{P}_{2}, \mathrm{Q}_{2}, \pi_{2}, \vartheta_{2}$) be special symplectic manifolds and let $\vartheta_{2} \ominus \vartheta_{1}$ denote the 1 -form $p r_{2}{ }^{*} \vartheta_{2}-p r_{1}{ }^{*} \vartheta_{1}$, where $p r_{1}$ and $p r_{2}$ are the canonical projections of $\mathrm{P}_{2} \times \mathrm{P}_{1}$ onto P_{1} and P_{2} respectively.

Proposition 3.2. - The quadruple $\left(\mathrm{P}_{2} \times \mathrm{P}_{1}, \mathrm{Q}_{2} \times \mathrm{Q}_{1}, \pi_{2} \times \pi_{1}, \vartheta_{2} \ominus \vartheta_{1}\right)$ is a special symplectic manifold.

Proof. - Let $\alpha_{1}: \mathrm{P}_{1} \rightarrow \mathrm{~T}^{*} \mathrm{Q}_{1}$ and $\alpha_{2}: \mathrm{P}_{2} \rightarrow \mathrm{~T}^{*} \mathrm{Q}_{2}$ be diffeomorphisms such that $\pi_{1}=\pi_{\mathrm{Q}_{1}} \circ \alpha_{1}, \pi_{2}=\pi_{\mathrm{Q}_{2}} \circ \alpha_{2}, \vartheta_{1}=\alpha_{1}{ }^{*} \vartheta_{\mathrm{Q}_{1}}$ and $\vartheta_{2}=\alpha_{2}{ }^{*} \vartheta_{\mathrm{Q}_{2}}$. Then the mapping
$\alpha_{21}: \mathrm{P}_{2} \times \mathrm{P}_{1} \rightarrow \mathrm{~T}^{*}\left(\mathrm{Q}_{2} \times \mathrm{Q}_{1}\right)=\mathrm{T}^{*} \mathrm{Q}_{2} \times \mathrm{T}^{*} \mathrm{Q}_{1}:\left(p_{2}, p_{1}\right) \mapsto\left(\alpha_{2}\left(p_{2}\right),-\alpha_{1}\left(p_{1}\right)\right)$
is a diffeomorphism such that

$$
\pi_{2} \times \pi_{1}=\left(\pi_{\mathrm{Q}_{2}} \times \pi_{\mathrm{Q}_{1}}\right) \circ \alpha_{21} \quad \text { and } \quad \vartheta_{2} \ominus \vartheta_{1}=\alpha_{21} *\left(\vartheta_{\mathrm{Q}_{2}} \oplus \vartheta_{\mathrm{Q}_{1}}\right)
$$

The identification $\mathrm{T}^{*}\left(\mathrm{Q}_{2} \times \mathrm{Q}_{1}\right)=\mathrm{T}^{*} \mathrm{Q}_{2} \times \mathrm{T}^{*} \mathrm{Q}_{1}$ implies the identification of $\vartheta_{\mathrm{Q}_{2}} \oplus \vartheta_{\mathrm{Q}_{1}}=p r_{2}{ }^{*} \vartheta_{\mathrm{Q} 2}+p r_{1} * \vartheta_{\mathrm{Q}_{1}}$ with $\vartheta_{\mathrm{Q}_{2} \times \mathrm{Q}_{1}}$. Hence $\left(\mathrm{P}_{2} \times \mathrm{P}_{1}, \mathrm{Q}_{2} \times \mathrm{Q}_{1}\right.$, $\pi_{2} \times \pi_{1}, \vartheta_{2} \ominus \vartheta_{1}$) is a special symplectic manifold.

If $\left(\mathrm{P}_{1}, \omega_{1}\right)$ and ($\mathrm{P}_{2}, \omega_{2}$) are underlying symplectic manifolds of ($\mathrm{P}_{1}, \mathrm{Q}_{1}$, π_{1}, ϑ_{1}) and ($\mathrm{P}_{2}, \mathrm{Q}_{2}, \pi_{2}, \vartheta_{2}$) then ($\mathrm{P}_{2} \times \mathrm{P}_{1}, \omega_{2} \ominus \omega_{1}$) is the underlying symplectic manifold of ($\mathrm{P}_{2} \times \mathrm{P}_{1}, \mathrm{Q}_{2} \times \mathrm{Q}_{1}, \pi_{2} \times \pi_{1}, \vartheta_{2} \ominus \vartheta_{1}$). Let φ be a symplectic diffeomorphism of $\left(\mathrm{P}_{1}, \omega_{1}\right)$ onto $\left(\mathrm{P}_{2}, \omega_{2}\right)$.

Definition 3.3. - If the graph of the diffeomorphism $\varphi: P_{1} \rightarrow P_{2}$ is generated with respect to the special symplectic structure $\left(P_{2} \times P_{1}, Q_{2} \times Q_{1}\right.$, $\pi_{2} \times \pi_{1}, \vartheta_{2} \ominus \vartheta_{1}$) by a function G on a submanifold M of $Q_{2} \times Q_{1}$ then φ is said to be generated with respect to $\left(\mathrm{P}_{2} \times \mathrm{P}_{1}, \mathrm{Q}_{2} \times \mathrm{Q}_{1}, \pi_{2} \times \pi_{1}, \vartheta_{2} \ominus \vartheta_{1}\right)$ by the function G and G is called a generating function of φ with respect to $\left(\mathrm{P}_{2} \times \mathrm{P}_{1}, \mathrm{Q}_{2} \times \mathrm{Q}_{1}, \pi_{2} \times \pi_{1}, \vartheta_{2} \ominus \vartheta_{1}\right)$.

If N_{1} is a Lagrangian submanifold of $\left(\mathrm{P}_{1}, \omega_{1}\right)$ and φ is a symplectic diffeomorphism of $\left(\mathrm{P}_{1}, \omega_{1}\right)$ onto $\left(\mathrm{P}_{2}, \omega_{2}\right)$ then $\mathrm{N}_{2}=\varphi\left(\mathrm{N}_{1}\right)$ is a Lagrangian submanifold of $\left(\mathrm{P}_{2}, \omega_{2}\right)$. Let $\left(\mathrm{P}_{1}, \omega_{1}\right)$ and $\left(\mathrm{P}_{2}, \omega_{2}\right)$ be underlying symplectic manifolds of special symplectic manifolds ($\mathrm{P}_{1}, \mathrm{Q}_{1}, \pi_{1}, \vartheta_{1}$) and ($\mathrm{P}_{2}, \mathrm{Q}_{2}, \pi_{2}, \vartheta_{2}$) respectively and let N_{1}, φ and N_{2} be generated by functions F_{1}, G and F_{2} defined on submanifolds $K_{1} \subset Q_{1}, M \subset Q_{2} \times Q_{1}$ and $K_{2} \subset Q_{2}$ respectively.

Proposition 3.3. - Let K_{21} denote the image of N_{1} by

$$
\left(\pi_{2} \times \pi_{1}\right) \circ(\varphi, \mathrm{I} d): \mathrm{P}_{1} \rightarrow \mathrm{Q}_{2} \times \mathrm{Q}_{1}
$$

Then $\quad \mathrm{K}_{21}=\left\{\left(q_{2}, q_{1}\right) \in \mathrm{Q}_{2} \times \mathrm{Q}_{1} ; \quad q_{1} \in \mathrm{~K}_{1}, \quad\left(q_{2}, q_{1}\right) \in \mathrm{M} \quad\right.$ and $\left\langle\left(v_{2}, v_{1}\right), d \mathrm{G}\right\rangle+\left\langle v_{1}, d \mathrm{~F}_{1}\right\rangle=0$ for each $v_{1} \in \mathrm{~T}_{q_{1}} \mathrm{~K}_{1}$ such that $\left(v_{2}, v_{1}\right) \in \mathrm{T}\left(q_{2}, q_{1}\right) \mathrm{M} \subset \mathrm{T}_{q_{2}} \mathrm{Q}_{2} \times \mathrm{T}_{q_{1}} \mathrm{Q}_{1}$ and $\left.v_{2}=0\right\}$.
Proof (for $\mathrm{P}_{1}=\mathrm{T}^{*} \mathrm{Q}_{1}$ and $\mathrm{P}_{2}=\mathrm{T}^{*} \mathrm{Q}_{2}$). - If $\left(q_{2}, q_{1}\right) \in \mathrm{K}_{21}$ then $q_{1} \in \mathrm{~K}_{1}$, $\left(q_{2}, q_{1}\right) \in \mathrm{M}$ and there is a covector $p_{1} \in \mathrm{~N}_{1}$ such that $\pi_{1}\left(p_{1}\right)=q_{1}$ and $\pi_{2}\left(\varphi\left(p_{1}\right)\right)=q_{2}$. It follows that $\left\langle v_{1}, p_{1}\right\rangle=\left\langle v_{1}, d \mathrm{~F}_{1}\right\rangle$ and

$$
-\left\langle v_{1}, p_{1}\right\rangle=\left\langle\left(v_{2}, v_{1}\right), d \mathrm{G}\right\rangle
$$

and finally $\left\langle\left(v_{2}, v_{1}\right), d \mathrm{G}\right\rangle+\left\langle v_{1}, d \mathrm{~F}_{1}\right\rangle=0$ for each $v_{1} \in \mathrm{~T}_{q_{1}} \mathrm{~K}_{1}$ such that $\left(v_{2}, v_{1}\right) \in \mathrm{T}_{\left(q_{2}, q_{1}\right)} \mathrm{M}$ and $v_{2}=0$. Conversely if $q_{1} \in \mathrm{~K}_{1}$ and $\left(q_{2}, q_{1}\right) \in \mathrm{M}$ then there are covectors $p_{1}^{\prime} \in \mathrm{P}_{1}, p_{1}^{\prime \prime} \in \mathrm{P}_{1}$ and $p_{2}^{\prime \prime} \in \mathrm{P}_{2}$ such that

$$
\pi_{1}\left(p_{1}^{\prime}\right)=\pi_{1}\left(p_{1}^{\prime \prime}\right)=q_{1}, \pi_{2}\left(p_{2}^{\prime \prime}\right)=q_{2}, p_{1}^{\prime} \in \mathbf{N}_{1} \quad \text { and } \quad p_{2}^{\prime \prime}=\varphi\left(p_{1}^{\prime \prime}\right)
$$

Consequently

$$
\left\langle u_{1}, p_{1}^{\prime}\right\rangle=\left\langle u_{1}, d \mathrm{~F}_{1}\right\rangle \quad \text { for each } \quad u_{1} \in \mathrm{~T}_{q_{1}} \mathrm{~K}_{1}
$$

and

$$
\left\langle w_{2}, p_{2}^{\prime \prime}\right\rangle-\left\langle w_{1}, p_{1}^{\prime \prime}\right\rangle=\left\langle\left(w_{2}, w_{1}\right), d \mathrm{G}\right\rangle \quad \text { if } \quad\left(w_{2}, w_{1}\right) \in \mathrm{T}_{\left(q_{2}, q_{1}\right)} \mathrm{M} .
$$

If in addition $\left\langle\left(v_{2}, v_{1}\right), d \mathrm{G}\right\rangle+\left\langle v_{1}, d \mathrm{~F}_{1}\right\rangle=0$ for each $v_{1} \in \mathrm{~T}_{q_{1}} \mathrm{~K}_{1}$ such that $\left(v_{2}, v_{1}\right) \in \mathbf{T}_{\left(q_{2}, q_{1}\right)} \mathbf{M}$ and $v_{2}=0$ then $\left\langle v_{1}, p_{1}^{\prime}-p_{1}^{\prime \prime}\right\rangle=0$ for each v_{1} satisfying the same conditions. It follows from a simple algebraic argument that there are covectors $p_{1} \in \mathrm{P}_{1}$ and $p_{2} \in \mathrm{P}_{2}$ such that $\pi_{1}\left(p_{1}\right)=q_{1}, \pi_{2}\left(p_{2}\right)=q_{2}$, $\left\langle u_{1}, p_{1}\right\rangle=\left\langle u_{1}, p_{1}^{\prime}\right\rangle=\left\langle u_{1}, d \mathrm{~F}_{1}\right\rangle$ for each $u_{1} \in \mathrm{~T}_{q_{1}} \mathrm{~K}_{1}$ and

$$
\left\langle w_{2}, p_{2}\right\rangle-\left\langle w_{1}, p_{1}\right\rangle=\left\langle w_{2}, p_{2}^{\prime \prime}\right\rangle-\left\langle w_{1}, p_{1}^{\prime \prime}\right\rangle=\left\langle\left(w_{2}, w_{1}\right), d \mathrm{G}\right\rangle
$$

for each $\left(w_{2}, w_{1}\right) \in \mathrm{T}_{\left(q_{2}, q_{1}\right)} \mathrm{M}$. Hence $p_{1} \in \mathrm{~N}_{1}, p_{2}=\varphi\left(p_{1}\right)$ and $\left(q_{2}, q_{1}\right) \in \mathrm{K}_{21}$.
The following proposition is an immediate consequence of the definition of K_{21}.

Proposition 3.4. - The submanifold K_{2} is the set

$$
\left\{q_{2} \in \mathrm{Q}_{2} ; \exists_{q_{1} \in \mathrm{~K}_{1}}\left(q_{2}, q_{1}\right) \in \mathrm{K}_{21}\right\} .
$$

Proposition 3.5. - If $\left(q_{2}, q_{1}\right) \in \mathrm{K}_{21}, \quad v_{1} \in \mathrm{~T}_{q_{1}} \mathrm{~K}_{1}, \quad v_{2} \in \mathrm{~T}_{q_{2}} \mathrm{~K}_{2}$ and $\left(v_{2}, v_{1}\right) \in \mathrm{T}_{\left(q_{2}, q_{1}\right)} \mathrm{M}$ then $\left\langle v_{2}, d \mathrm{~F}\right\rangle=\left\langle\left(v_{2}, v_{1}\right), d \mathrm{G}\right\rangle+\left\langle v_{1}, d \mathrm{~F}_{1}\right\rangle$.
Proof (for $\mathrm{P}_{1}=\mathrm{T}^{*} \mathrm{Q}_{1}$ and $\mathrm{P}_{2}=\mathrm{T}^{*} \mathrm{Q}_{2}$). - If $\left(q_{2}, q_{1}\right) \in \mathrm{K}_{21}$ then there are covectors $p_{1} \in \mathrm{P}_{1}$ and $p_{2} \in \mathrm{P}_{2}$ such that $\pi_{1}\left(p_{1}\right)=q_{1}, \pi_{2}\left(p_{2}\right)=q_{2}$, $p_{1} \in \mathrm{~N}_{1}, p_{2} \in \mathrm{~N}_{2}$ and $p_{2}=\varphi\left(p_{1}\right)$. It follows that $\left\langle u_{1}, p_{1}\right\rangle=\left\langle u_{1}, d \mathrm{~F}_{1}\right\rangle$ for each $u_{1} \in \mathrm{~T}_{q_{1}} \mathrm{~K}_{1},\left\langle u_{2}, p_{2}\right\rangle=\left\langle u_{2}, d \mathrm{~F}_{2}\right\rangle$ for each $u_{2} \in \mathrm{~T}_{q_{2}} \mathrm{~K}_{2}$ and $\left\langle w_{2}, p_{2}\right\rangle-\left\langle w_{1}, p_{1}\right\rangle=\left\langle\left(w_{2}, w_{1}\right), d \mathrm{G}\right\rangle$ for each $\left(w_{2}, w_{1}\right) \in \mathrm{T}_{\left(q_{2}, q_{1}\right)} \mathrm{M}$. Hence $\left\langle v_{2}, d \mathrm{~F}_{2}\right\rangle=\left\langle\left(v_{2}, v_{1}\right), d \mathrm{G}\right\rangle+\left\langle v_{1}, d \mathrm{~F}_{1}\right\rangle$ for each $\left(v_{2}, v_{1}\right) \in \mathrm{T}_{\left(q_{2}, q_{1}\right)} \mathrm{M}$ such that $v_{1} \in \mathrm{~T}_{q_{1}} \mathrm{~K}_{1}$ and $v_{2} \in \mathrm{~T}_{q_{2}} \mathrm{~K}_{2}$.

Let $\mathrm{G}_{q_{2}}$ denote the function defined by $\mathrm{G}_{q_{2}}\left(q_{1}\right)=\mathrm{G}\left(q_{2}, q_{1}\right)$. Then for each $\ddot{q}_{2} \in \mathrm{Q}_{2}$ the function $\mathrm{G}_{q_{2}}+\mathrm{F}_{1}$ is defined on the set $\left\{q_{1} \in \mathrm{~K}_{1} ;\left(q_{2}, q_{1}\right) \in \mathrm{M}\right\}$. The following two propositions are simplified versions of Propositions 3.3 and 3.4 valid under the additional assumption that for each $q_{2} \in \mathrm{Q}_{2}$ the set $\left\{q_{1} \in \mathrm{~K}_{1} ;\left(q_{2}, q_{1}\right) \in \mathrm{M}\right\}$ is a submanifold of Q_{1}.

Proposition 3.3'. - The set K_{21} is the subset of $\mathrm{Q}_{2} \times \mathrm{Q}_{1}$ such that $\left(q_{2}, q_{1}\right) \in \mathrm{K}_{21}$ if and only if q_{1} is a critical point of $\mathrm{G}_{q_{2}}+\mathrm{F}_{1}$.

Proposition 3.4'. - The set K_{2} is the subset of Q_{2} such that $q_{2} \in \mathrm{~K}_{2}$ if and only if $\mathrm{G}_{q_{2}}+\mathrm{F}_{1}$ has critical points.

For each $q_{2} \in K_{2}$ the set of critical points of $G_{q_{2}}+F_{1}$ is the set $\left\{q_{1} \in \mathrm{~K}_{1} ;\left(q_{2}, q_{1}\right) \in \mathrm{K}_{21}\right\}$. The following proposition holds if for each $q_{2} \in \mathrm{~K}_{2}$ the set of critical points of $\mathrm{G}_{q_{2}}+\mathrm{F}_{1}$ is a connected submanifold of Q_{1}.

Proposition 3.5'. - The function F_{2} defined on K_{2} by setting $\mathrm{F}_{2}\left(q_{2}\right)$ equal to the (unique) critical value of $\mathrm{G}_{q_{2}}+\mathrm{F}_{1}$ is a generating function of N_{2}.

We write $\mathrm{F}_{2}\left(q_{2}\right)=\operatorname{Stat}_{q_{1}}\left(\mathrm{G}\left(q_{2}, q_{1}\right)+\mathrm{F}_{1}\left(q_{1}\right)\right)$ meaning that $\mathrm{F}_{2}\left(q_{2}\right)$ is equal to the function $G_{q_{2}}+F_{1}$ evaluated at a point q_{1} at which it is stationary, that is at a critical point, and that $\mathrm{F}_{2}\left(q_{2}\right)$ is not defined if no critical points of $G_{q 2}+F_{1}$ exist.

4. LOCAL EXPRESSIONS

Let $\left(x^{i}\right), 1 \leq i \leq n$ be local coordinates of a manifold Q_{1}. We use coordinates $\left(x^{i}, y_{j}\right), 1 \leq i, j \leq n$ of $\mathrm{P}_{1}=\mathrm{T}^{*} \mathrm{Q}_{1}$ such that $\vartheta_{1}=\vartheta_{\mathrm{Q}_{1}}=\Sigma_{i} y_{i} d x^{i}$. Let a Lagrangian submanifold N_{1} of $\left(\mathrm{P}_{1}, \omega_{1}\right)$ be generated by a function F_{1} defined on a submanifold K_{1} of Q_{1}. If the submanifold K_{1} is described locally by equations $\mathrm{U}^{\kappa}\left(x^{i}\right)=0,1 \leq \kappa \leq k$ and if $\overline{\mathrm{F}}_{1}\left(x^{i}\right)$ is the local expression of an arbitrary (local) continuation $\overline{F_{1}}$ of the function F_{1} to Q_{1} then the Lagrangian submanifold N_{1} is described by the equation

$$
\begin{gathered}
\Sigma_{i} y_{i} d x^{i}=d\left(\overline{\mathrm{~F}}_{1}\left(x^{i}\right)+\Sigma_{\kappa} \lambda_{\kappa} \mathrm{U}^{\kappa}\left(x^{i}\right)\right) \\
=\Sigma_{i}\left(\frac{\partial \overline{\mathrm{~F}}_{1}}{\partial x^{i}}+\Sigma_{\kappa} \lambda_{\kappa} \frac{\partial \mathrm{U}^{\kappa}}{\partial x^{i}}\right) d x^{i}+\Sigma_{\kappa} \mathrm{U}^{\kappa}\left(x^{i}\right) d \lambda_{\kappa}
\end{gathered}
$$

equivalent to the system

$$
\begin{aligned}
y_{i} & =\frac{\partial \overline{\mathrm{F}}_{1}}{\partial x^{i}}+\Sigma_{\kappa} \lambda_{\kappa} \frac{\partial \mathrm{U}^{\kappa}}{\partial x^{i}}, 1 \leq i \leq n \\
\mathrm{U}^{\kappa}\left(x^{i}\right) & =0,1 \leq \kappa \leq k
\end{aligned}
$$

We note that $\mathrm{F}_{1}\left(x^{i}\right)=\operatorname{Stat}_{\left(\lambda_{\kappa}\right)}\left[\overline{\mathrm{F}}_{1}\left(x^{i}\right)+\Sigma_{\kappa} \lambda_{\kappa} \mathrm{U}^{\kappa}\left(x^{i}\right)\right]$ is the local expression of F_{1} for values of coordinates $\left(x^{i}\right), 1 \leq i \leq n$ satisfying $\mathrm{U}^{\kappa}\left(x^{i}\right)=0$, $1 \leq \kappa \leq k$. In the special case of $\mathrm{K}_{1}=\mathrm{Q}_{1}$ we have the equation $\Sigma_{i} y_{i} d x^{i}=d \mathrm{~F}_{1}\left(x^{i}\right)$ equivalent to $y_{i}=\frac{\partial \mathrm{F}_{1}}{\partial x^{i}}, 1 \geq i \geq n$.

Let $\left(x^{\prime i}\right), 1 \leq i \leq n$ be local coordinates of a manifold Q_{2} and let $\left(x^{\prime i}, y_{j}^{\prime}\right)$, $1 \leq i, j \leq n$ be coordinates of $\mathrm{P}_{2}=\mathrm{T}^{*} \mathrm{Q}_{2}$ such that $\vartheta_{2}=\vartheta_{\mathrm{Q}_{2}}=\Sigma_{i} y_{i}^{\prime} d x^{\prime i}$. We use coordinates $\left(x^{\prime i}, x^{j}\right), 1 \leq i, j \leq n$ for $\mathrm{Q}_{2} \times \mathrm{Q}_{1}$ and coordinates $\left(x^{\prime i}, y_{j}^{\prime}, x^{k}, y_{l}\right), 1 \leq i, j, k, l \leq n$ for $\mathrm{P}_{2} \times \mathrm{P}_{1}$. The local expression of the form $\vartheta_{2} \ominus \vartheta_{1}$ is $\vartheta_{2} \ominus \vartheta_{1}=\Sigma_{i}\left(y_{i}^{\prime} d x^{\prime i}-y_{i} d x^{i}\right)$. Let a symplectic diffeomorphism φ of $\left(\mathrm{P}_{1}, \omega_{1}\right)$ onto $\left(\mathrm{P}_{2}, \omega_{2}\right)$ be generated by a function G defined on a submanifold M of $\mathrm{Q}_{2} \times \mathrm{Q}_{1}$. Let the submanifold M be described locally by equations $\mathrm{W}^{\mu}\left(x^{\prime i}, x^{j}\right)=0,1 \leq \mu \leq m$ and let $\overline{\mathrm{G}}\left(x^{\prime i}, x^{j}\right)$ be the local expression of an arbitrary continuation \bar{G} of the function G to $Q_{2} \times Q_{1}$. An implicit description of the diffeomorphism φ is given by the equation
$\Sigma_{i}\left(y_{i}^{\prime} d x^{\prime i}-y_{i} d x^{i}\right)=d\left(\overline{\mathrm{G}}\left(x^{\prime i}, x^{j}\right)+\Sigma_{\mu} v_{\mu} \mathrm{W}^{\mu}\left(x^{\prime i}, x^{j}\right)\right)$ equivalent to the system

$$
\begin{aligned}
y_{i}^{\prime} & =\frac{\partial \overline{\mathrm{G}}}{\partial x^{\prime i}}+\Sigma_{\mu} v_{\mu} \frac{\partial \mathrm{W}^{\mu}}{\partial x^{\prime i}}, 1 \leq i \leq n \\
y_{i} & =-\frac{\partial \overline{\mathrm{G}}}{\partial x^{i}}+\Sigma_{\mu} v_{\mu} \frac{\partial \mathrm{W}^{\mu}}{\partial x^{i}}, 1 \leq i \leq n \\
\mathrm{~W}^{\mu}\left(x^{\prime i}, x^{j}\right) & =0,1 \leq \mu \leq m .
\end{aligned}
$$

The local expression of G for values of coordinates $\left(x^{\prime i}, x^{j}\right), 1 \leq i, j \leq n$ satisfying $\mathrm{W}^{\mu}\left(x^{\prime i}, x^{j}\right)=0,1 \leq \mu \leq m$ is obtained from

$$
\mathrm{G}\left(x^{\prime i}, x^{j}\right)=\operatorname{Stat}_{\left(v_{\mu}\right)}\left[\overline{\mathrm{G}}\left(x^{\prime i}, x^{j}\right)+\Sigma_{\mu} v_{\mu} \mathrm{W}^{\mu}\left(x^{\prime i}, x^{j}\right)\right] .
$$

If $\mathbf{M}=\mathrm{Q}_{2} \times \mathrm{Q}_{1}$ then we have the equation $\Sigma_{i}\left(y_{i}^{\prime} d x^{\prime i}-y_{i} d x^{i}\right)=d \mathrm{G}\left(x^{\prime i}, x^{j}\right)$ equivalent to $y_{i}^{\prime}=\frac{\partial \mathrm{G}}{\partial x^{\prime i}}, y_{i}=-\frac{\partial \mathrm{G}}{\partial x^{i}}, 1 \leq i \leq n$.

If the Lagrangian submanifold $\mathrm{N}_{2}=\varphi\left(\mathrm{N}_{1}\right)$ is generated by a generating function then N_{2} is described by the equation

$$
\Sigma_{i} y_{i}^{\prime} d x^{\prime i}=d\left(\overline{\mathrm{G}}\left(x^{\prime i}, x^{j}\right)+\overline{\mathrm{F}}_{1}\left(x^{j}\right)+\Sigma_{\mu} \nu_{\mu} \mathrm{W}^{\mu}\left(x^{\prime i}, x^{j}\right)+\Sigma_{\kappa} \lambda_{\kappa} \mathrm{U}^{\kappa}\left(x^{j}\right) .\right.
$$

Hence the local expression of a generating function F_{2} of N_{2} is
$\mathrm{F}_{2}\left(x^{\prime i}\right)=\operatorname{Stat}_{\left(x^{j}, \lambda_{\kappa}, v_{\mu}\right)}\left[\overline{\mathrm{G}}\left(x^{i}, x^{j}\right)+\overline{\mathrm{F}}_{1}\left(x^{j}\right)+\Sigma_{\mu} v_{\mu} \mathrm{W}^{\mu}\left(x^{\prime i}, x^{j}\right)+\Sigma_{\kappa} \lambda_{\kappa} \mathrm{U}^{\kappa}\left(x^{j}\right)\right]$. If $\mathrm{K}_{1}=\mathrm{Q}_{1}$ and $\mathrm{M}=\mathrm{Q}_{2} \times \mathrm{Q}_{1}$ then $\mathrm{F}_{2}\left(x^{\prime i}\right)=\operatorname{Stat}_{\left(x^{j}\right)}\left[\mathrm{G}\left(x^{\prime i}, x^{j}\right)+\mathrm{F}_{1}\left(x^{j}\right)\right]$.

The following simple example illustrates composition of generating functions. Let Q_{1} and Q_{2} be manifolds of dimension 2. The submanifold N_{1} of P_{1} described locally by equations $y_{1}=2 x^{1}\left(1-y_{2}\right), x^{2}=\left(x^{1}\right)^{2}$ is a Lagrangian submanifold of ($\mathrm{P}_{1}, \omega_{1}$). The mapping $\varphi: \mathbf{P}_{1} \rightarrow \mathbf{P}_{2}$ described locally by equations $x^{\prime 1}=x^{1}, x^{\prime 2}=-y_{2}, y_{1}^{\prime}=y_{1}, y_{2}^{\prime}=x^{2}$ is a symplectic diffeomorphism of $\left(\mathrm{P}_{1}, \omega_{1}\right)$ onto ($\mathrm{P}_{2}, \omega_{2}$). The Lagrangian submanifold N_{1} is generated by a function F_{1} on a submanifold K_{1} of Q_{1}. The submanifold K_{1} is described by $\mathrm{U}\left(x^{1}, x^{2}\right)=x^{2}-\left(x^{1}\right)^{2}=0$ and $\overline{\mathrm{F}}_{1}\left(x^{1}, x^{2}\right)=\left(x^{1}\right)^{2}$ is the local expression of a continuation of F_{1} to Q_{1}. The symplectic diffeomorphism φ is generated by a function G defined on a submanifold M of $\mathrm{Q}_{2} \times \mathrm{Q}_{1}$. The submanifold M is described locally by

$$
\mathrm{W}\left(x^{\prime 1}, x^{\prime 2}, x^{1}, x^{2}\right)=x^{\prime 1}-x^{1}=0 \quad \text { and } \quad \overline{\mathrm{G}}\left(x^{\prime 1}, x^{\prime 2}, x^{1}, x^{2}\right)=x^{\prime 2} x^{2}
$$

is the local expression of a continuation of G to $\mathrm{Q}_{2} \times \mathrm{Q}_{1}$. The Lagrangian submanifold N_{2} is generated by a function F_{2} defined on Q_{2}. The local expression of F_{2} is $\mathrm{F}_{2}\left(x^{\prime 1}, x^{\prime 2}\right)=\left(x^{\prime 1}\right)^{2}\left(1+x^{\prime 2}\right)$. The relation

$$
\begin{aligned}
\mathrm{F}_{2}\left(x^{\prime 1}, x^{\prime 2}\right)=\operatorname{Stat}_{\left(x^{\left.1, x^{2}, v, \lambda\right)}\right.}\left[\overline { \mathrm { G } } \left(x^{\prime 1}, x^{\prime 2},\right.\right. & \left.x^{1}, x^{2}\right)+\overline{\mathrm{F}}_{1}\left(x^{1}, x^{2}\right) \\
& \left.+v \mathrm{~W}\left(x^{\prime 1}, x^{\prime 2}, x^{1}, x^{2}\right)+\lambda \mathrm{U}\left(x^{1}, x^{2}\right)\right]
\end{aligned}
$$

is easily verified.

5. THE LEGENDRE TRANSFORMATION

Lef $(\mathrm{P}, \omega$) be the underlying symplectic manifold of two special symplectic manifolds ($\mathrm{P}, \mathrm{Q}_{1}, \pi_{1}, \vartheta_{1}$) and ($\mathrm{P}, \mathrm{Q}_{2}, \pi_{2}, \vartheta_{2}$). Lagrangian submanifolds of (P, ω) may be generated by generating functions with respect to both special symplectic structures.

Definition 5.1. - The transition from the representation of Lagrangian submanifolds of (P, ω) by generating functions with respect to $\left(\mathrm{P}, \mathrm{Q}_{1}, \pi_{1}, \vartheta_{1}\right)$ to the representation by generating functions with respect to ($\mathrm{P}, \mathrm{Q}_{2}, \pi_{2}, \vartheta_{2}$) is called the Legendre transformation from ($\mathrm{P}, \mathrm{Q}_{1}, \pi_{1}, \vartheta_{1}$) to $\left(\mathrm{P}, \mathrm{Q}_{2}, \pi_{2}, \vartheta_{2}\right)$.

Let the identity mapping of P be generated with respect to $\left(\mathrm{P} \times \mathrm{P}, \mathrm{Q}_{2} \times \mathrm{Q}_{1}\right.$, $\pi_{2} \times \pi_{1}, \vartheta_{2} \ominus \vartheta_{1}$) by a generating function E_{21} defined on a submanifold I_{21} of $Q_{2} \times Q_{1}$.

Definition 5.2. - The function E_{21} is called a generating function of the Legendre transformation from ($\mathrm{P}, \mathrm{Q}_{1}, \pi_{1}, \vartheta_{1}$) to $\left(\mathrm{P}, \mathrm{Q}_{2}, \pi_{2}, \vartheta_{2}\right)$.

If F_{1} is a generating function of a Lagrangian submanifold N of (P, ω) with respect to ($\mathrm{P}, \mathrm{Q}_{1}, \pi_{1}, \vartheta_{1}$) and if the special conditions assumed at the end of Section 3 hold then the Legendre transformation leads to a function F_{2} satisfying $\mathrm{F}_{2}\left(q_{2}\right)=\operatorname{Stat}_{q_{1}}\left[\mathrm{E}_{21}\left(q_{2}, q_{1}\right)+\mathrm{F}_{1}\left(q_{1}\right)\right]$.

Physicists use the term Legendre transformation also in a different sense. Let $\Delta: \mathrm{P} \rightarrow \mathrm{P} \times \mathrm{P}$ denote the diagonal mapping. If the image K_{21} of N by the mapping $\left(\pi_{2} \times \pi_{1}\right) \circ \Delta: \mathrm{P} \rightarrow \mathrm{Q}_{2} \times \mathrm{Q}_{1}$ is the graph of a mapping $\kappa_{21}: \mathrm{Q}_{1} \rightarrow \mathrm{Q}_{2}$ then κ_{21} is called the Legendre transformation of Q_{1} into Q_{2} corresponding to N . We call K_{21} the Legendre relation and κ_{21} the Legendre mapping of Q_{1} into Q_{2} corresponding to N . The Legendre relation can be obtained from the generating functions F_{1} and E_{21} following Proposition 3.3 or Proposition 3.3'.

6. THE LEGENDRE TRANSFORMATION OF PARTICLE DYNAMICS

Let Φ_{P} denote the graded algebra of differential forms on a manifold \mathbf{P} and let Φ_{TP} be the graded algebra of forms on the tangent bundle TP of P. A linear mapping $a: \Phi_{\mathrm{P}} \rightarrow \Phi_{\mathrm{TP}}: \mu \mapsto a \mu$ is called a derivation of degree r of Φ_{P} into Φ_{TP} relative to τ_{P} if
degree $(a \mu)=$ degree $\mu+r \quad$ and $\quad a(\mu \wedge v)=a \mu \wedge \tau_{\mathrm{P}}^{*} v+(-1)^{p r} \tau_{\mathrm{P}}^{*} \mu \wedge a v$, where $p=$ degree μ.
An important property of derivations is that a derivation is completely characterized by its action on functions and 1 -forms [3]. We define derivations i_{T} and d_{T} of Φ_{P} into Φ_{TP} of degrees -1 and 0 respectively [7], [8].

Vol. XXVII, n ${ }^{0}$ 1-1977.

If f is a function on P then $i_{\mathrm{T}} f=0$ and if μ is a 1 -form on P then $i_{\mathrm{T}} \mu$ is a function on TP defined by $\left(i_{\mathrm{T}} \mu\right)(u)=\langle u, \mu\rangle$ for each $u \in$ TP. The derivation d_{T} is defined by $d_{\mathrm{T}} \mu=i_{\mathrm{T}} d \mu+d i_{\mathrm{T}} \mu$ for each $\mu \in \Phi_{\mathrm{P}}$.

We summarize results derived in earlier publications [6], [8], [9], [10]. Let P be the cotangent bundle $\mathrm{T}^{*} \mathrm{Q}$ of a differential manifold Q . Let π denote the bundle projection $\pi_{\mathrm{Q}}: \mathrm{P} \rightarrow \mathrm{Q}$, let ϑ be the canonical 1-form ϑ_{Q} on P and ω the canonical 2-form $\omega_{\mathrm{Q}}=d \vartheta_{\mathrm{Q}}$ on P . The tangent bundle TP together with the 2 -form $d_{\mathrm{T}} \omega$ form a symplectic manifold (TP, $d_{\mathrm{T}} \omega$). The symplectic manifold (TP, $d_{\mathrm{T}} \omega$) is the underlying symplectic manifold of two special symplectic manifolds (TP, P, τ, χ) and (TP, TQ, T π, λ), where τ is the tangent bundle projection $\tau_{\mathrm{P}}: \mathrm{TP} \rightarrow \mathrm{P}, \chi$ is the 1 -form $i_{\mathrm{T}} \omega$ and λ is the 1 -form $d_{\mathrm{T}} \vartheta$.

Let Q be the configuration manifold of a particle system and let the dynamics of the system be represented by a Lagrangian submanifold D of (TP, $d_{\mathrm{T}} \omega$) [8], [9], [10]. If D is generated by generating functions with respect to both special symplectic structures given above then the generating functions are related by Legendre transformations.

Definition 6.1. - If the Lagrangian submanifold D representing the dynamics of a particle system is generated with respect to the special symplectic structure (TP, TQ, T π, λ) by a generating function L on a submanifold J of TQ then L is called a Lagrangian of the particle system and J is called the Lagrangian constraint.

Definition 6.2. - If the Lagrangian submanifold D is generated with respect to the special symplectic structure (TP, P, τ, χ) by a function F on a submanifold K of P then the function $\mathrm{H}=-\mathrm{F}$ is called a Hamiltonian of the particle system and K is called the Hamiltonian constraint.

Definition 6.3. - The Legendre transformation from (TP, TQ, T π, λ) to (TP, P, τ, χ) is called the Legendre transformation of particle dynamics and the Legendre transformation from (TP, P, τ, χ) to (TP, TQ, T π, λ) is called the inverse Legendre transformation of particle dynamics.

Proposition 6.1. - The Legendre transformation of particle dynamics is generated by the function E defined on the Whitney sum

$$
\mathrm{I}=\mathrm{T} * \mathrm{Q} \times{ }_{\mathrm{Q}} \mathrm{TQ} \subset \mathrm{P} \times \mathrm{TQ}
$$

by $\mathrm{E}(p, v)=-\langle v, p\rangle$.
Proof. - Let ρ be the mapping defined by the commutative diagram

where Δ is the diagonal mapping. Then

$$
(\mathrm{E} \circ \rho)(w)=\mathrm{E}(\tau(w), \mathrm{T} \pi(w))=-\langle\mathrm{T} \pi(w), \tau(w)\rangle=-\langle w, \vartheta\rangle
$$

Hence $\mathrm{E} \circ \rho=-i_{\mathrm{T}} \vartheta$. Further

$$
\Delta^{*}(\chi \ominus \lambda)=\chi-\lambda=i_{\mathbf{T}} d \vartheta-d_{\mathbf{T}} \vartheta=-d i_{\mathbf{T}} \vartheta=d(\mathrm{E} \circ \rho)
$$

It follows that the diagonal of TP \times TP is contained in the Lagrangian submanifold generated by E. The diagonal of TP \times TP and the Lagrangian submanifold generated by E are closed submanifolds of TP \times TP of the same dimension. If Q is connected then the Lagrangian submanifold generated by E is connected and hence equal to the diagonal of $\mathrm{TP} \times \mathrm{TP}$. If Q is not connected then the same argument applies to each connected component of Q .

The proof of the following proposition is similar.
Proposition 6.2. - The inverse Legendre transformation of particle dynamics is generated by the function E^{\prime} on $\mathrm{I}^{\prime}=\mathrm{TQ} \times{ }_{\mathrm{Q}} \mathrm{T}^{*} \mathrm{Q}$ defined by

$$
\mathrm{E}^{\prime}(v, p)=\langle v, p\rangle
$$

7. LOCAL EXPRESSIONS AND EXAMPLES

Let $\left(x^{i}\right), 1 \leq i \leq n$ be local coordinates of Q and $\left(x^{i}, y_{j}\right), 1 \leq i, j \leq n$ local coordinates of $\mathrm{P}=\mathrm{T}^{*} \mathrm{Q}$ such that $\vartheta_{\mathrm{Q}}=\Sigma_{i} y_{i} d x^{i}$. We use coordinates $\left(x^{i}, \dot{x_{j}}\right), 1 \leq i, j \leq n$ for TQ and coordinates $\left(x^{i}, y_{j}, \dot{x}^{k}, \dot{y}_{l}\right), 1 \leq i, j, k, l \leq n$ for TP. Functions \dot{x}^{i} and \dot{y}_{j} are defined by $\dot{x}^{i}=d_{\mathrm{T}} x^{i}$ and $\dot{y}_{j}=d_{\mathrm{T}} y_{j}$. Local expressions of the forms $d_{\mathrm{T}} \omega, \lambda$ and χ are $d_{\mathrm{T}} \omega=\Sigma_{i}\left(\dot{d y_{i}} d x^{i}+d y_{i} d \dot{x}^{i}\right)$, $\lambda=\Sigma_{i}\left(\dot{y}_{i} d x^{i}+y_{i} d \dot{x}^{i}\right)$ and $\chi=\Sigma_{i}\left(\dot{y}_{i} d x^{i}-\dot{x}^{i} d y_{i}\right)$. Let $\left(x^{i}, \dot{x}^{j}, y_{k}\right), 1 \leq i, j, k \leq n$ be coordinates of I and also of I^{\prime}. Then $\mathrm{E}\left(x^{i}, \dot{x}^{j}, y_{k}\right)=-\Sigma_{i} y_{i} \dot{x}^{i}$ and $\mathrm{E}^{\prime}\left(x^{i}, \dot{x}^{j}, y_{k}\right)=\Sigma_{i} y_{i} \dot{x}^{i}$ are local expressions of functions E and E^{\prime}.

Example 7.1. - Let Q be the configuration manifold of a non-relativistic particle of mass m and let $\mathrm{V}\left(x^{i}\right)$ be the local expression of the potential energy of the particle. The dynamics of the particle is represented by the Lagrangian submanifold D of (TP, $d_{\mathrm{T}} \omega$) defined locally by $y_{i}=m \dot{x}^{i}$ and $\dot{y_{j}}=-\frac{\partial \mathrm{V}}{\partial x^{j}}$. The submanifold D can also be described by equations

$$
\left.\left.\Sigma_{i} \dot{y}_{i} d x^{i}+y_{i} d \dot{x}^{i}\right)=d\left(\frac{1}{2} m \Sigma_{i} \dot{x}^{i}\right)^{2}-\mathrm{V}\left(x^{i}\right)\right)
$$

or

$$
\Sigma_{i}\left(\dot{y_{i}} d x^{i}-\dot{x}^{i} d y_{i}\right)=-d\left(\frac{1}{2 m} \Sigma_{i}\left(y_{i}\right)^{2}+\mathrm{V}\left(x^{i}\right)\right)
$$

Vol. XXVII, no 1-1977.

Hence
$\mathrm{L}\left(x^{i}, \dot{x}^{j}\right)=\frac{1}{2} m \Sigma_{j}\left(\dot{x}^{j}\right)^{2}-\mathrm{V}\left(x^{i}\right) \quad$ and $\quad \mathrm{H}\left(x^{i}, y_{j}\right)=\frac{1}{2 m} \Sigma_{j}\left(y_{j}\right)^{2}+\mathrm{V}\left(x^{i}\right)$
are local expressions of a Lagrangian L and a Hamiltonian H. Relations

$$
\mathrm{H}\left(x^{i}, y_{j}\right)=\operatorname{Stat}_{\left(\dot{x}^{k}\right)}\left[\Sigma_{j} y_{j} \dot{x}^{j}-\mathrm{L}\left(x^{i}, \dot{x^{k}}\right)\right]
$$

and

$$
\mathrm{L}\left(x^{i}, \dot{x}^{j}\right)=\operatorname{Stat}_{\left(y_{k}\right)}\left[\Sigma_{j} y_{j} \dot{x}^{j}-\mathbf{H}\left(x^{i}, y_{k}\right)\right]
$$

are local expressions of the Legendre transformation and the inverse Legendre transformation.

The following example illustrates a situation slightly more general than that described in Section 6.

Example 7.2. - Let \mathbf{Q} be the flat space-time of special relativity, let (x^{i}), $0 \leq i \leq 3$ be affine coordinates of Q and let $g_{i j}, 0 \leq i, j \leq 3$ be components of the constant indefinite metric tensor on Q . The dynamics of a free particle of mass m is represented by the Lagrangian submanifold D defined locally by $y_{i}=m\left(\Sigma_{k, l} g_{k l} \dot{x}^{k} \dot{x}^{l}\right)^{-1 / 2} \Sigma_{j} g_{i j} \dot{x}^{j}, \Sigma_{k, l} g_{k l} \dot{x}^{k} \dot{x}^{l}>0$ and $\dot{y}_{j}=0$. The definition is equivalent to: $\left.\Sigma_{i} \dot{\left(y_{i}\right.} d x^{i}+y_{i} \dot{d} \dot{x}^{i}\right)=m d\left(\Sigma_{k, l} g_{k k} \dot{x}^{\dot{k}} \dot{x}^{l}\right)^{1 / 2}, \Sigma_{\Sigma_{k, l}} g_{k l} \dot{x}^{k} x^{\dot{ }}>0$. Hence D is generated by a Lagrangian $\mathrm{L}\left(x^{i}, \dot{x}^{j}\right)=m\left(\Sigma_{i, j} g_{i j} \dot{x}^{i} \dot{x}^{j}\right)^{1 / 2}$ defined on the open submanifold J of TQ satisfying $\Sigma_{k, l} g_{k l} \dot{x}^{k} \dot{x}^{l}>0$. The submanifold D is not generated by a generating function with respect to (TP, P, τ, χ). The definition of \mathbf{D} is equivalent to: there is a number $\lambda>0$ such that $\Sigma_{i}\left(\dot{y}_{i} d x^{i}-\dot{x}^{i} d y_{i}\right)=-d\left[\lambda\left(\left(\Sigma_{i, j} g^{i j} y_{i} y_{j}\right)^{1 / 2}-m\right)\right]$, where $g^{i j}, 0 \leq i, j \leq 3$ are components of the contravariant metric tensor. We call the function H defined locally on $\mathrm{P} \times \mathrm{R}$ by $\mathrm{H}\left(x^{i}, y_{j}, \lambda\right)=\lambda\left(\left(\Sigma_{i, j} g^{i j} y_{i} y_{j}\right)^{1 / 2}-m\right)$ the generalized Hamiltonian of the relativistic particle. We call the submanifold K of P defined by $\Sigma_{i, j} g^{i j} y_{i} y_{j}=m$ the Hamiltonian constraint. The relation

$$
m\left(\Sigma_{i, j} g_{i j} \dot{x}^{i} \dot{x}^{j}\right)^{1 / 2}=\operatorname{Stat}_{\left(y_{i}, \lambda>0\right)}\left[\Sigma_{i} y_{i} \dot{x}^{i}-\lambda\left(\left(\Sigma_{k, l} g^{k l} y_{k} y_{l}\right)^{1 / 2}-m\right)\right]
$$

is the local expression of a generalized version of the inverse Legendre transformation.

8. LEGENDRE TRANSFORMATIONS IN THERMOSTATICS OF IDEAL GASES

Let P be a manifold with coordinates $(\mathrm{V}, \mathrm{S}, p, \mathrm{~T})$ interpreted as the volume, the metrical entropy, the pressure and the absolute temperature respectively of one mole of an ideal gas. The manifold P together with the form

$$
\omega=d \mathrm{~V} \wedge d p+d \mathrm{~T} \wedge d \mathrm{~S}
$$

define a symplectic manifold (\mathbf{P}, ω). The behaviour of the gas is gouverned by the two equations of state: $p \mathrm{~V}=\mathrm{RT}$ and $p \mathrm{~V}^{\gamma}=\mathrm{K} \exp \frac{\mathrm{S}}{c_{\mathrm{V}}}$, where R , γ and K are constants and $c_{\mathrm{V}}=\frac{\mathrm{R}}{\gamma-1}$. It is easy to see that the equations of state define a Lagrangian submanifold N of (P, ω).

Let $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$ and Q_{4} be manifolds with coordinate systems (V, S), $(\mathrm{V}, \mathrm{T}),(p, \mathrm{~T})$ and (S, p) respectively. The mappings

$$
\begin{aligned}
& \pi_{1}: \mathrm{P} \rightarrow \mathrm{Q}_{1}:(\mathrm{V}, \mathrm{~S}, p, \mathrm{~T}) \mapsto(\mathrm{V}, \mathrm{~S}), \\
& \pi_{2}: \mathrm{P} \rightarrow \mathrm{Q}_{2}:(\mathrm{V}, \mathrm{~S}, p, \mathrm{~T}) \mapsto(\mathrm{V}, \mathrm{~T}), \\
& \pi_{3}: \mathrm{P} \rightarrow \mathrm{Q}_{3}:(\mathrm{V}, \mathrm{~S}, p, \mathrm{~T}) \mapsto(p, \mathrm{~T}), \\
& \pi_{4}: \mathrm{P} \rightarrow \mathrm{Q}_{4}:(\mathrm{V}, \mathrm{~S}, p, \mathrm{~T}) \mapsto(\mathrm{S}, p)
\end{aligned}
$$

and forms

$$
\begin{aligned}
\vartheta_{1} & =-p d \mathrm{~V}+\mathrm{T} d \mathrm{~S} \\
\vartheta_{2} & =-p d \mathrm{~V}-\mathrm{S} d \mathrm{~T} \\
\vartheta_{3} & =\mathrm{V} d p-\mathrm{S} d \mathrm{~T} \\
\vartheta_{4} & =\mathrm{V} d p+\mathrm{T} d \mathrm{~S}
\end{aligned}
$$

define special symplectic manifolds ($\mathrm{P}, \mathrm{Q}_{1}, \pi_{1} \vartheta_{1}$), ($\mathrm{P}, \mathrm{Q}_{2}, \pi_{2}, \vartheta_{2}$), ($\mathrm{P}, \mathrm{Q}_{3}, \pi_{3}, \vartheta_{3}$) and ($\mathrm{P}, \mathrm{Q}_{4}, \pi_{4}, \vartheta_{4}$). The Lagrangian submanifold N is generated by generating functions $F_{1}=U, F_{2}=F, F_{3}=G$ and $F_{4}=H$ with respect to the above special symplectic structures. The generating functions are given by formulæ

$$
\begin{aligned}
& \mathrm{U}(\mathrm{~V}, \mathrm{~S})=\frac{\mathrm{K}}{\gamma-1} \mathrm{~V}^{(1-\gamma)} \exp \frac{\mathrm{S}}{c_{\mathrm{V}}} \\
& \mathrm{~F}(\mathrm{~V}, \mathrm{~T})=c_{\mathrm{V}} \mathrm{~T}(1-\ln \mathrm{T}+\ln \mathrm{K}-\ln \mathrm{R})-\mathrm{RT} \ln \mathrm{~V} \\
& \mathrm{G}(p, \mathrm{~T})=c_{\mathrm{P}} \mathrm{~T}(1-\ln \mathrm{T}-\ln \mathrm{R})+c_{\mathrm{V}} \mathrm{~T} \ln \mathrm{~K}+\mathrm{RT} \ln p
\end{aligned}
$$

and

$$
\mathrm{H}(\mathrm{~S}, p)=\frac{\gamma}{\gamma-1} \mathrm{~K}^{\frac{1}{\gamma}} p^{\frac{\gamma-1}{\gamma}} \exp \frac{\mathrm{~S}}{c_{p}}
$$

where $c_{p}=\mathrm{R}+c_{\mathrm{v}}$. The generating functions $\mathrm{U}, \mathrm{F}, \mathrm{G}$ and H are known as thermodynamic potentials and are called the internal energy, the Helmholtz function, the Gibbs function and the enthalpy respectively.

Three examples of the twelve Legendre transformations relating the four special symplectic structures are given below. The mapping $\pi_{2} \times \pi_{1}$ maps the diagonal of $P \times P$ onto a submanifold I_{21} of $Q_{2} \times Q_{1}$ with coordinates $(\mathrm{V}, \mathrm{S}, \mathrm{T})$ related to the coordinates $(\mathrm{V}, \mathrm{S}, p, \mathrm{~T})$ in an obvious way. The Legendre transformation from ($\mathrm{P}, \mathrm{Q}_{1}, \pi_{1}, \vartheta_{1}$) to ($\mathrm{P}, \mathrm{Q}_{2}, \pi_{2}, \vartheta_{2}$) is generated by the function E_{21} defined on I_{21} by $\mathrm{E}_{21}(\mathrm{~V}, \mathrm{~S}, \mathrm{~T})=-\mathrm{TS}$. The Legendre transformation from ($\mathrm{P}, \mathrm{Q}_{1}, \pi_{1}, \vartheta_{1}$) to ($\mathrm{P}, \mathrm{Q}_{3}, \pi_{3}, \vartheta_{3}$) is generated by the function E_{31} defined on $I_{31}=Q_{3} \times Q_{1}$ by

$$
\mathrm{E}_{31}(\mathrm{~V}, \mathrm{~S}, p, \mathrm{~T})=p \mathrm{~V}-\mathrm{TS}
$$

Vol. XXVII, ${ }^{\circ}$ 1-1977.
and the Legendre transformation from ($\mathrm{P}, \mathrm{Q}_{1}, \pi_{1}, \vartheta_{1}$) to ($\mathrm{P}, \mathrm{Q}_{4}, \pi_{4}, \vartheta_{4}$) is generated by the function E_{41} on a submanifold I_{41} of $Q_{4} \times Q_{1}$ with coordinates $(\mathrm{V}, \mathrm{S}, p)$ defined by $\mathrm{E}_{41}(\mathrm{~V}, \mathrm{~S}, p)=p \mathrm{~V}$. Relations

$$
\begin{aligned}
& \mathrm{F}(\mathrm{~V}, \mathrm{~T})=\operatorname{Stat}_{\mathrm{S}}(\mathrm{U}(\mathrm{~V}, \mathrm{~S})-\mathrm{TS}) \\
& \mathrm{G}(p, \mathrm{~T})=\operatorname{Stat}_{(\mathrm{V}, \mathrm{~S})}(\mathrm{U}(\mathrm{~V}, \mathrm{~S})+p \mathrm{~V}-\mathrm{TS}) \\
& \mathrm{H}(\mathrm{~S}, p)=\operatorname{Stat}_{\mathrm{V}}(\mathrm{U}(\mathrm{~V}, \mathrm{~S})+p \mathrm{~V})
\end{aligned}
$$

are easily verified.

REFERENCES

[1] R. Abraham and J. E. Marsden, Foundations of mechanics. Benjamin, New York, 1967.
[2] C. Caratheodory, Variationsrechnung und partielle Differentialgleichungen erster Ordnung. B. G. Teubner, Leipzig und Berlin, 1935.
[3] A. Frölicher and A. Nijenhuis, Theory of vector valued differential forms. Nederl. Akad. Wetensch. Proc. (Ser. A), t. 59, 1956, p. 338-359.
[4] J. Sniatycki and W. M. Tulczyjew, Generating forms of Lagrangian submanifolds. Indiana Univ. Math. J., t. 22, 1972, p. 267-275.
[5] J. Sniatycki and W. M. Tulczyjew, Canonical dynamics of relativistic charged particles. Ann. Inst. H. Poincaré (Sect. A), t. 15, 1971, p. 177-187.
[6] W. M. Tulczyjew, Hamiltonian systems, Lagrangian systems and the Legendre transformation. Symposia Mathematica, t. 14, 1974, p. 247-258.
[7] W. M. Tulczyjew, Sur la différentielle de Lagrange. C. R. Acad. Sci. (Sér. A) (Paris), t. 280, 1975, p. 1295-1298.
[8] W. M. Tulczyjew, A symplectic formulation of particle dynamics (to appear).
[9] W. M. Tulczyjew, Lagrangian submanifolds and Hamiltonian dynamics (to appear).
[10] W. M. Tulczyjew, Lagrangian submanifolds and Lagrangian dynamics (to appear).
[11] A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds. Advances in Math., t. 6, 1971, p. 329-346.
(Manuscrit reçu le 15 octobre 1976)

