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ABSTRACT. - We study Schrodinger operators in We show
how to find closed extensions with essential spectrum equal to the non-
negative real axis. The potentials are allowed to have singularities almost
as strong as those permitted in L 2 case.

1. INTRODUCTION

The purpose of the present paper is to create a theory for the Schro-
dinger operator

( 1.1 ) -A+V(x)
on L 00 = where A is the Laplacian in E" and V(x) is a real valued
function. When one commences studying (1.1) in L~, several problems
arise. Firstly, most of the Hilbert space techniques that are used in L2
cannot be applied here. But more seriously, in L~ there arises the difficulty
of defining the domain of a differential operator. Not even the continuous
functions are dense, and consequently the closure of the Laplacian is not
densely defined. Another difficulty becomes apparent when V is allowed
to have singularities. The domain of the multiplication operator resulting
from this function is also not dense in L~, since functions it contains must
vanish on the singularities of V.

This problem seems to be of importance in the algebraic formulation
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of quantum mechanics (see [1]). In the study of momentum states which
correspond to plane wave states of the usual quantum mechanics, it is
found that the representation given by the G. N. S. construction is not
the usual L2 representation but the set of almost periodic functions with
the scalar product given by the mean. It is rather difficult to study partial
differential operators in this space. However, since it is contained in L~,
one is led to consider such operators there.
Our hypotheses on V will be given in terms of the functions

where

We shall put

and we shall say that V E Ma,p if  oo. Our main theorem is

THEOREM 1.1. - Assume that V E M2,1 i and that

Then the operator (1.1) has a closed realization H in L 00 such that

Since we are not in a Hilbert space, the essential spectrum 6e(H) of H
is not uniquely defined. However, our theorem holds for most of the defi-
nitions (cf. [2, p. 241]).
Note that the same theorem holds in L2 (in fact a stronger result is given

in Theorem 9.1, ch. 7 of [2]). On the other hand, Theorem 1.1 is unknown
in LP for p # 2 or p # oo (cf. Theorem 5.1, ch. 6, of [2] for a weaker state-
ment). We shall prove Theorem 1.1 in Section 2 after we prove several
lemmas. January 28, 1976.

2. SOME LEMMAS

Put

where v = 1 ~r - 1 and H~ 1 ~ z is the Bessel function of the third kind. It
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is the Green’s function for the operator A + x2 and satisfies the following
estimates (cf. [3])

where ~~ is a constant depending only on n, If f is in L2, it is easily checked
that for x2 = ~,, Im x &#x3E; 0,

is the unique solution in L2 of

First we note

LEMMA 2 1. - If Im x &#x3E; 0, then R(2) is a bounded operator on L 00.

Proof This follows from the estimate

where ~2,,, denotes the surface of the unit sphere in En. Inequality (2.5)
follows from (2.2). D
Next we put

We have 

LEMMA 2 . 2. - If V e M, i, then T(b) is a bounded operator in L 00 with

where Cn depends only on n.

Proof. We have by (2.2)

where C is a constant depending only on n such that the shell between

Vol. XXVI, n° 3 - 1977.



306 H. KOLLER, M. SCHECHTER AND R. A. WEDER

the spheres of radius k/b and (k + 1 )/b can be covered by Ckn -1 b -" spheres
of radius 1. This gives (2.7). 0

We have

Proof : First we note that

by (1. 3). Let E &#x3E; 0 be given, and take R so large that

Put

and

Since the Vm are bounded, it is easily checked that the functions im are
continuous. Moreover, we have

and for each fixed .x

pointwise. Since they are majorized by the limit, we have zm(x) - i(x)
for each x. By Dini’s theorem, this convergence is uniform on x _ R.
Since .~..........~......, I

we have

Hence M2,l,x(V - Vm) -~ 0 as tn - oo uniformly in x ~  R. Take N
so large that ,_ ~_ l .,.~ ...~ ~ .. ~n

Combining this with (2.8), we obtain the lemma.

Proof. - Put VN(x) = V(x) for ) I x &#x3E; N and 0 otherwise. By Lemma 2 . 2
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By Lemma 3.2 of [5]

Let G &#x3E; 0 be given, and take N so large that  G. Now by (2.2)

For fixed N, both of these terms tend to 0 as I x I - oo. Thus we can make
the left hand side of (2.9)  G. This gives the lemma. D
Next we put .

we have

LEMMA 2. 6. - For each m and b &#x3E; 0, T m(b) is a compact operator on L 00.

Proof. - First we show that

where the constant depends only on b, V and m. To prove this we make
use of the estimates

which hold for x - x’ ) |  1 (cf. [4]). Thus we have
2
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Now suppose { is a sequence satisfying B1 1, and let s &#x3E; 0 be

given. By Lemma 2.5 there is an R so large that

On the other hand (2.10) implies that there is a subsequence (also denoted
~y { ~}) such that converges uniformly on each compact
subset of En. Thus there is an N so large that

Inequalities (2.12) and (2.13) imply

Hence the sequence { Tm(b)fk } converges in L~. Thus Tm(b) is a compact
operator. D

LEMMA 2.7. 2014 TJ&#x26;) -~ T(b) in norm on L 00.

Proof. - By Lemmas 2.2 and 2.4

COROLLARY 2.8. - T(b) is compace on L 00.

Proof. - Apply Lemmas 2 . 6 and 2. 7. D
Next we take b so large that II  1. Let

We have

LEMMA 2 . 9. - W( - b2) is a bounded operator on L 00 and is the resolvent
of a closed operator H = - b2 - W( - b2)-1 1 which is an extension of the
operator (1.1) defined on the set of those twice continuously differentiable
functions u with compact support such that V u ~ L 00.

~roof. - Fist we consider the case V = 0. Thus T(b) = 0 and

W( - b2) = R( - b2). Now

and R(x) is injective. Hence there is a closed operator Ho on L~ such
that R(~,) _ (A - (cf. M, p. 185). If U E C2 with compact support,
then f = (A + À) u E L2. Hence R(~) is a solution of (2 . 4), and consequently
u = R(El)6 But this shows that u E D(Ho) and (À - Ho)u = f Thus Ho
satisfies the requirements of the lemma for the case V = 0. For the general
case, put
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We note that [I - takes D(Ho) into itself. For it w E D(Ho) and
w = [I - T m(b)]g, then g = w + R( - b2)Vmg is in D(Ho). Thus the range
of Wm( - b2) is D(Ho). This implies

Consequently

Taking the limit as tn - oo, we have by Lemma 2.7

Again since W( - b2) is injective we see that it is the resolvent of a closed
operator H. Finally, suppose u E C2 has compact support and Vu E L 00.
Put f = (A - V - b2)u. Then f E L2 and R( - b2)f = u - T(b)u. Hence
u = W( - b2) f, showing that MeD(H) and ( - b2 - H)u = f This proves
the Lemma. D
As in the proof of Lemma 2 . 9, we let Ho be the operator - b2 - R( - b2) -1.

The domains of H and Ho need not have much in common. However,
we have

LEMMA 2.10. 2014 W(- b2) - R( - b2) is a compact operator on L 00.

Proo, f. We have by (2 .15)

Since T(b) is compact (Corollary 2 . 8) and W( - b2) is bounded, the result
follows. D
We are now ready for the proof of Theorem 1.1. We let H be the operator

given by Lemma 2.9. By Lemma 2.10 we see that

is compact. By Theorem 1. 6, ch. 11 of [2] we have

On the other hand, it follows from Theorem 3.1, ch. 4, of [2] that

Moreover, by Lemma 2.1, all complex it not in [0, oo) are in p(Ho). Hence
we have

The conclusion of Theorem 1.1 now follows from (2.19) and (2. 20).
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3. FURTHER OBSERVATIONS

We shall prove

THEOREM 3.1. - 6~H) - 6e(H) consists of isolated, negative, finite
dimensional eigenvalues having 0 as their only possible accumulation point.
All nonreal points are in p(H).

Proof - First assume that V is bounded. Put HN = Ho + V - VN,
where VN is defined as in the proof of Lemma 2. 5. Now HN has no nonreal
eigenvalues. For if z is not real and (z - u = 0, then

Since (V - VN) u E L2, this implies that u E L2 as well. But any solution
of (3.1) in L2 must vanish. Thus HN has no nonreal eigenvalues. Since it
has no nonreal essential spectrum (Theorem 1.1), it has no nonreal spec-
trum at all. Note next that

This is bounded in norm by

Thus HN tends to H in the generalized sense (cf. [7], p. 206). This shows
that H cannot have any nonreal isolated points in its spectrum (ibid.,
p. 212). On the other hand, the complement of [0, oo) in the complex plane
is in the Fredholm set of H ([2], p. 15) and contains points of its resolvent
(Lemma 2.9). Thus it can only contain isolated eigenvalues ([8], p. 206).
Hence H cannot have nonreal spectrum. If V is not bounded, put
H"1 = Ho + Vm. Since Vm is bounded, we see that H~ cannot have nonreal
spectrum by what we have just proved. Moreover, Wm( - b2) - W( - b2)
in norm as m - oo by Lemma 2.7. Hence Hm approaches H in the gene-
ralized sense, and consequently H cannot have nonreal isolated points
in its spectrum. It cannot have nonisolated points in its spectrum for the
reasons given above. Hence its spectrum must be real. D
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