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The inverse problem
for the one-dimensional schrödinger equation
with an energy-dependent potential. II (*)

M. JAULENT C. JEAN (**)
Département de Physique Mathematique

Universite des Sciences et Techniques du Languedoc
34060 Montpellier Cedex France

Ann. Inst. Henri Poincaré

Vol. XXV, n° 2, 1976,

Section A :

Physique théorique.

ABSTRACT. - In a previous paper I, the one-dimensional Schrödinger
equation y + " + [k2 - V + (k, x)] y+ = 0, was considered when the

potential V+(k, x) depends on the energy k2 in the following way :

(U(x), Q(x)) belonging to a large class r of pairs of real potentials admitting
no bound state. In this paper, we solve the two systems of differential and

integral equations introduced in I. Then, investigating the « inverse scatter-
ing problem », we find that a necessary and sufficient condition for one
of the functions

to be the « scattering matrix » associated with a pair (U(x), Q(x)) in #" is
that S+(k) (k (or equivalently S± (k E R)) belongs to the class EX
introduced in I. This pair is the only one in 1/ admitting this function
as its scattering matrix. Investigating the « inverse reflection problem »,
we find that a necessary and sufficient condition for a function s21 (k) (k E R)
to be the « reflection coefficient to the right » associated with a pair

(*) This work has been done as a part of the program of the « Recherche Cooperative
sur Programme n° 264. Etude interdisciplinaire des problemes inverses ».

(**) Physique Mathematique et Theorique, Equipe de recherche associee au C. N. R. S.
n° 154.
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120 M. JAULENT AND C. JEAN

(U(x), Q(x) in ~~ is that (k E R) belongs to the class introduced
in I. This pair is the only one in ~^ admitting this function as its reflection
coefficient to the right. We apply our study to the solution of an inverse
problem for the one-dimensional Klein-Gordon equation of zero mass
with a static potential.

RESUME. - Dans un article precedent I, nous avons etudie l’équation
de Schrodinger a une dimension y+" + [k2 - V+(k, x)] y+ = 0, xe[R,
dans le cas ou le potentiel V + (k, x) depend de l’énergie de la façon sui-
vante : V + (k, x) = U(x) + 2kQ(x), (U(x), Q(x)) appartenant a une vaste
classe ~’~ de couples de potentiels reels n’admettant pas d’etat lie. Dans
cet article nous resolvons les deux systemes d’equations differentielles et
intégrales introduits en I, ce qui nous permet d’etudier le probleme inverse
de la diffusion puis celui de la reflexion. Nous montrons qu’une condition
necessaire et suffisante pour que 1’une des fonctions

soit la « matrice de diffusion » associee a un couple (U(x), Q(x)) 
est que S + (k) (k E R) (ou de facon equivalente (k E appartienne
a la classe ~ introduite en I. Ce couple est le seul dans qui admette
cette fonction pour matrice de diffusion. Nous montrons egalement qu’une
condition nécessaire et suffisante pour qu’une fonction (k E R) soit
le « coefficient de reflexion a droite » associe a un couple (U(x), Q(x))
de f est que (k E R) appartienne a la classe !!Ii introduite en I. Ce

couple est le seul dans 1/ qui admette cette fonction pour coefficient de
reflexion a droite. Nous appliquons notre etude a la resolution d’un pro-
bleme inverse pour l’équation de Klein-Gordon de masse nulle a une
dimension, avec un potentiel statique.

1. INTRODUCTION

In a previous paper [1] referred to as I in the following, we considered
the scattering problem for the one-dimensional Schrodinger equation

with the energy-dependent potential

The principal notations and results of I can be found in section 2 of I.

Annales de l’Institut Henri Poincaré - Section A



121THE INVERSE PROBLEM FOR THE ONE-DIMENSIONAL SCHRODINGER EQUATION II

We will use them throughout. We found it useful in I to consider simulta-
neously both equations

indeed, setting k = JE (EeC) we see that for the index « + » formulas (1. 4)
and (1.5) for Im k  0 or k &#x3E; 0 reduce to (1.1) and (1.2). Let us recall
that to each pair (U(x), Q(x)) in the class ~ is associated a 2 x 2 matrix-
valued function, the « scattering matrix »

for which S+(k) (k &#x3E; 0) represents the « physical part » in the scattering
problem associated with equations ( 1.1 ) and ( 1. 2). The complex func-
tion (k E ~) is the « reflection coefficient to the right ». It has been

proved in I that the scattering matrix resp. the reflection coefficient to
the right associated with a pair in 1/’ belongs to class iX resp. to the
dads ~2014.

In this paper, we will solve two closely connected inverse problems,
whose investigation has been prepared for in I:

1. The « inverse scattering prohlem »

For any given function S + (k) (k belonging to Y, does there exist
a pair (U(x), Q(x)) belonging to Y 

-’ 

which admits it as its scattering matrix,
and if so, is this pair unique?

2. The « inverse reflection problem »

For any given function (k E R) belonging to s*, does there exist
a pair (U(x), Q(x)) belonging to ’1/ which admits it as its reflection coefficient
to the right, and if so, is this pair unique ?
Many proofs in this paper are only sketched. For a more detailed version

of our work we refer to [2].
In sections 2 and 3 we consider the inverse scattering problem. Our

method of investigation is based on the solution of the two systems S 1
and S2 of integral and differential equations introduced in I, in which

S + (k) (k is any given function in Y. In section 2 we prove that the
system S 1 has a unique solution Ai(x, t)) and that the system S2
has a unique solution t)). From the solution (Fi(x), Ai(x, t))
of Si we define a pair (Ui(x), Qi(x)) by formulas (1.2.16). Similarly, from
the solution (F2 {x), t)) of S2 we define a pair (U~(x), by

Vol. XXV, n° 2 - 1976. 9



122 M. JAULENT AND C. JEAN

formulas (1.2.17). The pair (Ui(x), Q1(x)) - resp. (U2(x), Q2{x)) - satisfies
the conditions D i and D~ -resp. Di and D2 introduced in I, sec-
tion 3. We prove that the function x) defined from (F i (x), Ai (x, t))
by formula (1.2.10) {where Fi(x) and Ai(x, t) are respectively defined
as the complex conjugates of and t) ~ is the « Jost solution
at + oo » of the differential equation (1.4) associated with the pair (U 1 (x),
Qi(x)). Similarly the function f2j:(k, x) defined from t)) by
formula (1.2.11) { where and A~ (x, t) are respectively defined as
the complex conjugates of F2 (x) and A2 (x, f)} is the « Jost solution at - oo »
of the differential equation (1.4) associated with the pair (U~(x), Q2(x)).

It is clear from I that at this point in our study we can assert that there
is at most one pair in 1/ which admits a given function in i7 as its scattering
matrix. This pair is then given by the pair Q 1 (x)) constructed from
solution of SI as well as by the pair (U2(x), Q2(x)) constructed from solu-
tion of S2.

In section 3 we return to the investigation of the existence question
for the inverse scattering problem. The proof of existence is interconnected
with the identity of the two constructed pairs (Ui(x), Qi(x)) and (U~(x),
Q2(x)). Precisely we prove that these two pairs are identical, that this
unique pair belongs and admits as its scattering matrix the input
element in 17,

or the element in t" deduced from it by inversing the sign of the diagonal
elements , , . _ , . _ ,

This ambiguity is not surprising since, clearly, S + (k) and (k E R)
lead to the same systems of equations SI and S2 and so to the same pairs
(U I(X), Ql(X)) and (U2(x), Q2(x)). In this part we need to use some theorems
on functions analytic in the upper half plane. These theorems are the
subject of an appendix.
The principal results of our study on the inverse scattering problem may

be stated as follows: A necessary and sufficient condition for one of the
functions

to be the scattering matrix associated with a pair (U(x), Q(x)) in 1/ is that
S + (k) (k E Q~) belongs to the class ~ (or equivalently that S± 1 (k) (k E IR)
belongs to ~). Note that only one of the functions S+(k) (k and S:I(k)
(k E f~) is the scattering matrix associated with a pair in 1/. This pair is the

only one in ’~’~ admitting this function as its scattering matrix. It can be

Annales de l’lnstitut Henri Poincae - Section A



123THE INVERSE PROBLEM FOR THE ONE-DIMENSIONAL SCHRODINGER EQUATION II

obtained by solving either SI and using formulas (1 . 2 . 16) or by solving S2
and using formulas (1 . 2 17).

In section 4, we show that the study of the inverse scattering problem
can be easily adjusted to that of the inverse reflection problem. We have
no ambiguity in the existence question in this case. We find that a necessary
and sufficient condition for a function s21 (k) (k E f~) to be the reflection
coefficient to the right associated with a pair (U(x), Q(x)) in ’~ is
that (k E R) belongs to the class This pair is the only one in 1/’
admitting this function as its reflection coefficient to the right. It can be
obtained by solving S 1 - with ri{t) (t E f~) defined in terms of the given
function s21 (k) (k E (1~) through formula (I. 2 . 8) - and using formulas (1 . 2 . 1 6).
We then see in an indirect way that the scattering matrix S + {k) (k E f~)
associated with a pair in 1/ is completely determined by the reflection coeffi-
cient to the right s21(k) (k E R).
Our study can be applied to the « physical » inverse scattering resp.

reflection problem associated with equations (1.1) and {1.2) in which
only the « physical part » of the scattering « matrix », i. e. S + (k) (k &#x3E; 0) -
resp, of the reflection coefficient to the right, i. e. (k &#x3E; 0) is given.
Choosing the part S + {k) (k _ 0) resp. s21 (k) (k _ 0)- arbitrarily pro-
vided that the input function S + (k) (k E (k E f~) belongs
to the class J2014resp. R2014, we are reduced to the inverse scattering-
resp. reflection problem invertigated here. The degree of indeterminacy
of this choice is an open question.

In section 5 we consider the particular case corresponding to Q(x) = 0
which has been already solved by Kay [3], Kay and Moses [4] and
Faddeev [5] note that in this case the scattering matrix S + (k) (k E f~)
is completely determined by its « physical part » S + (k) (k &#x3E; 0)-. . We
find that in this case it is easy to define the class of input functions S+(k)
(k E l~) in such a way that there is no more ambiguity in the existence
question for the inverse scattering problem.

In section 6, we apply our study to the solution of an inverse scattering
problem associated with the one-dimensional Klein-Gordon equation of
zero mass with a static potential. In this case the scattering matrix S + (k)
(k E R) for k &#x3E; 0 describes the scattering of a particle and for k  0 describes
the scattering of the correspondent antiparticle.

2. CONSTRUCTION OF TWO PAIRS
AND (U2 (x), Q2(X))

FROM GIVEN S+(k)(k E I~) IN !/

In this section, we are given a function S + {k) belonging to the
class ~ and we will solve the systems Si and S2 introduced in I. For more
details, we refer to [2] and to analogous proofs in [6] [5] and [7].
Vol. XXV, n° 2 - 1976.



124 M. JAULENT AND C. JEAN

2.I. A lemma

Let us prove the following result which is slightly stronger that the
one needed in this section but which will turn out to be useful in section 3 :

LEMMA. - For any ,fixed real x, the equation

has the unique solution y(t) = 0 in the class of square integrable complex
functions y(t) defined a. e. ~almost everywhere) for t &#x3E;_ x and having their
Fourier-transforms Y(k),

essentially bounded in fl~ ~i. e. a number K exists such that  K

a. e. for k E fR).
From (2 .1 ) we obtain

We see from theorems on Fourier transforms that (2.3) can be written
in the form

Adding this equation and its complex conjugate and then using the unitarity
of the 2 x 2 matrix S + (k), we obtain the equality

Hence Y(k) = 0 a. e. for k E ~ and therefore y(t) = 0 a. e. for t &#x3E;_ x.

2.2. Solution of S 1

Let M y be the linear operator defined as

in the Banach space L~(x, oo) of classes of complex functions inte-

grable in [x, oo[, considered as a real vector space and equipped with the
-

norm !! y !! = x |y(t)| dt. Whit the help of a theorem of Frechet-Kolmo-
x

Annales de l’lnstitut Henri Poincae - Section A



125THE INVERSE PROBLEM FOR THE ONE-DIMENSIONAL SCHRODINGER EQUATION II

gorov ( [8], p. 275) one can prove that the operator Mx is compact in oo ).
It is clear from the lemma that the equation (2.1) has the unique solution
y(t) = 0 in L I(X, oo ). From the Fredholm alternative we conclude that the

operator I - Mx has an inverse in L I(X, 00) for any real x (I is the identity
operator). As a consequence, for fixed Fi(x), the equation (1.2.19) has a
unique solution Ai (x, t) in the space of functions of (x, t) (t &#x3E; x, xe R)
which are, for fixed x, continuous and integrable in t for t ~ x.

Now we seek to make the dependence of Ai(x, t) on Fi(x) explicit.
Let ai 1(x, t) be the solution of the equation (1 . 2 . 19) corresponding to

= 1 and t) be the one corresponding to F~(x) = 2014 i. Let

t) and t) be the functions defined for (t &#x3E;- x, xe R) as

Let A ~ (x, t), F 1 (x), a 1 (x, t) and (x, t) respectively be the complex conju-
gate functions of Ai(x, t), ai(x, t) and t). It is easy to find

the relation

One can prove that the functions t) and t) belong to the class d1
and are twice continuously differentiable. Certain useful bounds can be
obtained for the partial derivatives (see [2]).

Inserting (2.8) in the equation (1.2.20) and using (1.2.21) and the
condition = 0, we find the differential equation

with the condition

This equation admits a unique solution in the space of real functions
differentiable for x E R. This solution is given by the limit o0 of

the sequence

One can prove without difficulty that the function t) defined by (2 . 8),
with Fi(x) obtained from zl(x)by (1.2.21), belongs to the class A1 and is
twice continuously differentiable for t &#x3E;_ x, x E R. It follows from our study
that this pair (Fi(x), t)) is the unique solution of S 1.

2.3. The pair Q 1 (x))

From the pair (Fi(x, Ai(x, t)), the solution of Si, we define a pair
(Ui(x), Q1(x)) by the formulas (1.2.16). It can be proved that this pair
(Ui(x), Qi(x)) satisfies the conditions Di and D2 .

Vol. XXV, n° 2 - 1976.



126 M. JAULENT AND C. JEAN

Let us prove that the function x) defined from (Fi(x), Ai(x, t))
by formula (1.2.10) { where F i (x) and A1(x, t) are respectively the complex
conjugates of Fi(x) and Ai (x, t) ~ is the « Jost solution at + oo » of the
differential equation (1.4) associated with the pair (U1(x), Q1(x)). We
consider the function t) defined as

a2 a2 a
Applying the operator « 2014- - 2 + to both sides of the

ax at a~

equation (1.2.19) we find, by differentiating under the integral sign and
integrating by parts, that t) is the solution of the equation obtained
by replacing by in (1.2.19). We therefore have from

paragraph 2.2

Now using (1.2.16) and (2.8) to express the R. H. S. of (2.13) in another
form we find the equation

which is nothing but the equation (1.4.4) occuring in the theorem in
section 4 of I. It can be proved that the other conditions for the application
of this theorem hold. Hence the desired result.

Let us give the following equation obtained by writing that the Jost
. 

solutions /i~(0, x) and x) are equal:

Using (2.8), (2.15) can be written as

Formula (2.16) allows us to determine for the values of x which
do not cancel the second factor of the L. H. S. This is clearly true at least
for x sufficiently large. In general we do not know the position of the
zeros of this quantity. This is the reason why in the system S of our inversion
procedure we have used equation (1.2.20) and not equation (2.15) as the
coupling condition between Fi(x) and Ai(x, t).

Annales de l’Institut Henri Poincaré - Section A



127THE INVERSE PROBLEM FOR THE ONE-DIMENSIONAL SCHRODINGER EQUATION II

2.4. The pair (U2(x), 

It is clear that the above study can be transposed to the case where we
start from system S2 instead of Si. System S~ thus has a unique solution

t)). From this solution we define a pair (U2(x), Q2(x)) by
the formulas (1.2.17). The pair (U~(x), Q2(x)) satisfies the conditions Dl
and D2 . The function f2I(k, x) defined from (F~ (x), t)) by for-

mula (1.2.11) {where F2(x) = and A2(x, t) = f)} is the
« Jost solution at - (f) » of the differential equation ( 1. 4) associated with
the pair (U2(X), Q2(x)).

3. THE SCATTERING MATRIX
ASSOCIATED WITH THE PAIR (U2(x), 

AND IDENTITY OF THE PAIRS
AND (U2(x), QZ(x))

We have explained in the introduction that at this point in our study
we can assert that there is at most one pair in ~~ which admits a given
function in ~ as its scattering matrix. In this section we seek to solve the
existence question for the inverse scattering problem. The proof of existence
is interconnected with the identity of the two pairs Qi(x)) and
(U~(x), Q2(X)) constructed in section 2. Precisely we will prove that these
two pairs are identical, that this unique pair belongs to 1/ and admits
as its scattering matrix the function

where 8 is equal to « + 1 » or « - 1 », i. e. the scattering matrix is the input
element S + (k) of J or the element deduced
from it by inverting the sign of the diagonal coefficients. Our method of
solution is explained in paragraph 3.2 and developed in the following
paragraphs. Before this, we introduce in paragraph 3.1 some new quan-
tities which will be very useful. We also give a relation which will be of
fundamental importance in our method.

3.1. The functions x), x), ~(~ x)
and a fundamental relation

From the given function S + (k) (k E R) in ~’, we construct another func-
tion S’(~) == (k)] (i = 1, 2 ; j = 1, 2) (k E R) by setting

Vol. XXV, n° 2 - 1976.



128 M. JAULENT AND C. JEAN

We have the relation

It is easy to see that the function S - (k) (k E IR) also belongs to ~ and that
we have the relations

where F i is defined by the formula (1.2.5) and Fi is defined as the complex
conjugate of Fi . Furthermore the case s)1(0) = 0 is equivalent to the
case = 0, and the numbers L, L 1 and L2 which occur in the condi-
tion 4) of the class i7 are the same for the functions S + (k) and S - (k).
Now we define the following functions

These functions are continuous. Furthermore the function x) (k E ~*)
admits a continuous extension x) (k E R) and we have the equality

This can be seen from the identity

and from formulas (1.2.2) and (1.2.4), and the analogues for x)
of formulas (1.4.7) and (1.4.8).

Let us give the following algebraic relation which will be of fundamental
importance in the next paragraphs :

3.2. The method

In this paragraph we first show that we will achieve the purpose set at
the beginning of this section if we prove that there exist a real number A
and a number 8 equal to « 1 » or « - 1 » such that

Annales de l’lnstitut Henri Poincaré - Section A



129THE INVERSE PROBLEM FOR THE ONE-DIMENSIONAL SCHRODINGER EQUATION II

Then we point out the steps that we will follow in the next paragraphs to
prove this equality. Using (3.12) in the fundamental relation (3.11), and
recalling (3.5), we obtain the equality

which, because of (3. 8) and (3. 5), may also be written in the form

Let us consider the function ~2 (k, x) defined as

From (3.15) x) is clearly a solution of the differential equation (1.4)
associated with the pair (U~(x), Q2(x)) for x and k E [R. From (3.14)
it is also a solution of the equation ( 1. 4) associated with the pair (Ui(x),
Qi(x)) for x &#x3E; A and We conclude that the pairs (Ui(x), Qi(x))
and (U~(x), Q2(x)) coincide for x sufficiently large and therefore that

Q2(x)) satisfies assumptions D1 and D2. Looking at the asymptotic
behaviour of the solution x) as x -~ oo and x ~ - 00, we find that
the pair (U~(x), admits as its scattering matrix and belongs
to the class 1’~. To show that Qi(x)) and (U2(x), Q2(x)) are equal
for all real x, we first notice that our inverse problem admits a solution
which is (U~(x), Q2(x)) if is the input function. We have
explained in the introduction that this solution must coincide with the
pair constructed from solution of S1. This pair is nothing but (U 1 (x), Qi(x))
since the input functions S + (k) (k E R) and (k E ~) lead to the same
system S 1.
The proof of equality (3.12) is the subject of the next paragraphs. In

3 . 3, x) is shown to admit a representation formula similar to

that (1.2.10) of x) with functions and Ai(x, t) replaced by
certain functions Fi(x) and t). A representation formula similar
to that (1.2.11) of f’2~ (k, x) is also derived for ~1 (k, x). In 3 . 4 we use the
fundamental relation (3.11) to show that the pair ( Fi (x), t)) is the
solution of the integral equation (1.2.19). This allows us to conclude
that A 1 (x, t) depends on Fi(x) in the same way that Ai(x, t) depends
on Fi(x) in formula (2 . 8). Then using the fact that the functions x)

x) are equal for x as do the functions /i~(0, x) and fl (o, x),
we prove that there exist a real number A and a number s equal to « 1 »
or « - 1 » such that Fi(x) and sFi(x) are equal for x &#x3E;_ A. Hence we
find that t) and &#x26;Ai(x, t) are equal for x &#x3E; A and finally we obtain
the equality (3.12).

Vol. XXV, n° 2 - 1976.



130 M. JAULENT AND C. JEAN

3.3. Representation formulas for the functions x) x) ;
. 

the functions and t)

Let us first derive a transformation formula for the function gi(k, x).
Using theorems on Fourier transforms we see that x) may be written
in the following form, for x e R and a. e. (almost every) k E R :

where B2 (x, t) is for real x a square integrable function in t, such that

Therefore from equation (1.2.22), B2 (x, t) = 0 for a. e. t _ x . B2 (x, t)
being the complex conjugate function of t) we can write, for xe R,
a. e. k E R,

Applying a Titchmarsh theorem recalled in the appendix, we conclude
that, x being any fixed real number, the function

belongs to the class ~ defined in this appendix. Using the definition of the
class ~ and theorem 1 of the appendix we find that the function gi(k, x)
(k E (~) admits a continuous extension g2 (k, x) (Im k &#x3E;_ 0) which is analytic
for Im k &#x3E; 0 and such that

Applying the Phragmen-Lindelof theorem we can also prove that

Using the formula (3 . 7) it is now easy to see that the function x)
(k E R) admits a continuous extension x) (1m k ::;: 0) which is ana-
lytic for Im k  0 (the case = 0 requires special investigation and
use of theorem 2 of the appendix). On the other hand, using (3.20) and
(3.4), we can prove that

With the help of (3.21) it is easy to prove that the function

Annales de l’lnstitut Henri Poincaré - Section A



131THE INVERSE PROBLEM FOR THE ONE-DIMENSIONAL SCHRODINGER EQUATION II

belongs to the class F. Therefore, from Titchmarsh’s theorem, there exists
a function defined for xe R, a. e. t ~ x, and square integrable
in t for t &#x3E; x such that

where we have set Ff(x) = Clearly the functions 
and Å1(x, t), and F1(x) are respectively conjugate.

It is clear from formula (3 . 8) that, for fixed x, the function x) (k E R)
admits a continuous extension x) (1m k  0) which is analytic
for Im k &#x3E; 0 and such that

As a consequence the function « ~l (k, x) exp (ikx) - (k E !?)
belongs to the class ~. Therefore, from Titchmarsh’s theorem, there exists
a function t) defined for a. e. t  x, and square integrable
in t for t  x such that

Clearly the functions Bi(x, t) and B ~ (x, t) are conjugate.

3.4. Relation between fl+ (k, x) and i(k, x)

Let us insert the representation formulas (1.2.8), (3.22) and (3.24) in
the fundamental relation (3.11). Using properties of Fourier transforms
we find that the pair ( ~’ 1 (x), A 1 (x, t)) satisfies the integral equation (1.2.19)
for x E [R, a. e. t &#x3E;_ x. We know that t) is a square integrable function
whose Fourier transform is essentially bounded in R. So we can use the
lemma of paragraph 2 ..1 and results of paragraph 2. 2 to assert that Ai (x, t)
can be chosen in such a way that for every pair (x, t) such that t &#x3E; x, x e R,
we have

So, for fixed x, the function t) is integrable for t &#x3E; x. Hence we can
replace (3.22) by the following representation formula valid for every
real x and every real k :

Vol. XXV, n° 2 - 1976.
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Thanks to (3.26) the equality (3.9) may be expressed as

Using (3 . 25) and the fact that = 1, we obtain from (3 . 27)

Since a number A exists such that the quantity

does not vanish for x &#x3E; A, comparison of formulas (2.16) and (3.28)
yields the equality and [Fi(x)J2 for x &#x3E; A. Therefore a num-

ber a equal to « 1 » or « - 1 » exists such that ±1(x) is equal to 
for x &#x3E; A. Because of (2 . 8) and (3 . 25) t) is equal to t) for
t &#x3E; x &#x3E; A. Then using formulas (3.26) and (1.2.10) we obtain the equa-
lity (3.12).

4. THE INVERSE REFLECTION PROBLEM

In this section we are given a function belonging to the
class ~ and we consider the inverse reflection problem. Before investigating
this inverse problem let us note that if (k E M) belongs to R and is
therefore the (2,1 ) element of a function

which belongs to ~ it is also the (2,1) element of the function

which also belongs to ~. It is also interesting to note that if s -;-1 (0) = 0,
we can prove in a rather direct way that there is no other function in ~

whose (2,1) element is (k E R). Indeed the following relations:
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133THE INVERSE PROBLEM FOR THE ONE-DIMENSIONAL SCHRODINGER EQUATION II

show that (k E R) is determined by (k E R) except for a multi-

plicative constant of modulus one. Since = 0, we can use the for-
mula (1.2.2) where L is a purely imaginary number. Then we find that

s 11 (k) is determined by s21 (k) (k E R) except for the sign. On the other hand
the relation

which follows from the unitarity of S + (k), shows that R) is deter-
mined by (k E R). Hence the desired result.

Now applying the results of sections 1, 2 and 3 to one of the functions

S + (k) (k E R) in ~ whose (2,1 ) element is the input function (k E R)
in 2lt, we conclude that there exists a pair (U(x), Q(x)) which admits

S + (k) (k E (1~) or S ± 1 (k) (k E R) as its scattering matrix. In any case this
pair admits the input function (k e R) as its reflection coefficient
to the right. On the other hand, we notice that the argument of uniqueness
given in section 1 for the solution of the inverse scattering problem can be
developed in a similar way here since (k E ~) is the only element
of S + (k) (k which occurs in the system S 1. So the inverse reflection
problem has a unique solution (U(x), Q(x)) in ~’~ for any given function
in ~. (U(x), Q(x)) can be obtained by solving S and using formulas (1.2.16).
Note that it is clear from our study that the scattering matrix S+(k)

(k E ~) associated with a pair in ~ is completely determined by the reflec-
tion coefficient to the right (k E ~)’ We also find that any function

belonging to 9f is the (2,1) element of only two functions
in g : if S + (k) (k E [R) is one of them, the other one is S ± i(k) (k E This
last result has been proved more directly above in the case = 0.

5. A PARTICULAR CASE

Let us consider the subclass 0 of pairs (U(x), Q(x)) in  which satisfy
the condition Q(x) = 0 (x E In this case each quantity indexed as « + »
coincides with the corresponding quantity indexed as « - ». It is clear

that the scattering matrix associated with a pair belongs to the sub-
class i7o of functions S + (k) (k E R) in i7 which satisfy the conditions 1

and

These conditions (5.1) are clearly equivalent to the condition S+(k) = S-(k)
or to the condition S + ( - k) = [tS + (k)] -1 1 (k E So in this case

we see that the scattering matrix S + (k) is completely determined
by its « physical part » S + (k) (k &#x3E; 0), and therefore our inverse scattering
problem coincides with the « physical » inverse scattering problem asso-
ciated with ( 1.1 ) and ( 1. 2).
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Conversely, if we are given a function S+(k) (k E (~) in i7o, we know from
our study in the above sections that there is a pair in r,

which admits S£ (k) (k E R) as its scattering matrix. Besides it is easy to see
that here the functions ri(t), a 1,1 (x, t), iai,2(x, t), ai(x, t) ( = a 1 (x, t)),

t) (= t)) are real. The differential equation (2 . 9) becomes

The only solution of (5.2) satisfying the condition (2.10) is zi(x) = 0.
The pair Qi(x)) constructed by solving S 1 is therefore given as

where t) ( = t)) is the solution of the integral equation

(note that a similar result is obtained if we consider S2 instead of SJ.
So (Ui(x), Qi(x)) belongs to ~o. On the other hand since clearly
Ft (x) = Fi(x) = 1, we have e = 1, and so the pair (U1(x), Qi(x)) admits
the input function S+(k) (k E R) in ~o as its scattering matrix.
So we can assert that a necessary and sufficient condition for a func-

tion S + (k) (k E R) to be the scattering matrix associated with a pair (U(x),
Q(x)) in ~o is that S + (k) (k E R) belongs to (We remark that in the
case = 0, contrary to Faddeev, we have to specify the asymptotic
behaviour of the coefficients as k - 0.) This pair is the only one
in 2014and therefore in 02014admitting this function as its scattering
matrix. Note that it would be easy to consider also the inverse reflection

problem. Note also that formula (4 .1 ) with 1 shows directly here
that the scattering matrix S + (k) (k E R) associated with a pair in ~"o is com-
pletely determined by the reflection coefficient to the right (k E 

6. THE INVERSE PROBLEM

FOR THE ONE-DIMENSIONAL KLEIN-GORDON EQUATION
OF ZERO MASS WITH A STATIC POTENTIAL

With the additional assumption

the formulas ( 1. 4) and ( 1. 5) for the index « + », represent, for k &#x3E; 0, the
one-dimensional Klein-Gordon equation for a particle of zero mass and
of energy k subject to a static potential Q(x) ; (1.4) and (1.5) for the
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index « - » describe the correspondent antiparticle. Let  be the set of
potentials Q(x) which satisfy assumptions D2 and D3 ; if Q(x) belongs
to ~, (U(x), Q(x)) with U(x) defined by (6.1) belongs to 1/. Let us
note that assumption D3 which expresses the hypothesis that there is no
bound state, is not physically restrictive here. The scattering matrix S + (k)
(k e R) associated with (U(x), Q(x)) is here physically observable since,
for k &#x3E; 0, it describes the scattering of the particle, and, for k  0, it des-
cribes the scattering of the antiparticle. Let us call f/ KG the subclass of
functions S+(k) (k E R) in ~ which satisfy the following condition, where
z 1 (x) is the solution of the differential equation (2 . 9) with condition (2.10)
and 11+ (x) is the function defined by (1.2.18): .

It is clear from our study that a necessary and sufficient condition for
one of the functions

and

to be the scattering matrix associated with a potential Q(x) in f2 is that
S+(k) (k E R) belongs to the class This potential is the only one in 
admitting this function as its scattering matrix. Note that it would be easy
to consider also the inverse reflection problem. To end we remark that it
would be desirable to find a condition more direct than (6. 2) on the input
function S + (k) (k E [?) of the inverse scattering problem.
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APPENDIX

SOME THEOREMS ON FUNCTIONS ANALYTIC
IN THE UPPER HALF-PLANE

In this appendix we recall a Titchmarsh theorem and we state two theorems which are
used in paragraph 3.3 (Proofs of these two theorems can be found in [2]).
We shall say that a complex function ~(k) (k E ~) defined a. e. in [R and square integrable

in ~ belongs to the class F if there exists a complex function ~(k’) analytic for Im k’ &#x3E; 0

satisfying the following conditions :
1 - there exists a positive number K such that for every h &#x3E; 0

2 - for a. e. real k, ~(k + ih) - as h - 0 (k being fixed).
The interest of the class 7i is explained by the following theorem which is often used

in paragraph 3.3:

THEOREM (Titchmarsh [9], theorem 95, p. 128). - Let be a complex function defined
for a. e. real k and square integrable in lR. Then the two following conditions are equivalent:

a) ~(k) belongs to the class ~ ;
b) the function defined for a. e. real t by

i,s equal to zero for a. e. real t  0.

Now; we state the two following theorems :

THEOREM 1. - Let (k E ~) be a function belonging to the class ~ which is essentially
bounded in f~ by a number M (i. e. we have ~(k) ~ I s; M a. e. for k E R). Then we have

2 - if ~(k) (k is continuous at the point ko E I~, then ~(k’) -~ as k’ -~ ko
( Im k’ &#x3E; 0).

In particular if (k E IR) belongs to ~, is continuous for every real k, and is bounded
in R by M, we conclude that it admits an extension ~(k) 0) which is continuous
for Im k &#x3E;_ 0, bounded in Im k &#x3E; 0 by M and analytic for Im k &#x3E; 0.

THEOREM 2. - Let ~(k) (Im k &#x3E;_ 0) be a function continuous and bounded for Im k &#x3E;_ 0

and analytic for Im k &#x3E; 0. If a complex number t exists such that

then we also have
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