
ANNALES DE L’I. H. P., SECTION A

ECKART FREHLAND
Convergence and accuracy of approximation methods
in general relativity. The time-independent case
Annales de l’I. H. P., section A, tome 24, no 4 (1976), p. 367-391
<http://www.numdam.org/item?id=AIHPA_1976__24_4_367_0>

© Gauthier-Villars, 1976, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1976__24_4_367_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


367

Convergence and accuracy
of approximation methods in general relativity.

The time-independent case

Eckart FREHLAND

Universitat Konstanz, Fachbereich Physik
D-775 Konstanz, Postfach 7733 West-Germany

Ann. Inst. Henri Poincaré,

Vol. XXIV, n° 4, 1976,

Section A :

Physique théorique.

ABSTRACT. - A special class of iterative approximation methods for
solving Einstein’s field equations of general relativity is investigated,
being based on weak field assumptions. In these methods the first approxi-
mation may be the linearized theory but must not. In each step of approxi-
mation the equations of motion for the energy tensor and usual inhomoge-
nuous wave equations must be solved. In this paper the time-independent
case is discussed. We prove the convergence to rigorous solutions under
sufficient conditions, which are to be imposed on the first approximation.
Essentially these conditions are: sufficient weakness, Holder-continuous
differentiability and sufficiently decreasing behaviour in space-like infinity.
The conditions admit the application to matter-field space as well as to
systems with vacuum regions (e. g. with isolated material sources). The
regarded space-times are homoomorph to the Minkowski-space. Explicit
estimations are derived for the deviation of obtained approximations
(e. g. the linearized theory) from rigorous solutions.

RESUME. - Nous etudions une classe speciale des methodes itératives
approximatives pour résoudre les equations Einsteiniennes de champs de
la relativité générale fondées sur des suppositions faibles du champ. Dans
ces methodes la premiere approximation peut être la théorie linéaire mais
ne le doit pas. Ce sont les equations de mouvement pour le tenseur d’energie
et les equations d’ondes ordinaires et inhomogènes qui doivent être resolues
dans chaque pas d’approximation. Dans cet article on discute le cas d’inde-
pendance du temps. Nous éprouvons la convergence aux solutions exactes
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368 E. FREHLAND

sous des conditions suffisantes qui doivent être imposées à la premiere
approximation. Essentiellement ces conditions sont : faiblesse suffisante,
differentiabilite continuante de Holder et une conduite diminuante suffi-
samment dans l’infinité d’espace. Ces conditions admettent l’application
aux systèmes pleins de matiere et aussi aux systèmes avec des regions du
vide (par exemple avec des sources materielles isolees). Les espaces-temps
considérées sont homoomorphes à l’espace-temps de Minkowski. Des
estimations explicites sont dérivées pour la deviation des approximations
obtenues (par exemple la théorie linéaire) des solutions exactes.

1. Introduction

Approximation procedures and approximate solutions for Einstein’s

field equations of General Relativity have always been subject to contro-
versies. Up to now the situation concerning the convergence and accuracy
of these procedures could not be clarified in a satisfactory way. In this
paper we start the investigation of a wide class of approximation procedures
and approximate results based on weak field calculations. Explicitely we
shall discuss those approximation methods which in each step of approxi-
mation yield usual inhomogenous wave equations. The first approximation
may be the linearized field equations but must not. We shall give the mathe-
matical justification for this class of approximation methods (proof of
convergence to rigorous solutions of the field equations and explicit esti-
mations of error). Especially we shall be able to estimate the maximum
error of the first approximation (linearized theory).
We emphasize that on the contrary to other mathematical investigations

by Fischer and Marsden, Choquet-Bruhat et al. (see e. g. [1] [6]), concerning
existence, uniqueness and continuous dependence on the Cauchy data,
our main intention is to get criteria for the validity and accuracy of the
usually applicated weak-field approximation procedures. Our methods
shall be as elementary as possible. In this paper they are based on estima-
tions of upper limits for Poisson’s integral.

Subject of this paper is the time-independent case :
In part A we discuss some systems of nonlinear partial differential

equations, which in many respects have a similar structure as the Einstein
equations. The linear part of these equations is the Laplace operator.
In the first example (chapter 2, 3) the nonlinear part contains partial deri-
vatives up to first order only. In the second example (chapter 4) the results
are extended to nonlinearities containing second derivatives. We present
in detail the applied techniques for the pure iteration method, where in
each step the complete (n - l)-th approximation is used for calculating
the n-th approximation. The iteration is treated with the fix-point theorem
for contractions.
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369CONVERGENCE AND ACCURACY OF APPROXIMATION METHODS

In part B the methods and results of part A are applied for the time-
independent case of Einstein equations. We investigate these equations
in special coordinates satisfying a De-Donder condition (see (5,10)), in
which the linear part is the usual Laplace operator. Throughout part B
time-independence is related to this special choice of coordinates. We
show the existence of solutions of the equations motion, which have to
be solved in each step of approximation. We prove that the pure iteration
converges to rigorous (global) solutions of the field equations in case the
inhomogenety (e. g. the energy-tensor) in the first approximation is suffi-
ciently weak, Holder-continuously differentiable and sufficiently decreasing
in space-like infinity (R-4). These conditions of convergence admit the
application to globally matter-filled systems as well as to systems with
vacuum regions (e. g. with isolated material sources).

Finally a possible extension of our results to time-dependent (radiating)
systems is mentioned. Under the restriction that the system is time depen-
dent for a finite time only, a proof of convergence for iterative approxi-
mations should be possible with essentially the same methods as for the
time-independent case.

In the appendix the essential properties of Poisson’s integral and its
first and second derivatives concerning boundedness and asymptotic
behavior at infinity are derived. We mention that in a recent paper of
Choquet-Bruhat and Deser [6] somewhat weaker properties of asymptotic
behavior have been used.

Usually, in practical approximate calculations a perturbational approach
is performed, where all occuring quantities are decomposed according to
their constituents of different orders in a perturbation parameter. The
convergence of the perturbation procedure may be proved under essentially
the same conditions. The results will be published elsewhere. But the
iteration leads to sharper and more transparent estimations of error. The
maximum error of an obtained (weak-field) approximation may be esti-
mated with the results for the iteration in this paper.

A. SPECIAL NON-LINEAR SYSTEMS SIMILAR
TO THE EINSTEIN EQUATIONS

2. Systems with a nonlinearity containing partial derivatives
up to first order

We first investigate a simple type of systems of non-linear partial diffe-
rential equations, from which we shall get insight to more complicated
systems such as Einstein’s field equations of General Relativity. We consider
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370 E. FREHLAND

systems where in the nonlinearity occur partial derivatives up to first
order only, e. g.:

with

From (2,1 ) we can go over to the integral equations

where

and V is the entire 3-dimensional space.
On (2,2) can be based iterative approximation procedures for solving (2,1 ).

We begin with a first approximation , of the « sources » 1:11-’ for exam-

ple 7:tt = T, (2), which is put into (2,2) in order to calculate a first approxi-
(1) &#x3E; (1)

mation of the potentials From we determine with (2,la) the
second approximation zu and so on.

In the usual perturbational approach a small perturbation parameter E
is introduced. The occuring quantities are decomposed according to their
constituents of different orders of magnitude. The n-th order of magnitude
is then given by the sum of all contributions, in which the factor En occurs.
An alternative procedure is the pure iteration where in each step the

complete (n - I)-approximation is taken for calculating the n-th approxi-
(n)

mation. Then the N~ are defined by:

and

In this paper only the iteration is regarded. A method of proving the
convergence of the perturbational approach will be published elsewhere.

e) latin indices: a, b, ... = 1, 2, 3; except i, k = 1, 2, ..., m.

(2) (n) denotes the n-th degree of approximation within an approximation procedure.
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371CONVERGENCE AND ACCURACY OF APPROXIMATION METHODS

3. Convergence of the iteration

We will prove that the integral operator

with

is contracting.

DEFINITION. - Let M be a complete metrical space in which the dis-
tance between elements ~ ~ of M is defined. Let A be an operator
in M. Then A is contracting on the domain of definition DA c M, if DA is
closed, A(f’) E DA for f ’ E DA and if

for all f~, fk E D A"
M is given by the space of continuous real functions xa E V,

lim j, = 0 with the max-NormR- Xl

A distance p between two functions M may be defined by the
norm of the difference ~ - ~ : 1 

(I (k
(i (k) .

a) III IS A CONTRACTING OPERATOR

The domain of definition D~ of III with

is given by the set of differentiable functions qJp. in M with

in case the inhomogenity T~ satisfies

S, GO in (3,6) and (3,7) must be chosen sufficiently small. S is dependent
on Bo’ We get a condition on 9 and Go with the use of the upper limits (A,5)

Vol. XXIV, n° 4 - 1976.



372 E. FREHLAND

and (A,13) on Poisson’s integral and its first derivatives. From (3,1 ) and (3,6)
follows :

Hence with (3,7), (A,5) and (A,13) :

Then by comparison of (3,9) and (3,6) the condition (3,5) yields

or

In Fig. 1. we have drawn the qualitative shape of g(9) in the relevant inter-
val 0  #  ~o.

Relation (3,10) can only be satisfied for 0, if eo  g(8Max). In case
this condition is fulfilled, 9(eo) lies in the interval (81, 82). The maximum

possible domain of definition DI with (3,5) is reached for eo = 0, i. e. T~ = 0.
Qualitatively 8 becomes smaller with growing m. By differentiation of (3 JO)
we find that 8Max(m) is given by the equation

Now we derive from (3,2) for 03B8 the condition of contraction for Iw For
two functions and ~~ defined by (3,6), i. e. with a norm  9~, we get

co c ~ &#x3E;
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373CONVERGENCE AND ACCURACY OF APPROXIMATION METHODS

from (3,1 ) and (3,9), that (3,2) is satisfied, if the following relation is valid :

Hence the condition of contraction for III is

Comparison with (3,11) shows that (3,12) means

With (3,12) and (3,10) we have worked out the essential conditions on 9
and 80 in (3,6) and (3,7) for the operator III to be contracting. Using the
fix-point theorem for contractions the above results yield.

THEOREM I. - The iteration converges to a unique solution of the integral
(1) (0)

equations (2,2), if one begins with a first approximation T#l)’ where
(0)

the function and the inhomogenity T  satisfy (3,6) and (3,7) with 80’ 8
restricted by (3,10), (3,12) respectively. When III is contracting, one can

always take as a first approximation the inear approximation = T ,(0)
03C8  = O.
We restrict the domain of definition DI to functions for which addi-

tionally exist second derivatives with

and first derivatives of T~ with:

Upper limits for the second derivatives of III then are with (A,19) (where
we have to set p = 1 ):

The domain of definition is now instead of (3,10) limited by the sharper
conditions :

and

With (3,16), (3,17) holds the extension of Theorem I.

Vol. XXI V, n° 4 -1976.



374 E. FREHLAND

(0)

THEOREM II. - If additionally to (3,6) and (3,7) ~ and T~ satisfy the
conditions (3,13) and (3,14) with 80 restricted by (3,16) and 03B8  8Max in
(3,17), then the iteration even converges to a unique solution of the system
of partial differential equations (2,1).

b) REGION OF CONVERGENCE

In practical applications it will be advantageous to begin with the

linear approximation of (2,1) and (2,2)

We discuss only the case, where the conditions of Theorem II are fulfilled,
i. e. the procedure converges to a solution of the differential equations (2,1)
as well as of the integral equations (2,2). We define a region of conver-

(1)

gence D by the condition, that for all positive 80  D the iteration with ~~
given by (3,18) converges. From (3,16), (3,17) follows, that D is given by

The evaluation of (3,19) for large m yields an asymptotic behaviour of 03B8Max
(and hence of D) weaker than m -1.

Oviously a majorant of the convergent series expansion for t/J Jl

is given by the geometric series

where a is the factor of convergence determined in (3,12).
An upper bound for the maximum error of the n-th approximation is

then

a is determined as follows (see Fig. 1 and (3,16), (3,17). First we solve the

equation

If ~0  D (3,22) has two different real solutions 81,2 &#x3E; 0 with 81 03B82.

91 is the smallest value of 8, for which the condition (3,16) is satisfied.
Therefore according to (3,12)

Annales de 1’Institut Henri Poincaré - Section A



375CONVERGENCE AND ACCURACY OF APPROXIMATION METHODS

By (3,21) also the error of the first derivatives of the n-th approximation
is determined. For calculation of the (greater) error of the second deriva-
tives we obviously have to replace in (3,20), (3,21) a by j with

and the maximum error of the second derivatives of the n-th approxima-
tion is :

4. Systems with a nonlinearity containing partial derivatives
up to second order

We extend our considerations to systems of differential equations
similar to (2,1 )

but with a nonlinearity containing partial derivatives of second order,
e. g.

As above in (2,2) we can go over to the integral representation (3)

and base on (4,2) iterative approximation procedures in complete analogy
to chapter 2. The integral operator defined by

contains second derivatives of The essential problem now is to impose
restrictions on qJ(X) which on the other hand are satisfied by the operator

T.u) as well. In the appendices A3 and A4 we have solved this problem
essentially. For a source function ’tll’ satisfying a (modified) Holder-condi-
tion (A,15) and being integrable, limited and sufficiently decreasing in the
infinity (A,2), the second derivatives of Poisson’s integral satisfy the condi-
tions imposed on apart from a factor.

Applying this result to (4,3) we get with (A,5), (A,13), (A,19), (A,20).

(3) We use the same notation as above, but with iu, Nu, T  ... now defined by (4, la)-
(4,3).

Vol. XXIV, n° 4 - 1976. 27
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LEMMA I. - Let lfJa’ T~ be functions satisfying (4)

and

Then for 03C4  = n  + Tp holds with 03B31 = Go + 03B82(1 + 03B8)m-2 and

y, = so + (2~ + + 

and III satisfies

where M(Jl) = H in (A,20a).
With Lemma I the methods of chapter 3 may easily be transferred to

differential and integral equations (4,1 ), (4,2) respectively. The result is:

THEOREM III. - The integral operator T~), defined by (4,3) is a

(4) For definition of AR, R, Jl. see (A, 15).
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377CONVERGENCE AND ACCURACY OF APPROXIMATION METHODS

contraction for functions and the inhomogenity T~ satisfying (4,4)
and 80’ 8 limited by the conditions

and 03B8  .9Max with

The evaluation of (4,7) and the calculation of a factor of convergence d
may be done analogously as in the preceding chapter.

B. THE EINSTEIN EQUATIONS

We apply the methods and results of part A for the time-independent
case of Einstein’s field equations. The main difference between the systems
discussed in part A, and the Einstein equations is the fact that in the latter
case approximation procedures cannot be performed with a given inhomo-
genity. On the contrary, in each step of approximation simultaneously
differential equations of motion must be solved, which determine the
inhomogenity in the same degree of accuracy as the gravitational potentials.

5. Integral representation of Einstein’s field equations

Einstein’s field equations of general relativity are

(Ruv : Ricci-tensor, R : Ricci-scalar, metrical tensor, Einstein-

tensor), where we have set Einstein’s gravitational constant K = 1/2.
TJlv : energy-momentum-stress-tensor of matter. Throughout part B greek
and latin indices range and sum over 1, ..., 4, 1, ..., 3 respectively.
Signature is chosen to be - 2. Explicitely RJlv is given by

with the Christoffel-symbols

The contravariant components gaP of the metrical tensor are the inverse
matrix elements of grzp :

If we set

Vol. XXIV, n° 4 -1976.



378 E. FREHLAND

with

and define

we can separate from G/lV the linear differential expression

We write the field equations (6,1) in the form

where

according to (5,2) and (5,5) consists of a sum of constituents, which are
nonlinear in the metrical tensor and its first and second derivatives, simi-
larly to the quantities N~ in (2,1 a) and (4,1 a). Schematically (indices omitted) :

As easily may be verified, the linear part LIlV’ in case it is differentiable,
satisfies the « conversation laws »

Hence modulo the field equations holds

The (non-tensorial) « conservation laws » (5,8) are equivalent to the cova-
riant equations of motion for the matter tensor 

Ilv : covariant derivative with respect to x~.
If we now set

and restrict the free choice of coordinates by the coordinate condition
(De Donder condition)

Annales de I’Institut Henri Poincaré - Section A



379CONVERGENCE AND ACCURACY OF APPROXIMATION METHODS

the field equations (5,6) become = Lllv in these coordinates)

For the derivation of (5,11) is used continuity of the second derivatives
of which makes possible the exchange of first and second derivatives.
By restriction to the retarded Green’s function we get from (5,11 ) the
coordinate-dependent integral representation of the field equations

6 . Approximation procedures

a) ITERATIVE APPROXIMATION METHODS IN THE TIME-INDEPENDENT CASE

In the time-independent case the field equations (5,11 ), (5,12) are

On (6,1~) iterative approximation methods can be based similarly as
described in chapter 2. One begins with a first approximation r~ of the
« sources » satisfying the equations of motion = 0. In case the

first approximation is the linearized theory, is the energy-momentum-
(i) &#x3E; 

u

stress tensor TJLv in special-relativistic approximation (without taking into
~ ~ 

(n) (n - 1)
account gravitational interactions). In general ( determine the
equations of motion in the n-th approximation. After having solved them

(n) (n)
the are calculated as Poisson’s integrals over .

b) CONSISTENCY OF APPROXIMATION PROCEDURES

First, because the equations of motion are of third order in the gravita-
tional potentials, the existence of third partial derivatives of the n-th

(n)

approximation I/J IlV must be guaranteed. In addition to conditions as (4,4a)
and (4,4b) we shall postulate T~ to be Holder-continuously differen-
tiable. Then it is easy to show by application of Gauss’ law that the third
(i)

derivatives of exist and again satisfy a Holder-condition. By recurrent
application of this result to the higher approximations the existence of

Vol. XXIV, n° 4 - 1976.



380 E. FREHLAND

the third derivatives on each degree of approximation is guaranteed, in
(n)

case we find in each step a solution of the equations of motion, which
is Hölder-continuously differentiable as well.

~ 
(n)

The existence of satisfying the equations of motion (5,8) is a second
(n)

condition of consistency. The equations of motion for Tuv are according
to (5,8) .

If they are fulfilled in the (n - 1 )-th approximation, then the solution of
(6,2) has the form

(n) (n-U
where huy is of the order of magnitude of the difference (N~y 2014 N~~)
and satisfies the homogenous equations

Non-trivial solutions of (6,4) may easily be constructed. Hence also the
~ 

(n) (n - 1 ) &#x3E;
existence of is guaranteed, the deviation of which from T has the
desired order of magnitude. Naturally from the described arbitrary cons-

(n)
truction cannot be expected to satisfy certain additional equations of

~ 
(n)

state (special model of matter). The existence of a under special equa-
tions of state is a problem, which we do not intend to solve in this paper.
A third problem arises, if we want to treat the field equations for isolated

material sources. In the vacuum region the equations of motion (5,8) yield
the conditions 

,

(n) ("-D
Because the Nuy are uniquely constructed by the g~ in (n - 1 )-th
approximation, equations (6,5a) yield integrability conditions. An alter-
native form of the integrability conditions to be imposed on the second
derivatives is

Below we shall show that indeed equations (6,5b) are satisfied in the required
degree of accuracy, if they hold up to the (n - l)-th approximation.

7. Proof of convergence

We will proceed in the following two steps:
First we shall omit the problem of the equations of motion and prove
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with the methods developed in part A that the relevant integral operator

is contracting for a given fixed inhomogenity T~
Second we shall discuss the equations of motion and the integrability

conditions (6,5) in vacuo.

a) CONTRACTION OF 1~

Regard the metrical space M of normable functions fv(xa), xa E V
with the max-norm

A distance p between two functions is defined by

We determine the domain of definition D( of with

In case the inhomogenity Tuy satisfies

and the Holder-condition

a complete DI is given by the functions in M with.

i) Suf ’ficient limitedness:

ii) H61der continuity of’ the second derivatives (0  p  1 ) :

iii) Existence of ’ Hölder-continuous third derivatives.

Vol. XXIV, n° 4 - 1976.
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For sufficiently small 9 (this assumption is justified below, see (7,13))
a study of the schematic structure of N IJV according to (5,6b) yields :

With (A,5), (A,13), (A,19), (A,33) for Tllv) we get.

LEMMA II. - Let rp«~, be functions satisfying (7,5)-(7,9). Then for the
integral operator defined by (7,1 ), hold the relations

with = H in (A,20a).
From Lemma II follows that with (7,4) are restricted by the relation

The qualitative shape of g(Jl, 8) is the same as for in Fig. 1.

The maximum possible value of 80 is given by

(7,12), (7,13) depend on the special value of p (strength of Hölder-conti-
1

nuity). e. g. for p = -
4 

,

The condition of contraction of the operator 1~

Annales de l’lnstitut Henri Poincaré - Section A



383CONVERGENCE AND ACCURACY OF APPROXIMATION METHODS

is with (7,3) satisfied for

The relations (7,12), (7,13) and (7,15) yield

THEOREM IV. - The integral operator T~,) defined in (7,1) is a
contraction for functions and the inhomogenity TJlv satisfying (7,6),
(7,7), (7,5) respectively, and Go, 8 restricted by (7,12), (7,13).
We additionally consider the difference

If for

of functions in DI holds with !! ~ - A
C) (k) 

then fo

one gets with (5,6b) and A  8

hence with (A,20)

where 0 ~ 8 -10~ and for 8  8Max : li  1 according to (7,13).
We shall need the relation (7,18) below in (7,23b).

b) EQUATIONS OF MOTION AND INTEGRABILITY CONDITIONS

Before application of Theorem IV we must take into account that in the
field equations (5,11 ), (6,2a) respectively the integral operator Iltv is not 
but a linear combination (5,9) of y~,,. Hence we must weaken the above
estimations by a factor 2. Then the iteration converges to a solution of (6,2).
But this solution must not be a solution of Einstein’s field equations !
This would be valid if is the linear differential form Luy (5,6) and
therefore, if satisfies the De-Donder condition (5,10). Because we
cannot hope, that (by higher inspiration) we are able to choose Tltv so,
that the limiting value satisfies the De-Donder condition, we have to

. (1) (1)
begin with a first approximation (or and then solve in each step
of approximation the equations of motion (5,8). Above we have shown
the existence of solutions with the difference (Tltv - between two
successive approximations in a desired order of magnitude. Especially we
Vol. XXIV, n° 4 - 1976.
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(n) (n - 1 ) &#x3E; (n) (n - 1) &#x3E;

can choose R~ - TJlv) to be not greater than R~ - (N~, - 
Then obviously the estimations (7,12)-(7,15) guarantee convergence if we
correct them once more by a factor 2.

For systems with isolated material sources the integrability conditions
in vacuo (6,5) must be satisfied. From the Bianchi-identities = 0

follows:

(~

At first sight one could try to show that for n - oo holds lim 0

But because N..J" contains third derivatives of the imposed pro-
(n+l)

perties t), if), iii) are too weak for estimations of Hence we show

the validity of the alternative form of integrability conditions (6,5b) and
regard the difference

(n) 
,

We assume in the n-th approximation Hllv to satisfy

where q is a suitable constant with a  q  1. We shall prove that from (7,21 )

corresponding relations follows for and so by induction lim 03BD = 0.
(n) (n)

First, from (7,21a) we get with (5,1 ), (5,6a) in vacuo + Nuy = 0) :

The magnitude of the second term on the right-hand side of this relation
(n) (n-1) ~ 29~a"- ~is determined by the distance .

Regarding (5,6b), (7,8) we see that :

The right-hand side may be estimated with 8Max according to (7,13) to be
 8 . an- 1  03B8.qn-1. Because 03B8  10 - 5 we can achieve (for suitable q  1 )
S  ~r. Hence in vacuo: .:

Assuming the equations of motion to be solved in the (n + 1 )-th approxi-

Annales de I’lnstitut Henri Poincaré - Section A



385CONVERGENCE AND ACCURACY OF APPROXIMATION METHODS

(n + 1 )mation, we can estimate the divergence of Poisson’s integral over! 11B’.
We get from (7,23a) and (7,19) with 

for suitable q  1 :

The relation (7,24a) has been obtained by rough estimations being per-
formed similarly as those leading to (5,6b) and with the use of (A,13).

(n)
The Holder-continuity of H 03BD is given by (7,21b). The Holder-continuity

of the difference | 03BD- 03BD| is determined by the Holder continuity of
the difference grzp) and its first and second derivatives. With the
use of (7,18) and for suitable a  q  1 one can easily derive from (7,22)

From (7,23b) follows similarly as (7,24a) with the use of (A,19) and (A,33) :

and

(7,24a-c) put into (5,5) yields immediately

Hence by induction (the validity for n = 1 is obvious) we get
THEOREM V. - If the pure iteration converges and the equations of

motion are solved on each step of approximation, then holds throughout
in V

and the pure iteration converges to an exact solution of Einstein’s field
equations.

8. Final results and possibility
of extension to time-dependent systems

As shown above the estimations (7,12), (7,13) must be corrected by a
factor 4. With theorems IV, V the results for the time-independent case of
Vol. XXIV, n° 4-1976.
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Einstein-equations are e. g. for J1 = - : The iteration of the field equa-
tions (6,2) converges, if the first approximation (in case the first

(U (U

approximation is the linearized theory : t JlV = TJlv) satisfies, apart from

certain continuous properties

The maximum possible deviation of metric from flat space is

The factor of convergence a is according to the definition of distance (7,3)
and with (7,10) and (7,14) (weakened by a factor 4) determined by :

where the minimal 8 is given by 80 through

In each step of the iteration from conditions i)-iii) the existence of the
differential equations of motion is guaranteed, but not for the rigorous
solution as limiting value of the iteration, because the existence of third
derivatives of cannot be proven. Instead of the differential equations
weaker (coordinate-dependent !) integral conservation laws are satisfied.
If we demand the validity and existence of the differential equa-

tions = 0, we have to replace iii) by sharper conditions, essentially
the existence of sufficiently small upper limits for the first Holder-continuous

(1)
derivatives of 
The procedure admits the application to systems with isolated material

sources. At the transition from a matter-filled region to vacuum the energy
tensor T/lv must be Holder-continuous.
We finally emphasize that the present methods and results may be

applied also for time-independent systems. We give a short outline on the
main ideas which probably make possible the extension to a class of time-
dependent (radiating) systems. The condition of time-independence on

the first approximation 03BD may be weakened by admittance of time-

dependence in a finite characteristic region R  Ro for times t  to, i. e. :
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(8,4) means that the system goes over to a time-dependent radiating state
at t = to. The iterative approximation is now based on the retarded inte-
grals (5,12). But because of the retardation the metric in the region

is completely determined by the state of the system for t  to, i. e. time-

independent. Hence the essential points of the above investigations concern-
ing the behaviour in the space-like infinity can be applied.
The exact mathematical treatment of iterations of these time-dependent

systems, mainly concerning a) the formulation of continuity conditions
at the boundary between time-dependent and-independent regions and b)
the estimation of the time-dependent contributions to the retarded integrals
in the finite region R ~ RS will be subject to future work.
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APPENDIX

In order to avoid that this appendix becomes too voluminous, we had to omit the presen-
tation of a number of lengthy calculations, especially in (A,3) and (A,4).

A 1. Upper limits for Poisson’s integral

We consider Poisson’s integral

where r = [(x - x’)2 + ( y - y’)2 + (z - Z’)2]t and V is the entire (infinite) 3-dimensional
space. The integrable « source » function is assumed to be absolutely limited and to decrease
sufficiently in the infinity (5) :

R = (x2 + y2 + Z2)t. Ro is a quantity characteristic of the linear extension of the system.
From (A,2) we get the relation

The calculation of the right-hand integrals yields:

Hence with (A,I), (A,3) and (A,4) the potential ~ satisfies the relations:

R
(5) Instead of (2014~j we could have operated throughout this paper with a behaviour

/~B3+a
of T proportional to (2014~) , o: &#x3E; 0. We have restricted to the case oc = 1 in order to

avoid additional confusion which is caused by introduction of a further parameter.
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A 2. The first derivatives

We now determine upper limits for the first partial derivatives of ~ :

Where Ve is a sphere (radius e) with the center point { ~ } . For e - 0 the second integral
vanishes. Hence we have to consider only the first integral with e - 0. In spherical polar
coordinates R, ~ , ~p (R’, ~’, ql) with ~ = 0 holds

For source points x° } with R &#x3E; Ro we get

The evaluation of the first integral in (A,8) yields:

00 
~~ ’

Ro I 
I I

because of -  1 and = - . For the last two integrals in (A,8) we get simi-
larly :

(A,9) and (A, 10) together yield an upper limit for the first derivatives of ~ in case R &#x3E; Ro :

For R ~ Ro holds with (A,2) :

Hence we get with (A,ll) and (A,12) the following upper limits:

For the determination of upper limits of the potentials ~ and their first derivatives we
have used essentially the conditions (A,2). For estimations of higher derivatives we need
further conditions on the source function T, which simultaneously guarantee the existence
of these derivatives.
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A 3. The second derivatives

We now consider the second derivatives

Additionally to (A,2) we assume the source function T-(x, y, z) to satisfy the following
(modified) Holder condition (6)

For estimation of the second derivatives we decompose as follows

where VB is a sphere of radius Ro, enclosing the field point We omit the explicite
calculation of the (maximum) contribution of the region (V - VB). This contribution may
be determined with the use of (A,2) only. The calculations are lengthy but similar to those
in appendix A,2.
For estimation of the contribution of VB we first regard field points { with R ~ Ro.

We introduce coordinates { with the origin at { x" }. Then holds (see e. g. [7]) :

In the right-hand integral in (A,17) differentiation and integration may be interchanged [8].
Thus from (A,17) follows with regard to (A,15) and (A,2)

Similarly for field points { with R &#x3E; Ro we get with the use of the second condition
in (A,15)

Taking into account the additional contributions of the region (V - VB), the resulting
relations for the second derivatives are

(6 ) See Holder [6] ( 1882). The second relation in (A,15) guarantees a sufficiently decreasing
behaviour of the Holder-continuous source function in space-like infinity.
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A 4. Holder-continuity of the second derivatives

The second derivatives (A, 14) satisfy a Holder condition corresponding to (A,15) with
the same exponent Jl in case 0  ~  1 :

The proof of Holder continuity of with the same ~ may be found e. g. in [10]. We have
done the explicit estimation of H by rather lengthy and trouble some calculations, the
presentation of which we will omit. The essential point is the estimation of a finite source
region VR enclosing the two field points { x" } and + The contribution of the

remaining region V - VR to the Poisson-integral (A,1) is a harmonic potential function
of class C~, the third derivatives of which may be estimated by lengthy but elementary
calculations similar to those in A,l, A,2 with the use of (A,2) only. The final result for H is
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