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Lorentz Covariant Quantum Mechanics
of Charged Particles
in the Two-Dimensional Space-Time

by

Andrzej STARUSZKIEWICZ

Max-Planck-Institut fiir Physik und Astrophysik, Miinchen
(On leave of absence from the Jagellonian University, Cracow, Poland)

ABSTRACT. — Quantum-mechanical equation of motion for n charged
particles in a two-dimensional space-time is derived. The equation describes
relativistic effects up to order (v/c)®> but is formally Lorentz covariant.
Covariance is achieved by the use of advanced interactions.

INTRODUCTION

Hill and Rudd [/] and the author [2] [3] noted that some classical many-
body problems in the special theory of relativity are solvable by means of
ordinary differential (i. e. nonhereditary) equations. In particular, the
exact Hamiltonian for two charged particles was calculated [3] and, for
the case of two-dimensional space-time, a system of Lorentz covariant
mechanics was constructed [2] [4]. The aim of this paper is to investigate
the quantum-mechanical version of this system. First of all, however,
we should like to discuss the physical meaning of our construction.

In the cases considered so far the goal of keeping a many-body system
both covariant and nonhereditary has been achieved at the expense of
introducing retarded and advanced interactions in a peculiar, non-sym-
metric way. Arguments have been presented [5] [6] that this very unphysical
feature cannot really be avoided. Now, a theory of charged particles which
is formally Lorentz covariant but uses a mixture of retarded and advanced
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360 A. STARUSZKIEWICZ

interactions is physically valid only up to order (v/c)* because to this order
there is still no difference between the retarded and advanced Lorentz
forces. One immediately asks the question: what is the point in having a
covariant theory whose physical validity does not extend beyond the (v/c)?
effects ? Does it make sense, for example, to keep kinetic energy terms in

the form m/\/1 — (v/c)* if the potential is known only to order (v/c)*?
Our answer is: yes, it does make sense because, apart from an obvious
esthetic appeal of a Lorentz covariant theory, it just so happens that most
calculations in the formally covariant theory are much simpler than in
the (v/c)? approximation. For example, our exact two-body Hamiltonian [3]
is actually much simpler than Darwin’s approximate one [7]; the retarded
Coulomb potential, which is quite complicated in approximate calculations,
is simply 1/r in the covariant approach.

So much about the physical meaning of our approach. In the following
sections we construct the Lorentz covariant equations of motion. We hope
that their physical meaning has been adequately explained in this intro-
duction.

THE STRUCTURE OF NEWTONIAN DYNAMICS

The Newtonian dynamics has the following mathematical structure:
there exists a relation between events, called simultaneity, which is reflexive
(an event is simultangous with itself), symmetric (if A is simultaneous
with B then B is simultaneous with A), transitive (if A is simultaneous
with B and B with C, then A is simultaneous with C) and invariant with
respect to the Galilean group. By the familiar process of abstraction, the
relation of simultaneity divides all events into disjoint equivalence classes.
Two events are supposed to be in a mutual dynamical relationship if and
only if they belong to the same equivalence class, i. €. if they are simultaneous.

Is there a relation between events which can replace simultaneity in
the special theory of relativity ? The usual Einstein (i. e. coordinate) simulta-
neity is reflexive, symmetric and transitive but not invariant. Another
simple relation: « two events are separated by a null interval » is reflexive,
symmetric and invariant but not transitive. However, in two-dimensional
space-time the relation « two events are on the same null straight line »
is reflexive, symmetric, transitive and invariant. On the basis of this simple
observation one can construct a mechanics which is as simple and beautiful
as the classical one.

THE TWO-DIMENSIONAL RELATIVISTIC MECHANICS

Letc=1landletu =t — x,v =t + x, where t and x denote respectively
time and space coordinate in some inertial reference system. Two events
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LORENTZ COVARIANT QUANTUM MECHANICS OF CHARGED PARTICLES 361

are said to be v-simultaneous if they have the same v-coordinate. The
relation of v-simultaneity is easily seen to be reflexive, symmetric, transitive
and invariant i. e. to have all the properties of Newtonian simultaneity.
Consequently, we shall treat u as the « coordinate » and v as « time » We
shall not bother about the inherent lack of time and space reflection sym-
metry in this treatment; later this shortcoming will be removed.

For a free particle

action = — mJ‘, /(dt)? — (dx)* = — mf, /dudy
-m fﬁdv, u = du/dv.

Similarly for two particles

action = — m, fﬁdv —m, J‘\/il—zdv-

All this is trivial. The point is, however, that it is just as easy to introduce
the electromagnetic interaction. The action

o

_uz

is Lorentz invariant, as can be seen from the fact that the Lorentz trans-
formation has the form

w=e* v=e'" 1= hyperbolic angle,

and describes exactly the following physical situation: the first particle
(or: the particle on the left-hand side) is acted upon by the retarded Lorentz
force of the second particle while the second particle is acted upon by the
advanced Lorentz force of the first particle. For n particles we have the

action
u; +u
f%mf+§eek kld.
u; — Uy

The Hamiltonian for one particle is H = — m?/4p, where

p = dL/oi = &(— m\/u)/d

and H = &(0L/du) — L. The Hamiltonian is not equal to the total energy:
H = (1/2)(E — P), where E is the energy and P is the momentum. For two
free particles H = — m}/4p, — m3/4p,, for two charged particles

mi m3

ee e e
4(,,1 +__l_2_> 4<,,2 +_g_)
luy — uy| luy —uy |

H=-

and so on.
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QUANTUM MECHANICS

The Schrodinger equation for one free particle has the form (A = 1)

N m’ . 0
iy = H=-—7 p=-ig
The inverse of momentum may be defined e. g. by means of the Fourier
transform; it is, however, simpler to observe that the Schrédinger equation,
if acted upon by the p-operator, becomes
2 2
Ly -,
oudv 4
which is the Klein-Gordon equation. This is encouraging because from a
somewhat unusual approach we have obtained a familiar result. Of course
we also have obtained the well-known difficulties connected with the
negative frequency solutions but, as we tried to make clear in the introduc-
tion, our mechanics, despite its formal covariance, is supposed to be
physically valid only when potential and kinetic energies are small when
compared to the rest masses. In this region the Klein-Gordon equation
can be safely used.
In the same way, i. e. multiplying the Hamiltonian by the product of
all momenta, we obtain for two free particles

Py mloy  mioy

——— + —_—— — ,
ou0u,dv 4 ou, 4 Ou,
and for n particles

6"“|// . m% an—lw
oudu, ... Ou,0v 4 Ouyluy ... du,
2 an—l 2 an—l
m_ TV LA
4 Ou,0uy ... Ou, 4 Ou,0u, ... ou,_,

All these equations are of course covariant.
For two charged particles there is an ordering problem because the

operators

e e, €16

py + and p

172  +—
[u; — uy| Uy — uy |

do not commute. We shall apply the simplest ordering, namely take the
symmetrized product of all relevant operators. In this way we get for
two charged particles

o G ) G )L
ou, |u, — uy |/ \ou, lu, —uy | symav

2 2

mi( 0 . €16 my( 0 . €1€y )

+ —\— — W+ —|—+i———— =0,
4<a“2+l|“1_uzl)w 4(5“1 ll“l_“ziw
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where the subscript sym denotes symmetrization. The generalization
to n particles is obvious.

The author finds it remarkable that such a simple and covariant equa-
tion of motion for n charged particles can be obtained by application
of such an elementary method which involves no arbitrariness other then
the choice of ordering for the noncommuting operators.

TIME AND SPACE REFLECTION SYMMETRY

Eq. (1) is neither time nor space reflection invariant. Lack of such an
invariance is inherent in our construction. A similar problem exists in the
notion of relativistic spinor; the solution by Dirac is well-known: he intro-
duced two spinors which are interchanged under reflection.

Let us write the equation which arises from (1) when u is replaced by v
and v by u and call the new wave function y:

) {(iﬁie_z_)(iﬁ_eﬁz_)} o
ov, v, — vy |/ \Ov, v, — vz | symau

2 2

mifd | e, mz(a . ele, )
b =i+ 2=+ i — 2 =0.
4(‘902 |01—02|>X 4 \0v, lvl—Ule

It is easy to see that, under time reflection, ¥’ = — v, v = — u. This is
a symmetry operation for the system of Eq. (1) and (2), if it is accompanied
by the transformation y’ = ¥, ¥’ = . Similarly, the space reflection v’ = o,
v’ = u has to be accompanied by the transformation ¥’ =y, y’ = ¢ and
the total reflection u’ = — u, v’ = — v by the transformation y’ = , ¥’ = ¥.
Finally, let us observe that the function ¢ is determined on a hyperplane
v, = v, = ... = v, while the function y is determined on the hyperplane
u, = u, = ... = u, These two hyperplanes intersect on a two-dimensional
plane u, =u, = ... =u,, v, = v, = ... = v, We assume that the func-
tions  and x are not independent but form together one wave function whose
support consist of two pieces. It follows from this interpretation that a
solution ¥ of Eq. (1) and y of Eq. (2) form together an acceptable wave
function if and only if y = gy foru, =u,= ... =u,and v, =v,= ... =v,
In general this boundary condition is obviously nontrivial. However, in
the case of two charged particles the condition is trivially satisfied because
of singular nature of the Coulomb force: the wave equations (1) and (2)
have a singular point for ¥, = u, and v, = v, respectively and we have to
impose the usual regularity condition. It turns out that both functions
and y have to vanish at the singularity which means that the condition
Y =y for u; = u, and v, = v, is trivially satisfied in the form ¢y = 0 = ¥
for u; = u, and v, = v,. In general however, in particular for nonsingular
forces, the condition will not be trivially satisfied and will constitute a
dynamical connection between the two parts of the wave function.
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THE TWO-BODY PROBLEM

To see if our equations of motion give physically plausible results we
shall consider the two-body problem (1).

Because the potential depends on u, — u, only, it is convenient to intro-
duce new variables u, — u, = u, au, + fu, = U, a + f = 1. For the
same reason the Hamiltonian H and p, + p, are constants of motion:

1 1
H=_-(E-P), p+p,=-5E+P),
2 2
where E and P are the total energy and momentum. Therefore, we put

in (1)
lév 2( W, l(@ul 6uz> 2( W

In this way Eq. (1) is reduced to the form

{[a 1 d ie e, ][ﬁ 1 d ie e, ]} M?
e R e | s —y
% T ErPdu T E+P) w20 E+xPdu E+P)ullfym i

mf[ﬂ 1 d ie e,

mip L4},

2(2i E+Pdu (E+ P)lu]

2 .

mi[ o 1 d ie e, ]
] A T R
2[2i+E+Pdu E+ Pl

where M2 = E2 — P2, Let us choose « and § so that the term proportional
to dyr/du vanishes; to this end we put

1 m? — m? 1 m: — m?
(14" — (1 4T
* 2<l+ vz ) PR\l e

For small velocities M = m, + m, and we obtain the usual nonrelativistic
expression for o and .
To simplify the equation further we introduce the invariant variable
[ = (E + P)u; —u;) (E+ Pl
- 2M M

and the equation of internal motion takes on the form
d?y + [Mz —m} —mjee, (elEZ)Z]w
a2 M Iq g
1
ve

The derivation of Eq. (3) admittedly involves a certain arbitrariness in

3)

M? — (m; + m,)’] (M? -, (m, — m;)* 1 .
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the ordering of noncommuting operators: we simply took the symmetrized
product. Nevertheless, the result is in excellent agreement with our exact
classical two-body Hamiltonian [3]. The physical content of the last equa-
tion and of the exact classical result may be described as follows: if the
kinetic energy term in the electromagnetic two-body problem is conven-
tionally put equal to p?, then the Coulomb potential is (M? — m? — m3)/M
times the ordinary Coulomb potential while the numerical value of the
Hamiltonian is

[M2 —(m; + mz)Z] [M2 —(m; — mz)z]/4M2 .

Let us check that the non-relativistic limit is correct. We say that a two-
body system is non-relativistic if its mass can be written in the form

M=m +m, +e¢,

where ¢ is so small a number that its square can be neglected. Introducing ¢
into Eq. (3) and neglecting the term proportional to (e,e,)* we find

1 d*y Lae,
2w d? |C|¢ ¥

1 1 1

Hoomg m

where

b

which means that the non-relativistic limit is indeed correct.

The one-particle limit m, — oo is also correct. In thiscase M = m, + ¢,
where m, is very large. Putting this into Eq. (3) and taking the limitm, — o
we find s

_AY ey, (ene»

dCZ g
This is to be compared with the Klein-Gordon equation for particle 1
in the external Coulomb field generated by particle 2 i. e. with the equation

(P, — elA‘,)(p“ — e A = ’”1'//

€3

0_|x1|9

= (e —my.

where

A, =0, P, =0, u=0,1.

A simple calculation shows that these two equations are, in fact, identical.

CONCLUSIONS

We have constructed a quantum mechanics of charged particles which
describes correctly relativistic effects up to order (v/c)> and is formally
Lorentz covariant. Covariance is achieved by the use of an advanced inter-
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366 A. STARUSZKIEWICZ

action. If a similar construction is possible in four-dimensional space, it
would be obviously interesting to find it. If such a construction is impossible,
the two-dimensional model probably has little relevance for four-dimen-
sional physics.
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